17.08.2013 Views

Publishers version - DTU Orbit

Publishers version - DTU Orbit

Publishers version - DTU Orbit

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

the growth of the length scale, agree better with the observations compared to the<br />

surface-layer wind profile, which under- and over-predicts the wind speed beyond the<br />

surface layer. The models also depend on the BLH, which is estimated under neutral<br />

and stable conditions using surface-layer turbulence measurements and under unstable<br />

conditions using ceilometer observations of the aerosol backscatter profile.<br />

Notation<br />

a parameter for the convective dimensionless wind shear<br />

A integration constant for a given stability from the resistant laws<br />

ABL atmospheric boundary layer<br />

AGL above ground level<br />

AMSL above mean sea level<br />

b parameter for the stable dimensionless wind shear<br />

B integration constant for a given stability from the resistant laws<br />

BLH boundary-layer height<br />

cw continuous wave<br />

C proportionality constant for the boundary-layer height<br />

d parameter for the control of the length scale<br />

D proportionality parameter for the limiting length scale<br />

fc Coriolis parameter<br />

g gravitational acceleration<br />

l local mixing length<br />

lMBL middle boundary-layer length scale<br />

lSL surface-layer mixing length<br />

L Obukhov length<br />

LST local standard time<br />

MOST Monin-Obukhov similarity theory<br />

NTWT National Test Station for Large Wind Turbines<br />

p parameter for the convective dimensionless wind shear<br />

Ro surface Rossby number<br />

SNR signal-to-noise ratio<br />

To mean surface-layer temperature<br />

u∗ local friction velocity<br />

u∗o surface-layer friction velocity<br />

u∗o average surface-layer friction velocity<br />

U horizontal mean wind speed<br />

w ′ Θv ′ o surface-layer kinematic virtual heat flux<br />

z height above the ground or above mean sea level<br />

zi boundary-layer height<br />

zo surface roughness length<br />

zo mean surface roughness length<br />

αc Charnock’s parameter<br />

β aerosol backscatter coefficient<br />

∆u∗o fluctuating surface-layer friction velocity<br />

η limiting value for the length scale<br />

κ von Kármán constant<br />

φm dimensionless wind shear<br />

ψm diabatic correction of the wind profile<br />

∂ partial derivative<br />

References<br />

Antoniou I., Jørgensen H. E., Mikkelsen T., Frandsen S., Barthelmie R., Perstrup C., and Hurtig M. (2006)<br />

Offshore wind profile measurements from remote sensing instruments. Proc. of the European Wind Energy<br />

Conf., Athens<br />

Blackadar A. K. (1962) The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J.<br />

Geophys. Res. 67:3095–3102<br />

Blackadar A. K. (1965) A Single-layer theory of the vertical distribution of wind in a baroclinic neutral atmospheric<br />

boundary layer. In: Flux of heat and momentum in the planetary boundary layer of the atmosphere.<br />

AFCRL-65-531, The Pennsylvania State University, 1–22<br />

<strong>DTU</strong> Wind Energy-E-Report-0029(EN) 229

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!