13.04.2014 Views

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

98 Quantum physics<br />

4.5 Angular momentum<br />

Orbital angular momentum<br />

Angular<br />

momentum<br />

operators<br />

Ladder<br />

operators<br />

Eigenfunctions<br />

and<br />

eigenvalues<br />

ˆL = r× ˆp (4.101)<br />

Lˆ<br />

z = ¯h (<br />

x ∂<br />

i ∂y −y ∂ )<br />

(4.102)<br />

∂x<br />

= ¯h ∂<br />

i ∂φ<br />

(4.103)<br />

Lˆ<br />

2 2 2 2<br />

= Lˆ<br />

x + Lˆ<br />

y + Lˆ<br />

z (4.104)<br />

= −¯h 2 [ 1<br />

sinθ<br />

∂<br />

∂θ<br />

(<br />

sinθ ∂<br />

∂θ<br />

)<br />

+ 1<br />

sin 2 θ<br />

∂ 2 ]<br />

∂φ 2<br />

(4.105)<br />

L ˆ ± = Lˆ<br />

x ±iLˆ<br />

y (4.106)<br />

(<br />

=¯he ±iφ icotθ ∂<br />

∂φ ± ∂ )<br />

(4.107)<br />

∂θ<br />

L ˆ ± Y m l<br />

l<br />

=¯h[l(l +1)−m l (m l ±1)] 1/2 Y m l±1<br />

l<br />

(4.108)<br />

Lˆ<br />

2 Y m l<br />

l<br />

= l(l +1)¯h 2 Y m l<br />

l<br />

(l ≥ 0) (4.109)<br />

Lˆ<br />

z Y m l<br />

l<br />

= m l¯hY m l<br />

l<br />

(|m l |≤l) (4.110)<br />

Lˆ<br />

z [ L ˆ ± Y m l<br />

l<br />

(θ,φ)]=(m l ±1)¯h L ˆ ± Y m l<br />

l<br />

(θ,φ) (4.111)<br />

l-multiplicity = (2l +1) (4.112)<br />

L<br />

angular<br />

momentum<br />

p linear momentum<br />

r position vector<br />

xyz Cartesian<br />

coordinates<br />

rθφ spherical polar<br />

coordinates<br />

¯h (Planck<br />

constant)/(2π)<br />

L ˆ ± ladder operators<br />

Y m l<br />

l spherical<br />

harmonics<br />

l,m l integers<br />

Angular momentum commutation relations a<br />

Conservation <strong>of</strong> angular<br />

momentum b<br />

[ Lˆ<br />

z ,x]=i¯hy (4.114)<br />

[ Lˆ<br />

z ,y]=−i¯hx (4.115)<br />

[ Lˆ<br />

z ,z] = 0 (4.116)<br />

[ Lˆ<br />

z , pˆ<br />

x ]=i¯h pˆ<br />

y (4.117)<br />

[ Lˆ<br />

z , pˆ<br />

y ]=−i¯h pˆ<br />

x (4.118)<br />

[ Lˆ<br />

z , pˆ<br />

z ] = 0 (4.119)<br />

[Ĥ, ˆ L z ] = 0 (4.113)<br />

[ L ˆ2<br />

, Lˆ<br />

x ]=[ L ˆ2<br />

, Lˆ<br />

y ]=[ L ˆ2<br />

, Lˆ<br />

z ] = 0 (4.127)<br />

L angular momentum<br />

p momentum<br />

H Hamiltonian<br />

L ˆ ± ladder operators<br />

[ Lˆ<br />

x , Lˆ<br />

y ]=i¯h Lˆ<br />

z (4.120)<br />

[ Lˆ<br />

z , Lˆ<br />

x ]=i¯h Lˆ<br />

y (4.121)<br />

[ Lˆ<br />

y , Lˆ<br />

z ]=i¯h Lˆ<br />

x (4.122)<br />

[ L ˆ + , Lˆ<br />

z ]=−¯h L ˆ + (4.123)<br />

[ Lˆ<br />

− , Lˆ<br />

z ]=¯h Lˆ<br />

− (4.124)<br />

[ L ˆ + , Lˆ<br />

− ]=2¯h Lˆ<br />

z (4.125)<br />

[ L ˆ2<br />

, L ˆ ± ] = 0 (4.126)<br />

a <strong>The</strong> commutation <strong>of</strong> a and b is defined as [a,b]=ab−ba (see page 26). Similar expressions hold for S and J.<br />

b For motion under a central force.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!