13.04.2014 Views

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

8.8 Line radiation<br />

173<br />

8.8 Line radiation<br />

Spectral line broadening<br />

Natural<br />

broadening a<br />

Natural<br />

half-width<br />

Collision<br />

broadening<br />

Collision and<br />

pressure<br />

half-width c<br />

Doppler<br />

broadening<br />

Doppler<br />

half-width<br />

I(ω)=<br />

∆ω = 1 2τ<br />

I(ω)=<br />

(2πτ) −1<br />

(2τ) −2 +(ω −ω 0 ) 2 (8.112)<br />

(8.113)<br />

(πτ c ) −1<br />

(τ c ) −2 +(ω −ω 0 ) 2 (8.114)<br />

∆ω = 1 τ c<br />

= pπd 2 ( πmkT<br />

16<br />

( ) mc<br />

2 1/2<br />

I(ω)=<br />

2kTω0 2π exp<br />

[− mc2<br />

2kT<br />

) −1/2<br />

(8.115)<br />

(ω −ω 0 ) 2 ]<br />

ω 2 0<br />

(8.116)<br />

∆ω = ω 0<br />

( 2kT ln2<br />

mc 2 ) 1/2<br />

(8.117)<br />

I(ω) normalised intensity b<br />

τ lifetime <strong>of</strong> excited state<br />

ω angular frequency (= 2πν)<br />

∆ω<br />

ω 0<br />

τ c<br />

p<br />

d<br />

m<br />

k<br />

T<br />

c<br />

half-width at half-power<br />

centre frequency<br />

mean time between<br />

collisions<br />

pressure<br />

effective atomic diameter<br />

gas particle mass<br />

Boltzmann constant<br />

temperature<br />

speed <strong>of</strong> light<br />

ω 0<br />

a <strong>The</strong> transition probability per unit time for the state is = 1/τ. In the classical limit <strong>of</strong> a damped oscillator, the<br />

e-folding time <strong>of</strong> the electric field is 2τ. Both the natural and collision pr<strong>of</strong>iles described here are Lorentzian.<br />

b <strong>The</strong> intensity spectra are normalised so that ∫ I(ω)dω = 1, assuming ∆ω/ω 0 ≪ 1.<br />

c <strong>The</strong> pressure-broadening relation combines Equations (5.78), (5.86) and (5.89) and assumes an otherwise perfect<br />

gas <strong>of</strong> finite-sized atoms. More accurate expressions are considerably more complicated.<br />

I(ω)<br />

∆ω<br />

Einstein coefficients a<br />

Absorption R 12 = B 12 I ν n 1 (8.118)<br />

Spontaneous<br />

emission<br />

Stimulated<br />

emission<br />

R 21 = A 21 n 2 (8.119)<br />

R ′ 21 = B 21 I ν n 2 (8.120)<br />

R ij transition rate, level i → j (m −3 s −1 )<br />

B ij Einstein B coefficients<br />

I ν specific intensity <strong>of</strong> radiation field<br />

A 21 Einstein A coefficient<br />

n i number density <strong>of</strong> atoms in quantum<br />

level i (m −3 )<br />

8<br />

A 21<br />

= 2hν3 g 1<br />

h Planck constant<br />

Coefficient B 12 c 2 (8.121)<br />

g 2 ν frequency<br />

ratios B 21<br />

= g 1<br />

c speed <strong>of</strong> light<br />

(8.122)<br />

B 12 g g 2 i degeneracy <strong>of</strong> ith level<br />

a Note that the coefficients can also be defined in terms <strong>of</strong> spectral energy density, u ν =4πI ν /c rather than I ν .Inthis<br />

case A 21<br />

B = 8πhν3 g 1<br />

12 c 3 g .SeealsoPopulation densities on page 116.<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!