13.04.2014 Views

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

166 Optics<br />

8.4 Fresnel diffraction<br />

Kirchh<strong>of</strong>f’s diffraction formula a<br />

dA<br />

r<br />

θ<br />

ψ 0<br />

P<br />

source<br />

ρ<br />

y<br />

dS S<br />

ŝ<br />

x<br />

r<br />

z<br />

Source at<br />

infinity<br />

where:<br />

Obliquity<br />

factor<br />

(cardioid)<br />

(source at infinity)<br />

ψ P = − i λ ψ 0<br />

Source at ψ P = − iE 0<br />

finite<br />

distance b<br />

∫<br />

plane<br />

K(θ) eikr<br />

ψ P complex amplitude at P<br />

λ wavelength<br />

r dA (8.45) k wavenumber (= 2π/λ)<br />

ψ 0 incident amplitude<br />

θ obliquity angle<br />

r distance <strong>of</strong> dA from P (≫ λ)<br />

K(θ)=<br />

2 (1+cosθ) (8.46) wavefront<br />

K obliquity factor<br />

1<br />

dA area element on incident<br />

dS element <strong>of</strong> closed surface<br />

∮<br />

e ik(ρ+r)<br />

ˆ unit vector<br />

[cos(ŝ· ˆr)−cos(ŝ· ˆρ)] dS s vector normal to dS<br />

λ 2ρr<br />

r vector from P to dS<br />

closed surface<br />

ρ vector from source to dS<br />

(8.47)<br />

amplitude (see footnote)<br />

E 0<br />

a Also known as the “Fresnel–Kirchh<strong>of</strong>f formula.” Diffraction by an obstacle coincident with the integration surface<br />

can be approximated by omitting that part <strong>of</strong> the surface from the integral.<br />

b <strong>The</strong> source amplitude at ρ is ψ(ρ)=E 0 e ikρ /ρ. <strong>The</strong> integral is taken over a surface enclosing the point P .<br />

Fresnel zones<br />

P<br />

y<br />

source<br />

z 1 z 2<br />

observer<br />

Effective aperture 1<br />

distance a z = 1 + 1 z effective distance<br />

(8.48) z 1 source–aperture distance<br />

z 1 z 2<br />

z 2 aperture–observer distance<br />

n half-period zone number<br />

Half-period zone<br />

y n =(nλz) 1/2 (8.49) λ wavelength<br />

radius<br />

y n nth half-period zone radius<br />

Axial zeros (circular<br />

aperture)<br />

z m = R2<br />

z m distance <strong>of</strong> mth zero from<br />

(8.50) aperture<br />

2mλ<br />

R aperture radius<br />

a I.e., the aperture–observer distance to be employed when the source is not at infinity.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!