13.04.2014 Views

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

172 Optics<br />

8.7 Coherence (scalar theory)<br />

Mutual<br />

coherence<br />

function<br />

Complex degree<br />

<strong>of</strong> coherence<br />

Combined<br />

intensity a<br />

Γ 12 (τ)=〈ψ 1 (t)ψ ∗ 2(t+τ)〉 (8.97)<br />

γ 12 (τ)= 〈ψ 1(t)ψ ∗ 2(t+τ)〉<br />

[〈|ψ 1 | 2 〉〈|ψ 2 | 2 〉] 1/2 (8.98)<br />

=<br />

Fringe visibility V (τ)= 2(I 1I 2 ) 1/2<br />

if |γ 12 (τ)| is a<br />

constant:<br />

Γ 12 (τ)<br />

[Γ 11 (0)Γ 22 (0)] 1/2 (8.99)<br />

I tot = I 1 +I 2 +2(I 1 I 2 ) 1/2 R[γ 12 (τ)]<br />

(8.100)<br />

I 1 +I 2<br />

|γ 12 (τ)| (8.101)<br />

V = I max −I min<br />

I max +I min<br />

(8.102)<br />

if I 1 = I 2 : V (τ)=|γ 12 (τ)| (8.103)<br />

Γ ij<br />

τ<br />

ψ i<br />

mutual coherence function<br />

temporal interval<br />

(complex) wave disturbance<br />

at spatial point i<br />

t time<br />

〈·〉 mean over time<br />

γ ij complex degree <strong>of</strong> coherence<br />

∗ complex conjugate<br />

I tot<br />

I i<br />

R<br />

combined intensity<br />

intensity <strong>of</strong> disturbance at<br />

point i<br />

real part <strong>of</strong><br />

I max max. combined intensity<br />

I min min. combined intensity<br />

Complex degree<br />

<strong>of</strong> temporal<br />

coherence b<br />

γ(τ)= 〈ψ 1(t)ψ ∗ 1(t+τ)〉<br />

〈|ψ 1 (t) 2 (8.104)<br />

|〉<br />

∫<br />

I(ω)e −iωτ dω<br />

= ∫ (8.105)<br />

I(ω)dω<br />

γ(τ) degree <strong>of</strong> temporal coherence<br />

I(ω) specific intensity<br />

ω radiation angular frequency<br />

c speed <strong>of</strong> light<br />

Coherence time<br />

and length<br />

Complex degree<br />

<strong>of</strong> spatial<br />

coherence c<br />

∆τ c = ∆l c<br />

c ∼ 1 ∆ν<br />

(8.106)<br />

〈ψ<br />

γ(D)=<br />

1 ψ ∗ 2〉<br />

(8.107)<br />

[〈|ψ 1 | 2 〉〈|ψ 2 | 2 〉]<br />

∫ 1/2 I(ŝ)e ikD·ŝ dΩ<br />

= ∫ (8.108)<br />

I(ŝ)dΩ<br />

Intensity<br />

〈I 1 I 2 〉<br />

correlation d [〈I 1 〉 2 〈I 2 〉 2 ] 1/2 =1+γ2 (D) (8.109)<br />

∆τ c<br />

∆l c<br />

∆ν<br />

coherence time<br />

coherence length<br />

spectral bandwidth<br />

γ(D) degree <strong>of</strong> spatial coherence<br />

D spatial separation <strong>of</strong> points 1<br />

and 2<br />

I(ŝ) specific intensity <strong>of</strong> distant<br />

extended source in direction ŝ<br />

dΩ differential solid angle<br />

ŝ<br />

unit vector in the direction <strong>of</strong><br />

dΩ<br />

k wavenumber<br />

Speckle<br />

intensity<br />

distribution e pr(I)= 1<br />

〈I〉 e−I/〈I〉 (8.110) pr probability density<br />

∆w<br />

Speckle size<br />

c characteristic speckle size<br />

(coherence ∆w c ≃ λ λ wavelength<br />

(8.111)<br />

width)<br />

α<br />

α source angular size as seen<br />

from the screen<br />

a From interfering the disturbances at points 1 and 2 with a relative delay τ.<br />

b Or “autocorrelation function.”<br />

c Between two points on a wavefront, separated by D. <strong>The</strong> integral is over the entire extended source.<br />

d For wave disturbances that have a Gaussian probability distribution in amplitude. This is “Gaussian light” such as<br />

from a thermal source.<br />

e Also for Gaussian light.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!