13.04.2014 Views

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

64 Dynamics and mechanics<br />

3.2 Frames <strong>of</strong> reference<br />

Galilean transformations<br />

Time and<br />

position a<br />

r = r ′ +vt (3.1)<br />

t = t ′ (3.2)<br />

r,r ′<br />

position in frames S<br />

and S ′<br />

v velocity <strong>of</strong> S ′ in S<br />

t,t ′ time in S and S ′<br />

Velocity u = u ′ +v (3.3) u,u ′ velocity in frames S<br />

and S ′<br />

Momentum p = p ′ +mv (3.4)<br />

Angular<br />

momentum<br />

Kinetic<br />

energy<br />

a Frames coincide at t =0.<br />

p,p ′<br />

m<br />

particle momentum<br />

in frames S and S ′<br />

particle mass<br />

J = J ′ +mr ′ ×v +v×p ′ t (3.5) J ,J ′ angular momentum<br />

in frames S and S ′<br />

T = T ′ +mu ′ ·v + 1 2 mv2 (3.6)<br />

T,T ′<br />

kinetic energy in<br />

frames S and S ′<br />

S<br />

vt<br />

S ′<br />

r<br />

r ′<br />

m<br />

Lorentz (spacetime) transformations a<br />

Lorentz factor<br />

) −1/2<br />

γ =<br />

(1− v2<br />

c 2 (3.7)<br />

γ<br />

v<br />

c<br />

Lorentz factor<br />

velocity <strong>of</strong> S ′ in S<br />

speed <strong>of</strong> light<br />

Time and position<br />

x = γ(x ′ +vt ′ ); x ′ = γ(x−vt) (3.8)<br />

y = y ′ ; y ′ = y (3.9)<br />

z = z ′ ; z ′ = z (3.10)<br />

(<br />

t = γ t ′ + v c 2 x′) ; t ′ = γ<br />

(t− v )<br />

c 2 x (3.11)<br />

x,x ′<br />

t,t ′<br />

x-position in frames<br />

S and S ′ (similarly<br />

for y and z)<br />

time in frames S and<br />

S ′<br />

S S ′ v<br />

x x ′<br />

Differential<br />

four-vector b<br />

dX =(cdt,−dx,−dy,−dz)<br />

(3.12)<br />

X<br />

spacetime four-vector<br />

a For frames S and S ′ coincident at t = 0 in relative motion along x. See page 141 for the<br />

transformations <strong>of</strong> electromagnetic quantities.<br />

b Covariant components, using the (1,−1,−1,−1) signature.<br />

Velocity transformations a<br />

Velocity<br />

u x = u′ x +v<br />

1+u ′ xv/c 2 ; u′ x = u x −v<br />

1−u x v/c 2 (3.13)<br />

u ′ y<br />

u y =<br />

γ(1+u ′ xv/c 2 ) ; u y<br />

u′ y =<br />

γ(1−u x v/c 2 )<br />

(3.14)<br />

u ′ z<br />

u z =<br />

γ(1+u ′ xv/c 2 ) ; u z<br />

u′ z =<br />

γ(1−u x v/c 2 )<br />

(3.15)<br />

γ<br />

v<br />

c<br />

u i ,u ′ i<br />

Lorentz factor<br />

=[1−(v/c) 2 ] −1/2<br />

velocity <strong>of</strong> S ′ in S<br />

speed <strong>of</strong> light<br />

particle velocity<br />

components in<br />

frames S and S ′<br />

S S ′ u<br />

v<br />

x x ′<br />

a For frames S and S ′ coincident at t = 0 in relative motion along x.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!