13.04.2014 Views

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

4.4 Hydrogenic atoms<br />

95<br />

Harmonic oscillator<br />

¯h (Planck constant)/(2π)<br />

Schrödinger<br />

equation<br />

− ¯h2 ∂ 2 ψ n<br />

2m ∂x 2 + 1 2 mω2 x 2 m mass<br />

ψ n = E n ψ n (4.67)<br />

ψ n nth eigenfunction<br />

x displacement<br />

(<br />

Energy<br />

levels a E n = n+ 1 )<br />

n integer ≥ 0<br />

¯hω (4.68) ω angular frequency<br />

2<br />

E n total energy in nth state<br />

ψ n = H n(x/a)exp[−x 2 /(2a 2 )]<br />

(4.69)<br />

Eigenfunctions<br />

( ) H 1/2 n Hermite polynomials<br />

(n!2 n aπ 1/2 ) 1/2<br />

¯h<br />

where a =<br />

mω<br />

Hermite<br />

polynomials<br />

H 0 (y)=1, H 1 (y)=2y, H 2 (y)=4y 2 −2<br />

H n+1 (y)=2yH n (y)−2nH n−1 (y) (4.70)<br />

y<br />

dummy variable<br />

4<br />

a E 0 is the zero-point energy <strong>of</strong> the oscillator.<br />

4.4 Hydrogenic atoms<br />

Bohr model a<br />

Quantisation<br />

condition<br />

µr 2 nΩ=n¯h (4.71)<br />

Bohr radius a 0 = ɛ 0h 2<br />

πm e e 2 = α ≃ 52.9pm (4.72)<br />

4πR ∞<br />

Orbit radius<br />

r n = n2<br />

Z a m e<br />

0<br />

µ<br />

Total energy E n = − µe4 Z 2<br />

8ɛ 2 0 h2 n 2 = −R ∞hc µ m e<br />

Z 2<br />

Fine structure<br />

constant<br />

α = µ 0ce 2<br />

2h = e2<br />

4πɛ 0¯hc ≃ 1<br />

137<br />

(4.73)<br />

n 2 (4.74)<br />

(4.75)<br />

r n nth orbit radius<br />

Ω orbital angular speed<br />

n principal quantum number<br />

(> 0)<br />

a 0 Bohr radius<br />

µ reduced mass (≃ m e )<br />

−e electronic charge<br />

Z atomic number<br />

h Planck constant<br />

¯h h/(2π)<br />

E n<br />

ɛ 0<br />

m e<br />

α<br />

total energy <strong>of</strong> nth orbit<br />

permittivity <strong>of</strong> free space<br />

electron mass<br />

fine structure constant<br />

µ 0 permeability <strong>of</strong> free space<br />

Hartree energy E H = ¯h2<br />

m e a 2 ≃ 4.36×10 −18 J (4.76) E H Hartree energy<br />

0<br />

Rydberg<br />

constant<br />

R ∞ = m ecα 2<br />

2h = m ee 4<br />

8h 3 ɛ 2 0 c = E H<br />

2hc<br />

(4.77)<br />

R ∞<br />

c<br />

Rydberg constant<br />

speed <strong>of</strong> light<br />

(<br />

Rydberg’s 1 µ 1<br />

formula b = R ∞ Z 2<br />

λ mn m e n 2 − 1 )<br />

λ mn photon wavelength<br />

m 2 (4.78)<br />

m integer >n<br />

a Because the Bohr model is strictly a two-body problem, the equations use reduced mass, µ = m e m nuc /(m e +m nuc ) ≃ m e ,<br />

where m nuc is the nuclear mass, throughout. <strong>The</strong> orbit radius is therefore the electron–nucleus distance.<br />

b Wavelength <strong>of</strong> the spectral line corresponding to electron transitions between orbits m and n.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!