13.04.2014 Views

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

104 Quantum physics<br />

Nuclear collisions<br />

σ(E)= π Breit–Wigner<br />

k 2 g Γ ab Γ c<br />

(E −E 0 ) 2 +Γ 2 /4<br />

formula a 2J +1<br />

g =<br />

(2s a +1)(2s b +1)<br />

(4.174)<br />

(4.175)<br />

Total width Γ=Γ ab +Γ c (4.176)<br />

Resonance<br />

lifetime<br />

Born scattering<br />

formula b<br />

τ = ¯h Γ<br />

∣ ∫<br />

dσ ∣∣∣<br />

dΩ = 2µ ∞<br />

¯h 2<br />

0<br />

sinKr<br />

Kr<br />

(4.177)<br />

2<br />

V (r)r 2 dr<br />

∣<br />

(4.178)<br />

Mott scattering formula c<br />

dσ<br />

( α<br />

) 2<br />

[csc<br />

dΩ = 4 χ χ 4E 2 +sec4 2 + Acos( α<br />

¯hv lntan2 χ )]<br />

2<br />

sin 2 χ 2 cos χ 2<br />

(4.179)<br />

dσ<br />

( α<br />

) 2 4−3sin 2<br />

dΩ ≃ χ<br />

2E sin 4 (A = −1,α≪ v¯h) (4.180)<br />

χ<br />

σ(E) cross-section for a+b → c<br />

k incoming wavenumber<br />

g spin factor<br />

E total energy (PE + KE)<br />

E 0 resonant energy<br />

Γ width <strong>of</strong> resonant state R<br />

Γ ab partial width into a+b<br />

Γ c partial width into c<br />

τ resonance lifetime<br />

J total angular momentum<br />

quantum number <strong>of</strong> R<br />

s a,b spins <strong>of</strong> a and b<br />

dσ<br />

dΩ differential collision<br />

cross-section<br />

µ reduced mass<br />

K = |k in −k out | (see footnote)<br />

r radial distance<br />

V (r) potential energy <strong>of</strong> interaction<br />

¯h<br />

α/r<br />

χ<br />

v<br />

A<br />

(Planck constant)/2π<br />

scattering potential energy<br />

scattering angle<br />

closing velocity<br />

= 2 for spin-zero particles, = −1<br />

for spin-half particles<br />

a For the reaction a+b ↔ R → c in the centre <strong>of</strong> mass frame.<br />

b For a central field. <strong>The</strong> Born approximation holds when the potential energy <strong>of</strong> scattering, V , is much less than<br />

the total kinetic energy. K is the magnitude <strong>of</strong> the change in the particle’s wavevector due to scattering.<br />

c For identical particles undergoing Coulomb scattering in the centre <strong>of</strong> mass frame. Nonidentical particles obey the<br />

Rutherford scattering formula (page 72).<br />

Relativistic wave equations a<br />

Klein–Gordon<br />

equation<br />

(massive, spin<br />

zero particles)<br />

Weyl equations<br />

(massless, spin<br />

1/2 particles)<br />

Dirac equation<br />

(massive, spin<br />

1/2 particles)<br />

a Written in natural units, with c =¯h =1.<br />

(∇ 2 −m 2 )ψ = ∂2 ψ<br />

∂t 2 (4.181)<br />

(<br />

)<br />

∂ψ<br />

∂t = ± ∂ψ<br />

σ x<br />

∂x +σ ∂ψ<br />

y<br />

∂y +σ ∂ψ<br />

z<br />

∂z<br />

(4.182)<br />

(iγ µ ∂µ−m)ψ = 0 (4.183)<br />

( )<br />

∂<br />

where ∂µ=<br />

∂t , ∂<br />

∂x , ∂<br />

∂y , ∂<br />

(4.184)<br />

∂z<br />

(γ 0 ) 2 = 1 4 ; (γ 1 ) 2 =(γ 2 ) 2 =(γ 3 ) 2 = −1 4 (4.185)<br />

ψ wavefunction<br />

m particle mass<br />

t time<br />

ψ spinor wavefunction<br />

σ i Pauli spin matrices<br />

(see page 26)<br />

i i 2 = −1<br />

γ µ Dirac( matrices: )<br />

γ 0 12 0<br />

=<br />

0 −1<br />

( ) 2<br />

γ i 0 σi<br />

=<br />

−σ i 0<br />

1 n n×n unit matrix

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!