29.11.2014 Views

WATER & SOIL - These are not the droids you are looking for.

WATER & SOIL - These are not the droids you are looking for.

WATER & SOIL - These are not the droids you are looking for.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Draper and Smith 1966). ln our case, <strong>the</strong> true value of <strong>the</strong><br />

dependent variable Qnu. is <strong>not</strong> known with certainty. It is<br />

subject to time sampling error and can only be estimated<br />

from <strong>the</strong> period of flow record available. The relative magnitudes<br />

of time sampling errors <strong>are</strong> indicated by <strong>the</strong> pooled<br />

Cy values in Figures 4.8 and 4.12.<br />

A second difficulty is that within a region some adjacent<br />

catchments may be subject to <strong>the</strong> same storms of large <strong>are</strong>al<br />

extent and a pair of series of annual maxima <strong>for</strong> such catchments<br />

is likely to be cross correlated: errors in estimates of<br />

Qo6, will <strong>the</strong>re<strong>for</strong>e <strong>not</strong> be random, but will also be correlated.<br />

In this situation regression analysis is still permissible,<br />

but estimation of <strong>the</strong> prediction error is more complex.<br />

An analysis of <strong>the</strong> situation is provided by Matalas<br />

and Gilroy (1968), and some practical examples <strong>are</strong> given<br />

by Hardison (1971).<br />

When a regional regression of log'o Q is calculated on a<br />

set of m catchment parameters, <strong>the</strong> standard deviation of<br />

<strong>the</strong> log,o Q about <strong>the</strong> regression expressed in log,o Q units<br />

is de<strong>not</strong>ed by Sp. lf <strong>the</strong>se deviations of <strong>the</strong> log,o Q from <strong>the</strong><br />

regression <strong>are</strong> normally distributed, <strong>the</strong>n <strong>the</strong> coefficient of<br />

variation of <strong>the</strong> untrans<strong>for</strong>med Q about <strong>the</strong> regression, C¡,<br />

is given by<br />

Cä = .*p (2.303 SR)' - I 47<br />

When Q is estimated from a flood record that is N years<br />

long, and <strong>the</strong> coeffìcient of variation of <strong>the</strong> annual maxima<br />

is de<strong>not</strong>ed Cy, <strong>the</strong> estimate of Q will differ from <strong>the</strong> population<br />

value (that would be obtained from a very long record)<br />

with a coel'ficient of variation of CylN.l.<br />

ci : ci /N"<br />

When Q is predicted using <strong>the</strong> regional regression it will As <strong>the</strong> quantity Nu could provide a useful guide <strong>for</strong> using<br />

differ from <strong>the</strong> population value, and <strong>the</strong> coefficient ofvar- <strong>the</strong> regression equations, it is evaluated <strong>for</strong> each of <strong>the</strong> reiation<br />

of <strong>the</strong> difference averaged over k sites, de<strong>not</strong>ed by gions toge<strong>the</strong>r with Cp <strong>for</strong> each region (Table 4.12). Esti-<br />

Table 4.12 Prediction errors and equivalent lengths of record.<br />

Cp, is calculated from Equation 4.8, which is derived from<br />

Hardison (1971).<br />

c'p : ch(t - + -<br />

tf+-, ) + ci (2q - r)/N6..... 4.8<br />

where p is <strong>the</strong> average cross-correlation between annual<br />

maxima series from pairs oi catchments in <strong>the</strong> region, and<br />

Nç is <strong>the</strong> average length of record. When <strong>the</strong>re <strong>are</strong> many<br />

uncorrelated records such that sampling errors tend to cancel,<br />

and <strong>the</strong> average record is short (k large, p small, N6<br />

small), <strong>the</strong>n Cþ can be less than CilNc, so rhat a better<br />

estimate is obtained from <strong>the</strong> regression at a site than from<br />

<strong>the</strong> record at a site.<br />

Note that Cp is an average prediction error, and will<br />

over-estimate errors on predictions <strong>for</strong> ungauged catchments<br />

whose parameters <strong>are</strong> near <strong>the</strong> mean value used in<br />

calculating <strong>the</strong> regression, and conversely. In New Zealand,<br />

no estimates of<strong>the</strong> interstation correlation coefficient q <strong>are</strong><br />

available, but typical values may reasonably be expected<br />

within <strong>the</strong> range 0.2 to 0.8. Three values of p (0.2, 0.5 and<br />

