13.04.2014 Views

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

112 <strong>The</strong>rmodynamics<br />

5.4 Kinetic theory<br />

Monatomic gas<br />

Pressure p = 1 3 nm〈c2 〉 (5.77)<br />

Equation <strong>of</strong><br />

state <strong>of</strong> an ideal<br />

gas<br />

pV = NkT (5.78)<br />

p pressure<br />

n number density = N/V<br />

m particle mass<br />

〈c 2 〉 mean squared particle<br />

velocity<br />

V<br />

k<br />

N<br />

T<br />

volume<br />

Boltzmann constant<br />

number <strong>of</strong> particles<br />

temperature<br />

Internal energy U = 3 2 NkT = N 2 m〈c2 〉 (5.79) U internal energy<br />

Heat capacities<br />

Entropy<br />

(Sackur–<br />

Tetrode<br />

equation) a<br />

C V = 3 Nk<br />

2<br />

(5.80)<br />

C p = C V +Nk= 5 Nk<br />

2<br />

(5.81)<br />

γ = C p<br />

= 5 C V 3<br />

[ (mkT ) ]<br />

3/2<br />

S = Nkln<br />

2π¯h 2 e 5/2 V N<br />

(5.82)<br />

(5.83)<br />

C V heat capacity, constant V<br />

C p heat capacity, constant p<br />

γ ratio <strong>of</strong> heat capacities<br />

S entropy<br />

¯h = (Planck constant)/(2π)<br />

e =2.71828...<br />

a For the uncondensed gas. <strong>The</strong> factor<br />

Broglie wavelength, λ T , approximately equals n −1/3<br />

Q .<br />

( mkT<br />

2π¯h 2 ) 3/2<br />

is the quantum concentration <strong>of</strong> the particles, nQ . <strong>The</strong>ir thermal de<br />

Maxwell–Boltzmann distribution a<br />

Particle speed<br />

distribution<br />

Particle energy<br />

distribution<br />

( m<br />

pr(c)dc =<br />

2πkT<br />

) 3/2<br />

exp<br />

( −mc<br />

2<br />

2kT<br />

)<br />

4πc 2 dc<br />

(5.84)<br />

( )<br />

pr(E)dE = 2E1/2 −E<br />

π 1/2 (kT) exp dE (5.85)<br />

3/2 kT<br />

pr<br />

m<br />

k<br />

T<br />

c<br />

E<br />

probability density<br />

particle mass<br />

Boltzmann constant<br />

temperature<br />

particle speed<br />

particle kinetic<br />

energy (= mc 2 /2)<br />

( ) 1/2<br />

Mean speed 8kT<br />

〈c〉 =<br />

(5.86) 〈c〉 mean speed<br />

πm<br />

( ) 1/2 ( ) 1/2<br />

rms speed 3kT 3π c rms root mean squared<br />

c rms = = 〈c〉 (5.87) speed<br />

m 8<br />

Most probable<br />

speed<br />

( ) 1/2 2kT<br />

( π<br />

) 1/2<br />

ĉ = = 〈c〉 (5.88) ĉ most probable speed<br />

m 4<br />

a Probability density functions normalised so that ∫ ∞<br />

0 pr(x)dx =1.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!