13.04.2014 Views

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

9.5 Stellar evolution<br />

181<br />

9.5 Stellar evolution<br />

Evolutionary timescales<br />

( )<br />

Free-fall<br />

1/2 3π<br />

timescale a τ ff =<br />

(9.53)<br />

32Gρ 0<br />

Kelvin–Helmholtz<br />

timescale<br />

τ KH = −U g<br />

L<br />

≃ GM2<br />

R 0 L<br />

a For the gravitational collapse <strong>of</strong> a uniform sphere.<br />

(9.54)<br />

(9.55)<br />

τ ff<br />

G<br />

ρ 0<br />

τ KH<br />

U g<br />

M<br />

R 0<br />

L<br />

free-fall timescale<br />

constant <strong>of</strong> gravitation<br />

initial mass density<br />

Kelvin–Helmholtz timescale<br />

gravitational potential energy<br />

body’s mass<br />

body’s initial radius<br />

body’s luminosity<br />

Star formation<br />

( ) 1/2<br />

Jeans length a π dp<br />

λ J =<br />

(9.56)<br />

Gρ dρ<br />

λ J<br />

G<br />

ρ<br />

p<br />

Jeans length<br />

constant <strong>of</strong> gravitation<br />

cloud mass density<br />

pressure<br />

Jeans mass M J = π 6 ρλ3 J (9.57) M J (spherical) Jeans mass<br />

Eddington<br />

limiting<br />

luminosity b<br />

L E = 4πGMm pc<br />

σ T<br />

(9.58)<br />

≃ 1.26×10 31 M M ⊙<br />

W (9.59)<br />

a Note that (dp/dρ) 1/2 is the sound speed in the cloud.<br />

b Assuming the opacity is mostly from Thomson scattering.<br />

L E<br />

M<br />

M ⊙<br />

m p<br />

c<br />

σ T<br />

Eddington luminosity<br />

stellar mass<br />

solar mass<br />

proton mass<br />

speed <strong>of</strong> light<br />

Thomson cross section<br />

Stellar theory a<br />

Conservation <strong>of</strong><br />

mass<br />

Hydrostatic<br />

equilibrium<br />

dM r<br />

dr =4πρr2 (9.60)<br />

dp<br />

dr = −GρM r<br />

r 2 (9.61)<br />

r<br />

M r<br />

ρ<br />

p<br />

G<br />

radial distance<br />

mass interior to r<br />

mass density<br />

pressure<br />

constant <strong>of</strong> gravitation<br />

Energy release<br />

dL r<br />

dr =4πρr2 ɛ (9.62)<br />

L r<br />

ɛ<br />

luminosity interior to r<br />

power generated per unit mass<br />

Radiative<br />

dT<br />

transport<br />

dr = −3<br />

T temperature<br />

〈κ〉ρ L r<br />

16σ T 3 4πr 2 (9.63) σ Stefan–Boltzmann constant<br />

〈κ〉 mean opacity<br />

Convective dT<br />

transport<br />

dr = γ −1 T dp<br />

(9.64) γ ratio <strong>of</strong> heat capacities, c p /c V<br />

γ p dr<br />

a For stars in static equilibrium with adiabatic convection. Note that ρ is a function <strong>of</strong> r. κ and ɛ are functions <strong>of</strong><br />

temperature and composition.<br />

9

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!