15.05.2015 Views

Textos de Apoio (pdf)

Textos de Apoio (pdf)

Textos de Apoio (pdf)

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Hidrodinâmica e Propulsão<br />

Engenharia <strong>de</strong> Máquinas Marítimas<br />

Jorge Trinda<strong>de</strong><br />

ENIDH<br />

2012


Índice<br />

1 Introdução 1<br />

1.1 Geometria do navio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br />

1.1.1 Principais dimensões dos navios . . . . . . . . . . . . . . . . . . . . . . . 1<br />

1.1.2 Coeficientes <strong>de</strong> forma do navio . . . . . . . . . . . . . . . . . . . . . . . 3<br />

1.2 Comportamento hidrodinâmico do navio . . . . . . . . . . . . . . . . . . . . . . 6<br />

1.3 Métodos empíricos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

1.4 Métodos experimentais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

1.5 Simulações numéricas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

2 Resistência 13<br />

2.1 Análise dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br />

2.2 Leis da semelhança . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

2.2.1 Semelhança geométrica . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

2.2.2 Semelhança cinemática . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

2.2.3 Semelhança dinâmica . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

2.3 Decomposição da resistência . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br />

2.3.1 Resistência <strong>de</strong> onda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

2.3.2 Resistência <strong>de</strong> atrito . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

2.3.3 Resistência viscosa <strong>de</strong> pressão . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

2.4 Ensaios <strong>de</strong> resistência em tanques <strong>de</strong> reboque . . . . . . . . . . . . . . . . . . . 26<br />

2.5 Cálculo da resistência . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

2.5.1 Métodos <strong>de</strong> extrapolação . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

2.5.2 Resistências adicionais . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

2.6 Previsão com dados sistemáticos ou estatísticos . . . . . . . . . . . . . . . . . . 32<br />

2.7 Ensaios à escala real . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br />

3 Propulsão 35<br />

3.1 Sistemas <strong>de</strong> propulsão . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br />

3.1.1 Hélices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br />

3.1.2 Outros meios <strong>de</strong> propulsão . . . . . . . . . . . . . . . . . . . . . . . . . 37<br />

3.2 Hélices propulsores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40<br />

3.2.1 Geometria do hélice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40<br />

3.2.2 Valores característicos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br />

3.3 Teoria da quantida<strong>de</strong> <strong>de</strong> movimento . . . . . . . . . . . . . . . . . . . . . . . . 42<br />

3.3.1 Força propulsiva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42<br />

i


ii<br />

ÍNDICE<br />

3.3.2 Coeficiente <strong>de</strong> carga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44<br />

3.3.3 Rendimento i<strong>de</strong>al do hélice . . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

3.4 Ensaios com mo<strong>de</strong>los reduzidos <strong>de</strong> hélices . . . . . . . . . . . . . . . . . . . . . 45<br />

3.4.1 Diagrama em águas livres . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br />

3.4.2 Rendimento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br />

3.4.3 Índice <strong>de</strong> qualida<strong>de</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br />

