19.07.2013 Views

Kinematic and Dynamic Analysis of Spatial Six Degree of Freedom ...

Kinematic and Dynamic Analysis of Spatial Six Degree of Freedom ...

Kinematic and Dynamic Analysis of Spatial Six Degree of Freedom ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The sum <strong>of</strong> virtual work done by internal reduced moment r m <strong>and</strong> force f r , for<br />

infinitesimal increments <strong>of</strong> input parameters (rotational: ϕ , ν = 1,<br />

3,<br />

5<br />

ν<br />

<strong>and</strong> linear:<br />

ν<br />

a , ν = 2,<br />

4,<br />

6)<br />

in a fixed time interval t, is equal to the work done by external force<br />

35<br />

f ( Fx<br />

, Fy<br />

, Fz<br />

) by linear displacements δ x, δy,<br />

δz<br />

<strong>and</strong> external moment m( M x , M y , M z ) by<br />

angular displacements δα , δβ,<br />

δγ on the moving platform. Following convention will be used<br />

here after for convenience: ϕ ϕi<br />

ν =<br />

13 <strong>and</strong> a13 = si+<br />

3<br />

ν<br />

13<br />

<strong>and</strong> all i = 1, 2, 3 unless otherwise specified.<br />

The equation <strong>of</strong> virtual works <strong>of</strong> external <strong>and</strong> internal forces <strong>and</strong> moments can be<br />

written as follows:<br />

3<br />

∑<br />

i=<br />

1<br />

3<br />

∑<br />

i=<br />

1<br />

M δϕ = F δx<br />

+ F δy<br />

+ F δz<br />

+ F δα + F δβ + F δγ<br />

r,<br />

i<br />

r,<br />

i+<br />

3<br />

i<br />

i+<br />

3<br />

x<br />

y<br />

z<br />

x<br />

F δs = F δx<br />

+ F δy<br />

+ F δz<br />

+ M + M δβ + M δγ (5.1)<br />

x<br />

y<br />

z<br />

y<br />

xδα<br />

y z<br />

When operating the manipulator with multi DOF, the virtual work <strong>of</strong> all external forces<br />

<strong>and</strong> moments are consequently determined by varying one <strong>of</strong> the input parameters with others<br />

held constant:<br />

⎡ ∂x<br />

∂y<br />

∂z<br />

∂α<br />

∂β<br />

∂γ<br />

⎤<br />

x = ⎢<br />

⎥ δϕi<br />

⎣∂ϕ<br />

i ∂ϕi<br />

∂ϕi<br />

∂ϕi<br />

∂ϕi<br />

∂ϕi<br />

⎦<br />

[ ] T<br />

δ δy<br />

δz<br />

δα δβ δγ<br />

[ ] T<br />

δ δy<br />

δz<br />

δα δβ δγ<br />

⎡<br />

x = ⎢<br />

⎥ δsi+<br />

3<br />

∂si+<br />

3 ∂si+<br />

3 ∂si+<br />

3 ∂si+<br />

3 ∂si+<br />

3 ∂si+<br />

3<br />

⎣<br />

∂x<br />

∂y<br />

∂z<br />

∂α<br />

∂β<br />

T<br />

z<br />

∂γ<br />

⎤<br />

⎦<br />

T<br />

(5.2)<br />

Fixing the five input parameters, we get a 1-DOF mechanism <strong>and</strong> for every<br />

combination <strong>of</strong> fixed input parameters. The values <strong>of</strong> generalized moment <strong>and</strong> force equals to<br />

reduced moments <strong>and</strong> forces. Using equations (5.1) <strong>and</strong> (5.2) we have:<br />

3<br />

∂x<br />

∂y<br />

∂z<br />

∂α<br />

∂β<br />

∂γ<br />

∑ M r,<br />

i = Fx<br />

+ Fy<br />

+ Fz<br />

+ M x + M y + M z<br />

i= 1 ∂ϕi<br />

∂ϕi<br />

∂ϕi<br />

∂ϕi<br />

∂ϕi<br />

∂ϕi<br />

3 ∂x<br />

∂y<br />

∂z<br />

∑ Fr,<br />

i = Fx<br />

+ Fy<br />

+ Fz<br />

i= 1 ∂si+<br />

3 ∂si+<br />

3 ∂si+<br />

3<br />

+ M<br />

x<br />

∂α<br />

+ M<br />

∂s<br />

∂β<br />

+ M<br />

∂γ<br />

y<br />

z<br />

i+<br />

3 ∂si+<br />

3 ∂si+<br />

3<br />

(5.3)<br />

56

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!