13.04.2014 Views

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

100 Quantum physics<br />

Angular momentum addition a<br />

Total angular<br />

momentum<br />

Mutually<br />

commuting<br />

sets<br />

J = L+S (4.128)<br />

Jˆ<br />

z = Lˆ<br />

z + Sˆ<br />

z (4.129)<br />

Jˆ<br />

2 = L ˆ2<br />

+ S ˆ2<br />

+2̂L·S (4.130)<br />

Jˆ<br />

z ψ j,mj = m j¯hψ j,mj (4.131)<br />

Jˆ<br />

2 ψ j,mj = j(j +1)¯h 2 ψ j,mj (4.132)<br />

j-multiplicity = (2l +1)(2s+1) (4.133)<br />

{L 2 ,S 2 ,J 2 ,J z ,L·S} (4.134)<br />

{L 2 ,S 2 ,L z ,S z ,J z } (4.135)<br />

J ,J total angular momentum<br />

L,L orbital angular<br />

momentum<br />

S,S spin angular momentum<br />

ψ eigenfunctions<br />

m j magnetic quantum<br />

number |m j |≤j<br />

j (l +s) ≥ j ≥|l −s|<br />

{} set <strong>of</strong> mutually<br />

commuting observables<br />

Clebsch– |j,m j 〉 = ∑ 〈j,m j |l,m l ;s,m s 〉|l,m l 〉|s,m s 〉<br />

Gordan<br />

m l ,m s<br />

coefficients b m s +m l =m j<br />

(4.136)<br />

a Summing spin and orbital angular momenta as examples, eigenstates |s,m s 〉 and |l,m l 〉.<br />

b Or “Wigner coefficients.” Assuming no L–S interaction.<br />

Magnetic moments<br />

Bohr magneton<br />

Gyromagnetic<br />

ratio a<br />

µ B = e¯h<br />

2m e<br />

(4.137)<br />

γ =<br />

orbital magnetic moment<br />

orbital angular momentum<br />

|·〉 eigenstates<br />

〈·|·〉 Clebsch–Gordan<br />

coefficients<br />

µ B Bohr magneton<br />

−e electronic charge<br />

¯h (Planck constant)/(2π)<br />

m e electron mass<br />

(4.138) γ gyromagnetic ratio<br />

Electron orbital<br />

gyromagnetic<br />

ratio<br />

γ e = −µ B<br />

¯h<br />

(4.139)<br />

= −e<br />

2m e<br />

(4.140)<br />

γ e<br />

electron gyromagnetic ratio<br />

µ e,z = −g e µ B m s (4.141)<br />

Spin magnetic<br />

¯h<br />

moment <strong>of</strong> an = ±g e γ e (4.142)<br />

2<br />

electron b = ± g ee¯h<br />

(4.143)<br />

4m e<br />

µ e,z z component <strong>of</strong> spin<br />

magnetic moment<br />

g e electron g-factor (≃ 2.002)<br />

m s spin quantum number (±1/2)<br />

√ µ<br />

µ J = g J J(J +1)µB (4.144) J total magnetic moment<br />

µ J,z z component <strong>of</strong> µ J<br />

µ<br />

Landé g-factor c J,z = −g J µ B m J (4.145) m J magnetic quantum number<br />

J(J +1)+S(S +1)−L(L+1) J,L,S total, orbital, and spin<br />

g J =1+<br />

2J(J +1)<br />

quantum numbers<br />

(4.146) g J Landé g-factor<br />

a Or “magnetogyric ratio.”<br />

b <strong>The</strong> electron g-factor equals exactly 2 in Dirac theory. <strong>The</strong> modification g e =2+α/π + ..., whereα is the fine<br />

structure constant, comes from quantum electrodynamics.<br />

c Relating the spin + orbital angular momenta <strong>of</strong> an electron to its total magnetic moment, assuming g e =2.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!