13.04.2014 Views

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

142 Electromagnetism<br />

7.4 Fields associated with media<br />

Polarisation<br />

Definition <strong>of</strong> electric<br />

dipole moment<br />

Generalised electric<br />

dipole moment<br />

Electric dipole<br />

potential<br />

p = qa (7.80)<br />

∫<br />

p =<br />

volume<br />

r ′ ρ dτ ′ (7.81)<br />

φ(r)= p ·r<br />

4πɛ 0 r 3 (7.82)<br />

Dipole moment per<br />

unit volume<br />

(polarisation) a P = np (7.83)<br />

Induced volume<br />

charge density<br />

Induced surface<br />

charge density<br />

Definition <strong>of</strong> electric<br />

displacement<br />

Definition <strong>of</strong> electric<br />

susceptibility<br />

±q end charges<br />

a charge separation<br />

vector (from − to +)<br />

p dipole moment<br />

ρ charge density<br />

dτ ′ volume element<br />

r ′ vector to dτ ′<br />

φ<br />

r<br />

ɛ 0<br />

P<br />

n<br />

dipole potential<br />

vector from dipole<br />

permittivity <strong>of</strong> free<br />

space<br />

polarisation<br />

number <strong>of</strong> dipoles per<br />

unit volume<br />

∇·P = −ρ ind (7.84) ρ ind volume charge density<br />

σ ind = P ·ŝ (7.85)<br />

D = ɛ 0 E +P (7.86)<br />

σ ind<br />

ŝ<br />

D<br />

E<br />

surface charge density<br />

unit normal to surface<br />

electric displacement<br />

electric field<br />

P = ɛ 0 χ E E (7.87) χ E electrical susceptibility<br />

(may be a tensor)<br />

− p +<br />

✲<br />

ɛ r =1+χ E (7.88)<br />

Definition <strong>of</strong> relative<br />

permittivity b D = ɛ 0 ɛ r E (7.89)<br />

= ɛE (7.90)<br />

ɛ r<br />

ɛ<br />

relative permittivity<br />

permittivity<br />

Atomic<br />

polarisability c p = αE loc (7.91)<br />

Depolarising fields<br />

Clausius–Mossotti<br />

equation d<br />

E d = − N dP<br />

ɛ 0<br />

(7.92)<br />

nα<br />

= ɛ r −1<br />

3ɛ 0 ɛ r +2<br />

(7.93)<br />

α<br />

E loc<br />

E d<br />

N d<br />

polarisability<br />

local electric field<br />

depolarising field<br />

depolarising factor<br />

=1/3 (sphere)<br />

=1 (thin slab ⊥ to P)<br />

=0 (thin slab ‖ to P)<br />

=1/2 (long circular<br />

cylinder, axis ⊥ to P)<br />

a Assuming dipoles are parallel. <strong>The</strong> equivalent <strong>of</strong> Equation (7.112) holds for a hot gas <strong>of</strong> electric dipoles.<br />

b Relative permittivity as defined here is for a linear isotropic medium.<br />

c <strong>The</strong> polarisability <strong>of</strong> a conducting sphere radius a is α =4πɛ 0 a 3 . <strong>The</strong> definition p = αɛ 0 E loc is also used.<br />

d With the substitution η 2 = ɛ r [cf. Equation (7.195) with µ r = 1] this is also known as the “Lorentz–Lorenz formula.”

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!