0.8), were <strong>the</strong>re<strong>for</strong>e used in evaluating Equation 4.8.<br />

Given <strong>the</strong> coefficient of variation of <strong>the</strong> prediction error<br />

Cp, ân estimate can be made of <strong>the</strong> length of record necessary<br />

to estimate Q with <strong>the</strong> same degree of accuracy as is<br />

given by <strong>the</strong> regression equation. If Nu is this equivalent<br />

length of record, anLd <strong>the</strong> prediction error is expressed as a<br />

percentage, <strong>the</strong>n<br />

49<br />

Region S¡<br />

(<strong>for</strong> regression<br />

of logarithms)<br />

Cvkm<br />

(no. of (no. of<br />

stations) regression<br />

variables)<br />

Nca<br />

(av length<br />

record)<br />

cR cP<br />

(Eqn 4.7) (Eqn 4.8)<br />

l"l,\ l"/"1<br />

N, Typical<br />

(Eqn 4.9) Nu<br />

(yrs)<br />

(yrs)<br />

Northland/<br />

Coromandel/<br />

East Cape<br />

Pumice<br />

East Coast Nl<br />

Wairarapai<br />

Manawatu/<br />

Wellington<br />

West Coast Nl<br />

West Coast Sl<br />

o.119<br />

o.128<br />

0.082<br />

o.118<br />

o.1 67<br />

0.148<br />

o.54<br />

o.54<br />

o.54<br />

o.40<br />

o.40<br />

0.36<br />

21<br />

14<br />

t1<br />

19<br />

25<br />

t9<br />

1 1.6<br />

12.O<br />

13.O<br />

13.5<br />

110<br />

9.4<br />

o.2<br />

o.5<br />

0.8<br />

o.2<br />

o.5<br />

o.8<br />

o.2<br />

0.5<br />

o.8<br />

o.2<br />

o.5<br />

o.8<br />

o.2<br />

o.5<br />

o.8<br />

o-2<br />

0.5<br />

o.8<br />

27.9<br />

21 .9<br />

27.9<br />

29.9<br />

29.9<br />

29.9<br />

1 9.1<br />

1 9.1<br />

1 9.1<br />

27.7<br />

27.7<br />

27.7<br />

39.9<br />

39.9<br />

39.9<br />

35.O<br />

35.O<br />

3 5.O<br />

27.5<br />

30.1<br />

32.5<br />

33.7<br />

35.8<br />

37.7<br />

19.4<br />

22.6<br />

25.4<br />

30.0<br />

31.1<br />

32.3<br />

41.6<br />

42.6<br />

43.6<br />

37.1<br />

38.1<br />

39.3<br />

39<br />

3.2<br />

2.3<br />

2.6<br />

2.3<br />

2.1<br />

7.8<br />

5.7<br />

4.5<br />

1.8<br />

1.7<br />

1.5<br />

o.9<br />

o.9<br />

0.9<br />

0.9<br />

o9<br />

o.8<br />

lnland<br />

Marlborough/<br />

Canterbury<br />

East Coast Sl<br />

Mackenzie/<br />

lnland Otago/<br />

Southland<br />

o.1 09<br />

o.1 05<br />

o.146<br />

0.66<br />

o.98<br />

o.66<br />

13<br />

1'l<br />

'I 5<br />

18.0 0.2<br />

0.5<br />

o.8<br />

8.4 0.2<br />

o.5<br />

o.8<br />

89 02<br />

o5<br />

o8<br />

25.O<br />

25.O<br />

25.O<br />

24.5<br />

24.5<br />

24.5<br />

34.5<br />

34.5<br />

34.5<br />

24.4<br />

27.2<br />

29.8<br />

12.5<br />

29.O<br />

39.1<br />

34.6<br />

38.6<br />

42.2<br />

7.3<br />

5.9<br />

4.9<br />

61.6<br />

11 .4<br />

6.3<br />

3.7<br />

2.9<br />

2.4<br />

Water & soil technical publication no. 20 (1982)<br />

75

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!