13.04.2014 Views

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3.3 Gravitation<br />

67<br />

General relativity a<br />

Line element ds 2 = g µν dx µ dx ν = −dτ 2 (3.45)<br />

Christ<strong>of</strong>fel<br />

symbols and<br />

covariant<br />

differentiation<br />

Γ α βγ = 1 2 gαδ (g δβ,γ +g δγ,β −g βγ,δ ) (3.46)<br />

φ ;γ = φ ,γ ≡ ∂φ/∂x γ (3.47)<br />

A α ;γ = A α ,γ +Γ α βγA β (3.48)<br />

B α;γ = B α,γ −Γ β αγB β (3.49)<br />

ds invariant interval<br />

dτ proper time interval<br />

g µν metric tensor<br />

dx µ differential <strong>of</strong> x µ<br />

Γ α βγ Christ<strong>of</strong>fel symbols<br />

,α partial diff. w.r.t. x α<br />

;α covariant diff. w.r.t. x α<br />

φ scalar<br />

A α contravariant vector<br />

B α covariant vector<br />

3<br />

Riemann tensor<br />

R α βγδ =Γ α µγΓ µ βδ −Γα µδΓ µ βγ<br />

+Γ α βδ,γ −Γ α βγ,δ (3.50)<br />

B µ;α;β −B µ;β;α = R γ µαβ B γ (3.51)<br />

R α βγδ<br />

Riemann tensor<br />

R αβγδ = −R αβδγ ; R βαγδ = −R αβγδ (3.52)<br />

R αβγδ +R αδβγ +R αγδβ = 0 (3.53)<br />

Geodesic<br />

equation<br />

Geodesic<br />

deviation<br />

Dv µ<br />

Dλ = 0 (3.54)<br />

where<br />

DA µ<br />

Dλ ≡ dAµ<br />

dλ +Γµ αβ Aα v β (3.55)<br />

v µ<br />

λ<br />

tangent vector<br />

(= dx µ /dλ)<br />

affine parameter (e.g., τ<br />

for material particles)<br />

D 2 ξ µ<br />

Dλ 2 = −Rµ αβγ vα ξ β v γ (3.56) ξ µ geodesic deviation<br />

Ricci tensor R αβ ≡ R σ ασβ = g σδ R δασβ = R βα (3.57) R αβ Ricci tensor<br />

Einstein tensor G µν = R µν − 1 2 gµν R (3.58)<br />

Einstein’s field<br />

equations<br />

G µν =8πT µν (3.59)<br />

Perfect fluid T µν =(p+ρ)u µ u ν +pg µν (3.60)<br />

Schwarzschild<br />

solution<br />

(exterior)<br />

(<br />

ds 2 =− 1− 2M ) (<br />

dt 2 + 1− 2M ) −1<br />

dr 2<br />

r<br />

r<br />

+r 2 (dθ 2 +sin 2 θ dφ 2 ) (3.61)<br />

G µν Einstein tensor<br />

R Ricci scalar (= g µν R µν )<br />

T µν<br />

p<br />

ρ<br />

u ν<br />

stress-energy tensor<br />

pressure (in rest frame)<br />

density (in rest frame)<br />

fluid four-velocity<br />

M spherically symmetric<br />

mass (see page 183)<br />

(r,θ,φ) spherical polar coords.<br />

t time<br />

Kerr solution (outside a spinning black hole)<br />

ds 2 = − ∆−a2 sin 2 θ<br />

ϱ 2<br />

dt 2 −2a 2Mrsin2 θ<br />

ϱ 2 dt dφ<br />

+ (r2 +a 2 ) 2 −a 2 ∆sin 2 θ<br />

ϱ 2 sin 2 θdφ 2 + ϱ2<br />

∆ dr2 +ϱ 2 dθ 2 (3.62)<br />

J angular momentum<br />

(along z)<br />

a ≡ J/M<br />

∆ ≡ r 2 −2Mr+a 2<br />

ϱ 2 ≡ r 2 +a 2 cos 2 θ<br />

a General relativity conventionally uses the (−1,1,1,1) metric signature and “geometrized units” in which G = 1 and<br />

c = 1. Thus, 1kg = 7.425 × 10 −28 m etc. Contravariant indices are written as superscripts and covariant indices as<br />

subscripts. Note also that ds 2 means (ds) 2 etc.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!