13.04.2014 Views

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

9.5 Stellar evolution<br />

183<br />

Compact objects and black holes<br />

Schwarzschild<br />

radius<br />

Gravitational<br />

redshift<br />

Gravitational<br />

wave radiation a L g = 32 5<br />

Rate <strong>of</strong> change <strong>of</strong><br />

orbital period<br />

r s = 2GM<br />

c 2 ≃ 3 M M ⊙<br />

km (9.73)<br />

(<br />

ν ∞<br />

= 1− 2GM ) 1/2<br />

ν r rc 2 (9.74)<br />

G 4<br />

c 5 m 2 1 m2 2 (m 1 +m 2 )<br />

a 5 (9.75)<br />

Ṗ = − 96<br />

5 (4π2 4/3 G5/3 m 1 m 2 P −5/3<br />

)<br />

c 5 (m 1 +m 2 ) 1/3 (9.76)<br />

r s<br />

G<br />

M<br />

c<br />

M ⊙<br />

r<br />

ν ∞<br />

ν r<br />

m i<br />

a<br />

L g<br />

P<br />

Schwarzschild radius<br />

constant <strong>of</strong> gravitation<br />

mass <strong>of</strong> body<br />

speed <strong>of</strong> light<br />

solar mass<br />

distance from mass centre<br />

frequency at infinity<br />

frequency at r<br />

orbiting masses<br />

mass separation<br />

gravitational luminosity<br />

orbital period<br />

Neutron star<br />

p pressure<br />

degeneracy<br />

pressure<br />

p = (3π2 ) 2/3 ¯h 2 ( ) 5/3 ρ<br />

= 2 5 m n m n 3 u (9.77) ¯h (Planck constant)/(2π)<br />

m n neutron mass<br />

(nonrelativistic)<br />

ρ density<br />

Relativistic b p = ¯hc(3π2 ) 1/3 ( ) 4/3 ρ<br />

= 1 4 m n 3 u (9.78) u energy density<br />

Chandrasekhar<br />

mass c M Ch ≃ 1.46M ⊙ (9.79) M Ch Chandrasekhar mass<br />

Maximum black<br />

hole angular<br />

momentum<br />

Black hole<br />

evaporation time<br />

Black hole<br />

temperature<br />

J m = GM2<br />

c<br />

(9.80)<br />

J m<br />

maximum angular<br />

momentum<br />

τ e ∼ M3<br />

M⊙<br />

3 ×10 66 yr (9.81) τ e evaporation time<br />

T =<br />

¯hc3<br />

8πGMk ≃ M 10−7 ⊙<br />

M K (9.82) T temperature<br />

k Boltzmann constant<br />

a From two bodies, m 1 and m 2 , in circular orbits about their centre <strong>of</strong> mass. Note that the frequency <strong>of</strong> the radiation<br />

is twice the orbital frequency.<br />

b Particle velocities ∼ c.<br />

c Upper limit to mass <strong>of</strong> a white dwarf.<br />

9

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!