13.04.2014 Views

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

146 Electromagnetism<br />

Electromagnetic energy<br />

Electromagnetic field<br />

energy density (in free u = 1<br />

space)<br />

2 ɛ 0E 2 + 1 B 2<br />

(7.128)<br />

2 µ 0<br />

Energy density in<br />

media<br />

Energy flow (Poynting)<br />

vector<br />

u<br />

E<br />

B<br />

energy density<br />

electric field<br />

magnetic flux density<br />

ɛ 0 permittivity <strong>of</strong> free space<br />

u = 1 2 (D ·E +B ·H) (7.129) µ 0 permeability <strong>of</strong> free space<br />

D electric displacement<br />

H magnetic field strength<br />

N = E×H (7.130)<br />

c<br />

N<br />

speed <strong>of</strong> light<br />

energy flow rate per unit<br />

area ⊥ to the flow direction<br />

Mean flux density at a<br />

distance r from a short 〈N〉 = ω4 p 2 0 sin2 r vector from dipole<br />

θ<br />

oscillating dipole<br />

32π 2 ɛ 0 c 3 r 3 r (7.131) (≫wavelength)<br />

θ angle between p and r<br />

p 0 amplitude <strong>of</strong> dipole moment<br />

ω oscillation frequency<br />

Total mean power<br />

from oscillating W = ω4 p 2 0 /2<br />

dipole a 6πɛ 0 c 3 (7.132) W total mean radiated power<br />

Self-energy <strong>of</strong> a<br />

charge distribution<br />

U tot = 1 2<br />

Energy <strong>of</strong> an assembly<br />

<strong>of</strong> capacitors b U tot = 1 2<br />

Energy <strong>of</strong> an assembly<br />

<strong>of</strong> inductors c U tot = 1 2<br />

Intrinsic dipole in an<br />

electric field<br />

Intrinsic dipole in a<br />

magnetic field<br />

∫<br />

volume<br />

φ(r)ρ(r)dτ (7.133)<br />

∑∑<br />

C ij V i V j (7.134)<br />

i<br />

j<br />

∑∑<br />

i<br />

j<br />

U tot<br />

dτ<br />

r<br />

φ<br />

ρ<br />

V i<br />

C ij<br />

total energy<br />

volume element<br />

position vector <strong>of</strong> dτ<br />

electrical potential<br />

charge density<br />

potential <strong>of</strong> ith capacitor<br />

mutual capacitance between<br />

capacitors i and j<br />

L ij I i I j (7.135) L ij mutual inductance between<br />

inductors i and j<br />

U dip = −p ·E (7.136)<br />

U dip energy <strong>of</strong> dipole<br />

p electric dipole moment<br />

U dip = −m·B (7.137) m magnetic dipole moment<br />

Hamiltonian <strong>of</strong> a<br />

charged particle in an H = |p m −qA| 2<br />

+qφ (7.138)<br />

EM field d 2m<br />

a Sometimes called “Larmor’s formula.”<br />

b C ii is the self-capacitance <strong>of</strong> the ith body. Note that C ij = C ji .<br />

c L ii is the self-inductance <strong>of</strong> the ith body. Note that L ij = L ji .<br />

d Newtonian limit, i.e., velocity ≪ c.<br />

H<br />

p m<br />

q<br />

m<br />

A<br />

Hamiltonian<br />

particle momentum<br />

particle charge<br />

particle mass<br />

magnetic vector potential

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!