3.5 Séries sistemáticas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br />

3.5.1 Série sistemática <strong>de</strong> Wageningen . . . . . . . . . . . . . . . . . . . . . . 48<br />

3.5.2 Outras séries sistemáticas . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br />

3.5.3 Diagrama <strong>de</strong> 4 quadrantes . . . . . . . . . . . . . . . . . . . . . . . . . . 51<br />

3.6 Cavitação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53<br />

3.6.1 Origem da cavitação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53<br />

3.6.2 Controle da cavitação . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54<br />

3.6.3 Consi<strong>de</strong>ração da cavitação na selecção do hélice . . . . . . . . . . . . . . 55<br />

3.6.4 Ensaios experimentais . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56<br />

3.7 Selecção do hélice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58<br />

3.7.1 Variáveis <strong>de</strong> optimização . . . . . . . . . . . . . . . . . . . . . . . . . . . 58<br />

3.7.2 Tipos <strong>de</strong> problema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60<br />

3.8 Interacção entre casco e hélice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60<br />

3.8.1 Ensaios <strong>de</strong> propulsão . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61<br />

3.8.2 Potência e velocida<strong>de</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62<br />

3.8.3 Extrapolação dos resultados do ensaio <strong>de</strong> propulsão . . . . . . . . . . . 66<br />

4 Instalações Propulsoras 67<br />

4.1 Introdução . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67<br />

4.2 Propulsão diesel-mecânica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69<br />

4.2.1 Accionamento <strong>de</strong> auxiliares . . . . . . . . . . . . . . . . . . . . . . . . . 70<br />

4.2.2 Engrenagens redutoras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71<br />

4.2.3 Configuração ”pai-e-filho” . . . . . . . . . . . . . . . . . . . . . . . . . . 73<br />

4.3 Propulsão diesel-eléctrica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74<br />

4.3.1 Propulsão por motor eléctrico . . . . . . . . . . . . . . . . . . . . . . . . 74<br />

4.3.2 Propulsores azimutais . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77<br />

4.4 Selecção do motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78<br />

4.4.1 Turbinas e motores eléctricos . . . . . . . . . . . . . . . . . . . . . . . . 79<br />

4.4.2 Motores diesel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79<br />

Índice Remissivo 83<br />

A Previsão Baseada nos Ensaios <strong>de</strong> Propulsão 87<br />

B Provas <strong>de</strong> velocida<strong>de</strong> e Potência 121<br />

C Condições das Provas <strong>de</strong> Velocida<strong>de</strong> e Potência 133<br />

D Selecção <strong>de</strong> Motores Propulsores 141<br />

E Derating 175


Lista <strong>de</strong> Figuras<br />

1.1 Plano <strong>de</strong> flutuação, longitudinal e transversal <strong>de</strong> um navio. . . . . . . . . . . . 2<br />

1.2 Plano geométrico <strong>de</strong> um navio. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2<br />

1.3 Principais dimensões dos navios. . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

1.4 Marcação no costado das linhas <strong>de</strong> carga do navio. . . . . . . . . . . . . . . . . 5<br />

1.5 Tanque <strong>de</strong> provas utilizado por W. Frou<strong>de</strong>. . . . . . . . . . . . . . . . . . . . . 7<br />

1.6 Tanque <strong>de</strong> testes actual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

1.7 Bacia para testes com ondulação. . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

1.8 Bacia para testes com águas geladas. . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

1.9 Escoamento num hélice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

1.10 Malha colocada à esquerda e <strong>de</strong>sfasada à direita. . . . . . . . . . . . . . . . . . 9<br />

1.11 Representação esquemática <strong>de</strong> um “PC-cluster”. . . . . . . . . . . . . . . . . . . 10<br />

1.12 Um “PC-cluster” com 24 nós computacionais. . . . . . . . . . . . . . . . . . . . 10<br />

1.13 Decomposição 1D, 2D ou 3D do domínio espacial <strong>de</strong> um problema. . . . . . . . 11<br />

1.14 Troca <strong>de</strong> valores nas fronteiras dos sub-domínios. . . . . . . . . . . . . . . . . . 11<br />

2.1 Decomposição da resistência. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

2.2 Sistema <strong>de</strong> ondas gerado por um ponto <strong>de</strong> pressão em movimento. . . . . . . . 20<br />

2.3 Sistemas <strong>de</strong> ondas da proa e da popa. . . . . . . . . . . . . . . . . . . . . . . . 21<br />

2.4 Interacção entre os dois sistemas <strong>de</strong> ondas. . . . . . . . . . . . . . . . . . . . . . 22<br />

2.5 Curva da resistência <strong>de</strong> onda. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

2.6 Variação do coeficiente da resistência <strong>de</strong> atrito com o número <strong>de</strong> Reynolds e<br />

com a rugosida<strong>de</strong> da superfície. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

2.7 Distribuição <strong>de</strong> pressão num escoamento i<strong>de</strong>al, invíscido. . . . . . . . . . . . . . 26<br />

