13.04.2014 Views

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

The_Cambridge_Handbook_of_Physics_Formulas

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

182 Astrophysics<br />

Stellar fusion processes a<br />

PP i chain PP ii chain PP iii chain<br />

p + +p + → 2 1H+e + +ν e<br />

2<br />

1H+p + → 3 2He+γ<br />

3<br />

2He+ 3 2He → 4 2He+2p +<br />

CNO cycle<br />

12<br />

6 C+p + → 13 7N+γ<br />

13<br />

7 N → 13 6C+e + +ν e<br />

13<br />

6 C+p + → 14 7N+γ<br />

14<br />

7 N+p + → 15 8O+γ<br />

15<br />

8 O → 15 7N+e + +ν e<br />

15<br />

7 N+p + → 12 6C+ 4 2He<br />

p + +p + → 1H+e 2 + +ν e<br />

2<br />

1H+p + → 2He+γ<br />

3<br />

3<br />

2He+ 4 2He → 4Be+γ<br />

7<br />

7<br />

4Be+e − → 3Li+ν 7 e<br />

7<br />

3Li+p + → 2 4 2He<br />

triple-α process<br />

4<br />

2He+ 4 2He ⇀↽ 8 4Be+γ<br />

8<br />

4Be+ 4 2He ⇀↽ 12 6C ∗<br />

12<br />

6 C ∗ → 12 6C+γ<br />

p + +p + → 1H+e 2 + +ν e<br />

2<br />

1H+p + → 2He+γ<br />

3<br />

3<br />

2He+ 4 2He → 4Be+γ<br />

7<br />

7<br />

4Be+p + → 5B+γ<br />

8<br />

8<br />

5B → 4Be+e 8 + +ν e<br />

8<br />

4Be → 2 4 2He<br />

γ<br />

p +<br />

e +<br />

e −<br />

ν e<br />

photon<br />

proton<br />

positron<br />

electron<br />

electron neutrino<br />

a All species are taken as fully ionised.<br />

Pulsars<br />

Braking<br />

index<br />

Characteristic<br />

age a T = 1<br />

n−1<br />

Magnetic<br />

dipole<br />

radiation<br />

˙ω ∝−ω n (9.65)<br />

n =2− P ¨P<br />

Ṗ 2 (9.66)<br />

P<br />

Ṗ<br />

(9.67)<br />

L = µ 0|¨m| 2 sin 2 θ<br />

6πc 3 (9.68)<br />

= 2πR6 Bpω 2 4 sin 2 θ<br />

3c 3 µ 0<br />

(9.69)<br />

ω<br />

P<br />

n<br />

rotational angular velocity<br />

rotational period (= 2π/ω)<br />

braking index<br />

T characteristic age<br />

L luminosity<br />

µ 0 permeability <strong>of</strong> free space<br />

c speed <strong>of</strong> light<br />

m<br />

R<br />

B p<br />

θ<br />

pulsar magnetic dipole moment<br />

pulsar radius<br />

magnetic flux density at<br />

magnetic pole<br />

angle between magnetic and<br />

rotational axes<br />

∫<br />

Dispersion<br />

D<br />

DM dispersion measure<br />

D path length to pulsar<br />

measure<br />

DM = n e dl (9.70)<br />

dl path element<br />

0<br />

n e electron number density<br />

dτ<br />

Dispersion b dν = −e 2<br />

τ pulse arrival time<br />

4π 2 DM (9.71)<br />

ɛ 0 m e cν3 ∆τ difference in pulse arrival time<br />

e 2 ( 1<br />

∆τ =<br />

8π 2 ɛ 0 m e c ν1 2 − 1 )<br />

ν i observing frequencies<br />

ν2<br />

2 DM (9.72) m e electron mass<br />

a Assuming n ≠ 1 and that the pulsar has already slowed significantly. Usually n is assumed to be 3 (magnetic dipole<br />

radiation), giving T = P/(2Ṗ ).<br />

b <strong>The</strong> pulse arrives first at the higher observing frequency.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!