19.07.2013 Views

Kinematic and Dynamic Analysis of Spatial Six Degree of Freedom ...

Kinematic and Dynamic Analysis of Spatial Six Degree of Freedom ...

Kinematic and Dynamic Analysis of Spatial Six Degree of Freedom ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

J is the 6x6 Jacobian matrix that’s the partial derivations (5.7) <strong>of</strong> six outputs to six<br />

input parameters. Solving equation (5.7), we can find<br />

.<br />

.<br />

.<br />

x , y,<br />

z , wx,wy,wz. Thus the problem <strong>of</strong><br />

determination <strong>of</strong> the partial derivatives in (5.7) comes to kinematic analysis <strong>of</strong> mechanism<br />

having 1-DOF. After substituting the values <strong>of</strong> output parameters (5.7) into (5.5) <strong>and</strong><br />

straightforward transformations, we obtain the equation <strong>of</strong> kinetic energy for the spatial 6-<br />

DOF parallel manipulator with three angular <strong>and</strong> three linear actuators as:<br />

where<br />

2T<br />

=<br />

[ I w w + I w V + I V V ]<br />

3<br />

∑ k,<br />

i<br />

k,<br />

i=<br />

1<br />

3<br />

∑<br />

k,<br />

i=<br />

1<br />

k<br />

i<br />

k,<br />

i+<br />

3<br />

k<br />

i+<br />

3<br />

k+<br />

3,<br />

i+<br />

3<br />

o ⎡o<br />

o<br />

o<br />

⎤<br />

2T<br />

= ⎢I<br />

k,<br />

i wk<br />

wi<br />

+ I k,<br />

i+<br />

3 wkVi<br />

+ 3 + I k+<br />

3,<br />

i+<br />

3 VkVi<br />

+ 3 ⎥ (5.8)<br />

⎣<br />

⎦<br />

I k,<br />

i = [ m(<br />

J1,<br />

k J1,<br />

i + J 2,<br />

k J 2,<br />

i + J 3,<br />

k J 3,<br />

i ) + I x J 4 , k J 4,<br />

i + I y J5,<br />

k J5,<br />

i + I z J 6,<br />

k J 6,<br />

i + ζ k,<br />

i ]ξ k,<br />

i<br />

o<br />

I k,<br />

i = [ m(<br />

J1,<br />

k J1,<br />

i + J 2,<br />

k J 2,<br />

i + J 3,<br />

k J 3,<br />

i ) + I x J 4 , k J 4,<br />

i + I y J 5,<br />

k J 5,<br />

i + I z J 6,<br />

k J 6,<br />

i + ζ k,<br />

i ]ξ k,<br />

i<br />

ζ = 1 if (i = k or i < 4) else ζ , ξ = 2<br />

k, i = I k , ξk<br />

, i<br />

o<br />

o<br />

k,<br />

i = k , k,<br />

i<br />

k,<br />

i = 0 k,<br />

i<br />

o o<br />

k,<br />

i = 0 k,<br />

i<br />

ζ I ξ = 1 if (i = k or i > 3) else ζ , ξ = 2<br />

Differentiation <strong>of</strong> kinetic energy equations (5.8) wrt. six input parameters gives:<br />

∂T<br />

1<br />

=<br />

∂ϕ<br />

2<br />

∂<br />

∂s<br />

i<br />

3<br />

∑<br />

k=<br />

1<br />

⎛ ∂I<br />

k,<br />

i ∂I<br />

k,<br />

i+<br />

3<br />

⎜<br />

wk<br />

wi<br />

+ w<br />

⎝ ∂ϕi<br />

∂ϕi<br />

⎛<br />

k<br />

V<br />

i+<br />

3<br />

∂I<br />

+<br />

∂ϕ<br />

k+<br />

3,<br />

i+<br />

3<br />

i<br />

k<br />

V<br />

i+<br />

3<br />

k+<br />

3<br />

V<br />

i+<br />

3<br />

+<br />

+ +<br />

∑ +<br />

+ +<br />

+ = +<br />

+<br />

+<br />

⎟ ⎟⎟<br />

o<br />

o<br />

o<br />

o<br />

3 T 1 ⎜ ∂ I k,<br />

i ∂ I k,<br />

i 3 ∂ I k 3,<br />

i 3<br />

= ⎜ wk<br />

wi<br />

+ wkVi<br />

3 + Vk<br />

3Vi<br />

3<br />

i 3 2 k 1 ∂si<br />

3 ∂si<br />

3<br />

∂si<br />

3<br />

⎜<br />

⎝<br />

⎞<br />

⎟<br />

⎠<br />

⎞<br />

⎠<br />

o<br />

o<br />

(5.9)<br />

Note that the inertia factors in six equation (5.9) depends on the Jacobian matrix (5.7)<br />

which, in one’s turn, depends on input angular <strong>and</strong> linear displacements. The partial<br />

derivatives for inertia forces can easily be found from equations (5.8).<br />

59

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!