19.11.2012 Views

Book of Abstracts - Ruhr-Universität Bochum

Book of Abstracts - Ruhr-Universität Bochum

Book of Abstracts - Ruhr-Universität Bochum

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

OP-36<br />

ISBOMC `10 5.7 – 9.7. 2010 <strong>Ruhr</strong>-<strong>Universität</strong> <strong>Bochum</strong><br />

Syntheses <strong>of</strong> New Isomeric Analogues <strong>of</strong> HYNIC for Evaluation<br />

as a Bifunctional Chelator for Technetium-99m<br />

Anica Dose, a L. K. Meszaros, b S. C. G. Biagini* a and P. J. Blower* b<br />

a University <strong>of</strong> Kent, Functional Materials Group, School <strong>of</strong> Physical Sciences, Canterbury CT2 7NH,<br />

UK. b Kings College London, Division <strong>of</strong> Imaging Sciences, Rayne Institute 4 th Floor Lambeth Wing,<br />

St. Thomas’ Hospital, London SE1 7EH, UK. E-mail: ad308@kent.ac.uk<br />

N<br />

N<br />

Tc<br />

N<br />

N<br />

N<br />

N Tc<br />

1 2<br />

Fig 1: possible monodentate 1<br />

and chelating 2 structures <strong>of</strong> Tc-<br />

HYNIC complex<br />

Introduction: Technetium, as a meta-stable isotope is extensively used in<br />

nuclear medicine. It is a transition metal <strong>of</strong> the 7 th subgroup with all formal<br />

oxidation states between -1 and +7 accessible and therefore possesses a large<br />

range <strong>of</strong> coordination structures. 1 Since the first use <strong>of</strong> radiolabelled<br />

antibodies with the bifunctional chelator 6-hydrazinonicotinamide (6-HYNIC)<br />

3, 2 the use <strong>of</strong> radiopeptides with the metastable isotope <strong>of</strong> technetium 99m Tc as<br />

an imaging agent for cancer cells has increased significantly until today. 3<br />

However, robust structural data for these conjugates is lacking. The HYNIC<br />

and 99m Tc coordinating sphere is still not fully determined and previous studies provide ambiguous<br />

results about the complex. 4 To radiolabel a peptide with HYNIC and 99m Tc also requires one or more<br />

co-ligands to fulfil the coordination sphere around the metal. Different co-ligands can have different<br />

effects on the homogeneity and stability <strong>of</strong> the complex and its biodistribution. Finally they are<br />

responsible for the formation <strong>of</strong> more than one end product. The latest results gives a clear insight that<br />

there is one chelating HYNIC per metal site and the oxidation state <strong>of</strong> Tc is formally +5. 5 The question<br />

as to which mode <strong>of</strong> the HYNIC coordination, monodentate 1 or chelating 2 is operating, remains<br />

uncertain.<br />

Aims: The aim <strong>of</strong> this project is to assess the specific binding <strong>of</strong> the complex between HYNIC and Tc,<br />

Tc and co-ligands and a further investigation <strong>of</strong> potential direct interactions between Tc and the<br />

peptide. 6<br />

Results: Isomeric HYNIC analogues<br />

4-7 were synthesised. These syntheses<br />

are related to the synthesis <strong>of</strong> 6-<br />

HYNIC-Boc. 2 The preparation <strong>of</strong><br />

HYNIC-rhenium crystals, will provide<br />

new data about the binding structure<br />

and this will be followed by the<br />

preparation <strong>of</strong> analogous HYNIC-Tc<br />

HO O<br />

N<br />

HO O<br />

crystals. The novel synthesis <strong>of</strong> Fmoc-Lysine-NHS-2-HYNIC-Boc was also succesfully accomplished.<br />

This will allow for its use in solid phase peptide synthesis (SPPS) to synthesise the “nanogastrin”<br />

peptide [Lys(R)-Glu-Ala-Tyr-Gly-Trp-Met-Asp-PheNH2] where R= HYNIC, which binds to the<br />

CCK-2 receptor overexpressed on certain tumours. 7<br />

Further work will evaluate the new ligands for labelling with Tc-99m and investigate the structural<br />

chemistry <strong>of</strong> the rhenium and technetium-99m complexes.<br />

References<br />

1. U. Abram, R. Alberto, J. Braz. Chem. Soc. 2006, 17, 1486-1500.<br />

2. M. J. Abrams, M. Juweid, C. I. Tenkate, D. A. Schwartz, M. M. Hauser, F. E. Gaul, A. J. Fuccello,<br />

R. H. Rubin, H. W. Strauss, A. J. Fischman, J. Nucl. Med. 1990, 31, 2022-2028.<br />

3. M. L. Bowen, C. Orvig, Chem. Commun. 2008, 41, 5077-5091.<br />

4. L. K. Meszaros, A. Dose, S. C. G. Biagini, P. J. Blower, Inorg. Chim. Acta 2010,<br />

DOI:10.1016/j.ica.2010.01.009<br />

5. R. C. King, M. Surfraz, S. Biagini, P. J. Blower, S. J. Mather, Dalton Trans. 2007, 43, 4998-5007.<br />

6. M. Surfraz, R. King, S. J. Mather, S. Biagini, P. J. Blower, J. Inorg. Biochem. 2009, 107, 971-977.<br />

7. R. King, M. B. U. Surfraz, C. Finucane, S. C. G. Biagini, P. J. Blower, J. Nuc. Med. 2009, 50, 591-<br />

598.<br />

52<br />

N<br />

H<br />

N<br />

NH 2·HCl<br />

HCl·H 2N<br />

H<br />

N<br />

HO O<br />

HO O<br />

HO O<br />

HN<br />

HN<br />

N<br />

HN<br />

NH2·HCl NH2 3 4 5 6 7<br />

Fig 2: HYNIC analogues<br />

N<br />

Cl<br />

N<br />

H<br />

N<br />

NH 2·HCl<br />

NH 2·HCl

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!