12.07.2015 Views

Untitled

Untitled

Untitled

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2 ANALIZA INCIDENTAKako sustavu SCADA u kontrolnom centru nedostajuneke vaæne funkcije bilo je moguÊe tek samobiljeæenje pogonskih podataka u realnom vremenu,dok se u mnogim sluËajevima dogaappleaju znaËajnazakaπnjenja u biljeæenju podataka. Iz ispitivanjazabiljeæenih dogaappleaja i podataka moguÊe je zakljuËitikako je smetnja zapoËela asimetriËnimtrofaznim kratkim spojem bez zemljospoja. OvajzakljuËak temelji se na vremenskim krivuljamaizmjeniËne struje zabiljeæenih digitalnim relejimaprekidaËa P-225 i P-255 (slika 2), koji su pokazivalinepostojanje struje zemljospoja. Moglo setakoappleer zamijetiti da impendancije kvara varirajus vremenom, upuÊujuÊi na elektriËno iskrenje kaouzrok. Oscilogrami 1 i 2 (slike 3 i 4) prikazujunapone na sabirnicama 66 kV na trafostanici Rhodini,odnosno struje na prekidaËu 66 kV P-110onako kako su se i razvijali. Naknadni vremenskioscilogrami 3 i 4 (slike 5 i 6) tu oscilaciju (frekvencije100 Hz) jasnije prikazuju. Oscilacija seodræava do kraja (kao πto je razvidno iz oscilograma5 (slika 7). To moæe znaËiti i da je automatskimregulatorima napona (AVR) potrebno podeπavanje.Iz oscilograma napona moguÊe je izraËunati veliËinunapona kao funkciju vremena, i to od nastankakvara do potpunog pada napona, kako je prikazanona slici 8.Tijekom smetnje zabiljeæene su promjene frekvencijeπirokog raspona. Relevantni podaci prikazanisu na slici 9 na kojoj je vidljiva minimalna frekvencijaod 47,7 Hz (2 s nakon poËetka smetnje)i maksimalna frekvencija od 54 Hz (16 s nakonpoËetka smetnje).2 INCIDENT ANALYSISAt the outset, one should note that the SCADA atthe Control Center leaves important functionalitiesto be desired. As a result, real-time registration ofoperation is only partially possible, while in manycases significant time delays occur in data registration.From examination of the registered eventsand data, one is able to see the following. The faultbegan as an asymmetrical three-phase fault, not involvingthe ground. This was evident from the timealternating current curves registered by the digitalrelays of the P-225 andP-255 (Figure 2) breakers, which showed zero earthcurrent. It could also be observed that the faultimpedances varied randomly with time, suggestingthat the electric-arcing of varying spans was thecause. Oscillograms 1 and 2 (Figures 3 and 4) showthe voltages at the 66 kV buses at Rhodini and thecurrents at the 66 kV breaker P-110, respectively.These oscillograms show oscillation developing astime progresses. Subsequent time Oscillograms 3and 4 (Figures 5 and 6) show this (100 Hz frequency)oscillation more clearly. This oscillationis sustained to the end (as seen in Oscillogram 5(Figure 7). This could indicate that the automaticvoltage regulators (AVR) need adjustments.From the voltage oscillogram, one can calculate thevoltage magnitude as a function of time, from theoccurrence of the fault up to the voltage collapse,as shown in Figure 8.In the course of the disturbance, wide frequencyswings were registered. The respective data areshown in Figure 9. In this figure, one can see theminimum frequency of 47,7 Hz (2 s after the startof the disturbance), and the maximum frequency of54 Hz (16 s after the start of the disturbance).Papazoglou, Th. M., Papazoglou, M. T., Thalassinakis, E. J., Tsichlakis, Ch., Hatziargyriou, N. D., DijagnostiËki..., Energija, god. 56(2007), br. 5., str. 608-617Papazoglou, Th. M., Papazoglou, M. T., Thalassinakis, E. J., Tsichlakis, Ch., Hatziargyriou, N. D., Diagnostic..., Energija, vol. 56(2007), No. 5, pp. 608-617612

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!