13.04.2014 Views

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

96 Quantum physics<br />

Hydrogenlike atoms – Schrödinger solution a<br />

Schrödinger equation<br />

− ¯h2<br />

2µ ∇2 Ψ nlm − Ze2<br />

4πɛ 0 r Ψ nlm = E n Ψ nlm with µ = m em nuc<br />

m e +m nuc<br />

(4.79)<br />

Eigenfunctions<br />

Ψ nlm (r,θ,φ)=<br />

with<br />

a = m e<br />

µ<br />

[ (n−l −1)!<br />

2n(n+l)!<br />

a 0<br />

Z ,<br />

] 1/2 ( ) 3/2 2<br />

x l e −x/2 L 2l+1<br />

n−l−1<br />

an<br />

(x)Y l m (θ,φ) (4.80)<br />

2r<br />

x= , and L2l+1<br />

an<br />

∑<br />

n−l−1 (x)= n−l−1<br />

k=0<br />

(l +n)!(−x) k<br />

(2l +1+k)!(n−l −1−k)!k!<br />

Total energy E n = − µe4 Z 2<br />

8ɛ 2 0 h2 n 2 (4.81)<br />

E n<br />

ɛ 0<br />

total energy<br />

permittivity <strong>of</strong> free space<br />

Radial<br />

expectation<br />

values<br />

〈r〉 = a 2 [3n2 −l(l +1)] (4.82)<br />

〈r 2 〉 = a2 n 2<br />

2 [5n2 +1−3l(l +1)] (4.83)<br />

〈1/r〉 = 1<br />

an 2 (4.84)<br />

〈1/r 2 2<br />

〉 =<br />

(2l +1)n 3 a 2 (4.85)<br />

h Planck constant<br />

m e mass<strong>of</strong>electron<br />

¯h h/2π<br />

µ reduced mass (≃ m e )<br />

m nuc mass <strong>of</strong> nucleus<br />

Ψ nlm eigenfunctions<br />

Ze charge <strong>of</strong> nucleus<br />

−e electronic charge<br />

selection rules b ∆l = ±1 (4.90)<br />

n =1,2,3,... (4.86)<br />

l =0,1,2,...,(n−1) (4.87)<br />

Allowed<br />

quantum m =0,±1,±2,...,±l (4.88)<br />

numbers and ∆n ≠ 0 (4.89)<br />

∆m =0 or ±1 (4.91)<br />

L q p associated Laguerre<br />

polynomials c<br />

a classical orbit radius, n =1<br />

r electron–nucleus separation<br />

Yl<br />

m spherical harmonics<br />

a 0 Bohr radius = ɛ 0h 2<br />

πm ee 2<br />

Ψ 100 = a−3/2<br />

π 1/2 e−r/a Ψ 200 =<br />

(2− a−3/2 r )<br />

e −r/2a<br />

4(2π) 1/2 a<br />

Ψ 210 =<br />

Ψ 300 =<br />

a−3/2 r<br />

4(2π) 1/2 a e−r/2a cosθ<br />

Ψ 21±1 = ∓ a−3/2<br />

8π 1/2 r<br />

a e−r/2a sinθe ±iφ<br />

(<br />

a−3/2<br />

27−18 r )<br />

81(3π) 1/2 a +2r2 a 2 e −r/3a Ψ 310 = 21/2 a −3/2<br />

Ψ 31±1 = ∓ a−3/2<br />

81π 1/2 (6− r a<br />

) r<br />

a e−r/3a cosθ<br />

(6− r 81π 1/2 a<br />

) r<br />

a e−r/3a sinθe ±iφ Ψ 320 = a−3/2 r 2<br />

81(6π) 1/2 a 2 e−r/3a (3cos 2 θ −1)<br />

Ψ 32±1 = ∓ a−3/2<br />

81π 1/2 r 2<br />

a 2 e−r/3a sinθcosθe ±iφ Ψ 32±2 = a−3/2<br />

162π 1/2 r 2<br />

a 2 e−r/3a sin 2 θe ±2iφ<br />

a For a single bound electron in a perfect nuclear Coulomb potential (nonrelativistic and spin-free).<br />

b For dipole transitions between orbitals.<br />

c <strong>The</strong> sign and indexing definitions for this function vary. This form is appropriate to Equation (4.80).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!