13.04.2014 Views

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3.2 Frames <strong>of</strong> reference<br />

65<br />

Momentum and energy transformations a<br />

Momentum and energy<br />

γ<br />

Lorentz factor<br />

=[1−(v/c) 2 ] −1/2<br />

p x = γ(p ′ x +vE ′ /c 2 ); p ′ x = γ(p x −vE/c 2 ) (3.16)<br />

p y = p ′ y; p ′ y = p y (3.17)<br />

p z = p ′ z; p ′ z = p z (3.18)<br />

E = γ(E ′ +vp ′ x); E ′ = γ(E −vp x ) (3.19)<br />

v<br />

c<br />

velocity <strong>of</strong> S ′ in S<br />

speed <strong>of</strong> light<br />

p x ,p ′ x x components <strong>of</strong><br />

momentum in S and<br />

S ′ (sim. for y and z)<br />

E,E ′ energy in S and S ′<br />

E 2 −p 2 c 2 = E ′2 −p ′2 c 2 = m 2 0c 4 (3.20) m 0 (rest) mass<br />

p total momentum in S<br />

Four-vector b P =(E/c,−p x ,−p y ,−p z ) (3.21) P momentum<br />

four-vector<br />

a For frames S and S ′ coincident at t = 0 in relative motion along x.<br />

b Covariant components, using the (1,−1,−1,−1) signature.<br />

Propagation <strong>of</strong> light a<br />

Doppler<br />

effect<br />

ν ′ (<br />

ν = γ 1+ v )<br />

c cosα<br />

(3.22)<br />

cosθ = cosθ′ +v/c<br />

Aberration b 1+(v/c)cosθ ′ (3.23)<br />

cosθ ′ cosθ −v/c<br />

=<br />

1−(v/c)cosθ<br />

(3.24)<br />

Relativistic<br />

beaming c<br />

P (θ)=<br />

sinθ<br />

2γ 2 [1−(v/c)cosθ] 2 (3.25)<br />

ν frequency received in S<br />

ν ′ frequency emitted in S ′<br />

α arrival angle in S<br />

γ Lorentz factor<br />

=[1−(v/c) 2 ] −1/2<br />

v velocity <strong>of</strong> S ′ in S<br />

c speed <strong>of</strong> light<br />

θ,θ ′ emission angle <strong>of</strong> light<br />

in S and S ′<br />

P (θ) angular distribution <strong>of</strong><br />

photons in S<br />

a For frames S and S ′ coincident at t = 0 in relative motion along x.<br />

b Light travelling in the opposite sense has a propagation angle <strong>of</strong> π +θ radians.<br />

c Angular distribution <strong>of</strong> photons from a source, isotropic and stationary in S ′ . ∫ π<br />

0 P (θ)dθ =1.<br />

S S ′ v<br />

x x ′<br />

S<br />

y<br />

α<br />

c<br />

x<br />

S S ′<br />

y y ′ v<br />

θ ′ c<br />

x x ′<br />

3<br />

Four-vectors a<br />

Covariant and<br />

contravariant<br />

components<br />

x 0 = x 0 x 1 = −x 1<br />

x 2 = −x 2 x 3 = −x 3 (3.26)<br />

x i<br />

x i<br />

covariant vector<br />

components<br />

contravariant components<br />

Scalar product x i y i = x 0 y 0 +x 1 y 1 +x 2 y 2 +x 3 y 3 (3.27)<br />

x i ,x ′i four-vector components in<br />

Lorentz transformations<br />

frames S and S ′<br />

x 0 = γ[x ′0 +(v/c)x ′1 ]; x ′0 = γ[x 0 −(v/c)x 1 ] (3.28) γ Lorentz factor<br />

x 1 = γ[x ′1 +(v/c)x ′0 ]; x ′1 = γ[x 1 −(v/c)x 0 ] (3.29) =[1−(v/c) 2 ] −1/2<br />

x 2 = x ′2 ; x ′3 = x 3 v velocity <strong>of</strong> S ′ in S<br />

(3.30) c speed <strong>of</strong> light<br />

For frames S and S ′ , coincident at t = 0 in relative motion along the (1) direction. Note that the (1,−1,−1,−1)<br />

signature used here is common in special relativity, whereas (−1,1,1,1) is <strong>of</strong>ten used in connection with general<br />

relativity (page 67).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!