17.08.2013 Views

Publishers version - DTU Orbit

Publishers version - DTU Orbit

Publishers version - DTU Orbit

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

To get the velocity field from the vorticity we shall express dZ in terms of dΩ , which is<br />

the Fourier transform of ω defined in parallel to Eq. (26):<br />

ω = ∇ ×u ⇒ dΩ = ik ×dZ ⇒ −ik ×dΩ = k ×(k ×dZ). (35)<br />

Because of the general identity A×(B×C) = B(A·C)−C(A·B) and that k·dZ = 0<br />

we get<br />

−ik ×dΩ = −k 2 k ×dΩ<br />

dZ ⇒ dZ = i<br />

k2 .<br />

We shall re-derive (3.11) in Mann (1994), i.e. set up the equations of motion for<br />

⎛ ⎞<br />

0 0 0<br />

(36)<br />

∇ U = ⎝ 0 0 0 ⎠. (37)<br />

dU<br />

dz 0 0<br />

In this case<br />

⎛<br />

1<br />

⎞<br />

0 0<br />

k(t) = exp(−∇ Ut)k0 = ⎝ 0 1 0 ⎠k0, (38)<br />

t 0 1<br />

− dU<br />

dz<br />

in accordance with (3.13) of Mann (1994), and Ω = (0,dU/dz,0). The equations of motion<br />

Eq. (32) becomes<br />

⎛ ⎞<br />

dΩ3<br />

Dk ×dZ<br />

= k2dZ + ⎝ 0 ⎠.<br />

Dβ<br />

0<br />

(39)<br />

Taking the cross product with k and adding ˙ k ×(k ×dZ) on both sides we get<br />

− Dk2 dZ<br />

Dβ<br />

Writing this more explicitly we get<br />

Dk2dZ Dβ =<br />

⎛<br />

⎝<br />

= Dk Dk ×dZ<br />

×(k ×dZ)+k ×<br />

Dβ Dβ<br />

= Dk<br />

Dβ ×(k ×dZ)+k2k<br />

⎛<br />

×dZ + ⎝<br />

(k 2 1 −k2 2 −k2 3 )dZ3 −2k1k3dZ1<br />

2k1(k2dZ3 −k3dZ2)<br />

0<br />

0<br />

k3<br />

−k2<br />

⎞<br />

⎞<br />

⎠dΩ3. (40)<br />

⎠ (41)<br />

and using Dk2 /Dβ = −2k1k3 from Eq. (38) this can be shown to be equivalent to (3.11) in<br />

Mann (1994).<br />

The differential equations Eq. (41) are easily solved given the initial conditions k(0) =<br />

k0 = (k1,k2,k30) and dZ(k0,0). Instead of time, t, we shall use the non-dimensional time,<br />

β, defined as<br />

β = dU<br />

t. (42)<br />

dz<br />

The solution to Eq. (41) is<br />

where<br />

with<br />

and<br />

⎡<br />

dZ(k,β) = ⎣<br />

ζ1 =<br />

C2 =<br />

<br />

C1 − k2<br />

C2<br />

k1<br />

1 0 ζ1<br />

0 1 ζ2<br />

0 0 k 2 0 /k2<br />

<br />

, ζ2 =<br />

⎤<br />

⎦dZ(k0,0), (43)<br />

<br />

k2<br />

C1 +C2<br />

k1<br />

C1 = βk2 1(k 2 0 −2k 2 30 +βk1k30)<br />

k 2 (k 2 1 +k2 2 )<br />

k2k 2 0<br />

(k2 1 +k2 2 )32<br />

arctan<br />

<br />

(44)<br />

(45)<br />

<br />

βk1(k2 1 +k2 2) 1<br />

2<br />

k2 0 −k30k1β<br />

<br />

. (46)<br />

Eqs. (38) and (43) give the temporal evolution of individual Fourier modes.<br />

<strong>DTU</strong> Wind Energy-E-Report-0029(EN) 55

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!