13.04.2014 Views

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

108 <strong>The</strong>rmodynamics<br />

Expansion processes<br />

Joule<br />

expansion a<br />

Joule–Kelvin<br />

expansion b<br />

η = ∂T<br />

∂V<br />

∣<br />

U<br />

= − T 2<br />

= − 1<br />

C V<br />

(<br />

T ∂p<br />

∂T<br />

µ = ∂T<br />

∂p<br />

∣<br />

H<br />

= T 2<br />

= 1 C p<br />

(<br />

T ∂V<br />

∂T<br />

∂(p/T )<br />

∣ (5.24)<br />

C V ∂T V )<br />

∣ −p<br />

(5.25)<br />

V<br />

∂(V/T)<br />

∣ (5.26)<br />

C p ∂T p )<br />

∣ −V<br />

(5.27)<br />

p<br />

η<br />

T<br />

p<br />

U<br />

C V<br />

Joule coefficient<br />

temperature<br />

pressure<br />

internal energy<br />

heat capacity, V constant<br />

µ Joule–Kelvin coefficient<br />

V volume<br />

H enthalpy<br />

C p heat capacity, p constant<br />

a Expansion with no change in internal energy.<br />

b Expansion with no change in enthalpy. Also known as a “Joule–Thomson expansion” or “throttling” process.<br />

<strong>The</strong>rmodynamic potentials a<br />

Internal energy dU = T dS −pdV +µdN (5.28)<br />

H = U +pV (5.29)<br />

Enthalpy<br />

dH = T dS +V dp+µdN (5.30)<br />

U internal energy<br />

T temperature<br />

S entropy<br />

µ chemical potential<br />

N number <strong>of</strong> particles<br />

H enthalpy<br />

p pressure<br />

V volume<br />

Helmholtz free F = U −TS (5.31)<br />

energy b dF = −S dT −pdV +µdN (5.32)<br />

F<br />

Helmholtz free energy<br />

Gibbs free energy c = F +pV = H −TS (5.34)<br />

G = U −TS+pV (5.33)<br />

dG = −S dT +V dp+µdN (5.35)<br />

G<br />

Gibbs free energy<br />

Grand potential<br />

Φ=F −µN (5.36)<br />

dΦ = −S dT −pdV −N dµ (5.37)<br />

Φ<br />

grand potential<br />

Gibbs–Duhem<br />

relation<br />

Availability<br />

a dN=0 for a closed system.<br />

b Sometimes called the “work function.”<br />

c Sometimes called the “thermodynamic potential.”<br />

−S dT +V dp−N dµ = 0 (5.38)<br />

A = U −T 0 S +p 0 V (5.39)<br />

dA =(T −T 0 )dS −(p−p 0 )dV (5.40)<br />

A<br />

T 0<br />

p 0<br />

availability<br />

temperature <strong>of</strong><br />

surroundings<br />

pressure <strong>of</strong> surroundings

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!