13.04.2014 Views

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

86 Dynamics and mechanics<br />

Characteristic numbers<br />

Reynolds<br />

number<br />

Froude<br />

number a<br />

Strouhal<br />

number b<br />

Prandtl<br />

number<br />

Mach<br />

number<br />

Rossby<br />

number<br />

Re = ρUL<br />

η<br />

=<br />

inertial force<br />

viscous force<br />

F = U2<br />

Lg = inertial force<br />

gravitational force<br />

S = Uτ<br />

L<br />

P = ηc p<br />

λ<br />

M = U c =<br />

Ro = U ΩL<br />

=<br />

evolution scale<br />

physical scale<br />

=<br />

momentum transport<br />

heat transport<br />

speed<br />

sound speed<br />

=<br />

inertial force<br />

Coriolis force<br />

(3.311)<br />

(3.312)<br />

(3.313)<br />

(3.314)<br />

(3.315)<br />

(3.316)<br />

a Sometimes the square root <strong>of</strong> this expression. L is usually the fluid depth.<br />

b Sometimes the reciprocal <strong>of</strong> this expression.<br />

Re<br />

ρ<br />

U<br />

L<br />

η<br />

F<br />

g<br />

S<br />

τ<br />

P<br />

c p<br />

λ<br />

M<br />

c<br />

Ro<br />

Ω<br />

Reynolds number<br />

density<br />

characteristic velocity<br />

characteristic scale-length<br />

shear viscosity<br />

Froude number<br />

gravitational acceleration<br />

Strouhal number<br />

characteristic timescale<br />

Prandtl number<br />

Specific heat capacity at<br />

constant pressure<br />

thermal conductivity<br />

Mach number<br />

sound speed<br />

Rossby number<br />

angular velocity<br />

Fluid waves<br />

( ) 1/2 ( ) 1/2<br />

Sound waves K dp<br />

v p = =<br />

(3.317)<br />

ρ dρ<br />

In an ideal gas ( ) 1/2 ( ) 1/2<br />

(adiabatic<br />

γRT γp<br />

v p =<br />

=<br />

(3.318)<br />

conditions) a µ ρ<br />

ω 2 = gktanhkh (3.319)<br />

Gravity waves on<br />

⎧<br />

a liquid surface b ⎨1<br />

( g<br />

) 1/2<br />

(h ≫ λ)<br />

v g ≃ 2 k<br />

(3.320)<br />

⎩<br />

(gh) 1/2 (h ≪ λ)<br />

Capillary waves<br />

(ripples) c<br />

Capillary–gravity<br />

waves (h ≫ λ)<br />

ω 2 = σk3<br />

ρ<br />

ω 2 = gk+ σk3<br />

ρ<br />

a If the waves are isothermal rather than adiabatic then v p =(p/ρ) 1/2 .<br />

b Amplitude ≪ wavelength.<br />

c In the limit k 2 ≫ gρ/σ.<br />

v p<br />

K<br />

p<br />

ρ<br />

wave (phase) speed<br />

bulk modulus<br />

pressure<br />

density<br />

γ ratio <strong>of</strong> heat capacities<br />

R molar gas constant<br />

T (absolute) temperature<br />

µ mean molecular mass<br />

v g<br />

h<br />

λ<br />

k<br />

g<br />

ω<br />

group speed <strong>of</strong> wave<br />

liquid depth<br />

wavelength<br />

wavenumber<br />

gravitational acceleration<br />

angular frequency<br />

(3.321) σ surface tension<br />

(3.322)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!