2.8 Mo<strong>de</strong>lo à escala reduzida para ensaios <strong>de</strong> resistência. . . . . . . . . . . . . . . . 27<br />

2.9 Representação gráfica da <strong>de</strong>pendência <strong>de</strong> c T<br />

com F r4<br />

. . . . . . . . . . . . . . 29<br />

c F 0 c F 0<br />

2.10 Redução <strong>de</strong> velocida<strong>de</strong> (%) em águas pouco profundas. . . . . . . . . . . . . . . 33<br />

3.1 Hélice com tubeira. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36<br />

3.2 Hélices <strong>de</strong> passo fixo e <strong>de</strong> passo controlável. . . . . . . . . . . . . . . . . . . . . 36<br />

3.3 Hélices em contra-rotação. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37<br />

3.4 Hélices supercavitante. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38<br />

3.5 Propulsão por jacto <strong>de</strong> água. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38<br />

3.6 Propulsores azimutais. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39<br />

3.7 Propulsores cicloidais. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39<br />

iii


iv<br />

LISTA DE FIGURAS<br />

3.8 Geometria do hélice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br />

3.9 Distribuição espacial <strong>de</strong> velocida<strong>de</strong> e pressão para a teoria da quantida<strong>de</strong> <strong>de</strong><br />

movimento. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43<br />

3.10 Diagrama <strong>de</strong> águas livres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br />

3.11 Aspecto geométrico das pás da série B <strong>de</strong> Wageningen . . . . . . . . . . . . . . 48<br />

3.12 Diagrama em águas livres <strong>de</strong> um hélice da série sistemática <strong>de</strong> Wageningen. . . 50<br />

3.13 Notação do diagrama com 4 quadrantes. . . . . . . . . . . . . . . . . . . . . . . 51<br />

3.14 Diagrama em águas livres <strong>de</strong> 4 quadrantes para os hélices Wageningen B-4.70. 53<br />

3.15 Efeito da cavitação no valor dos parâmetros relativos a águas livres. . . . . . . 54<br />

3.16 Pressão <strong>de</strong> vapor da água em função da temperatura. . . . . . . . . . . . . . . 55<br />

3.17 Diagrama <strong>de</strong> Burrill. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56<br />

3.18 Instalações <strong>de</strong> ensaio do RINA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57<br />

3.19 Imagem da cavitação num hélice. . . . . . . . . . . . . . . . . . . . . . . . . . . 58<br />

3.20 Mo<strong>de</strong>lo para ensaios <strong>de</strong> propulsão. . . . . . . . . . . . . . . . . . . . . . . . . . 61<br />

3.21 Resultados dos ensaios <strong>de</strong> propulsão. . . . . . . . . . . . . . . . . . . . . . . . . 66<br />

4.1 Variantes <strong>de</strong> instalações propulsoras diesel-mecânicas lentas e <strong>de</strong> média velocida<strong>de</strong>.<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68<br />

4.2 Instalações propulsoras diesel-mecânica (em cima) e diesel-eléctrica (em baixo). 69<br />

4.3 Acoplamento com relação variável <strong>de</strong> velocida<strong>de</strong>s. . . . . . . . . . . . . . . . . . 71<br />

4.4 Conversão da frequência da energia eléctrica. . . . . . . . . . . . . . . . . . . . 72<br />

4.5 Instalação propulsora com quatro motores, engrenagens redutoras e dois hélices. 73<br />

4.6 Instalação com dois motores diesel diferentes, engrenagens redutoras, embraiagens<br />

e geradores acoplados aos veios. . . . . . . . . . . . . . . . . . . . . . . . 74<br />

4.7 Motor eléctrico <strong>de</strong> propulsão. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75<br />

4.8 Instalação diesel-eléctrica. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76<br />

4.9 Representação esquemática <strong>de</strong> uma instalação diesel-eléctrica. . . . . . . . . . . 77<br />

4.10 Propulsores azimutais. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78<br />

4.11 Diagrama <strong>de</strong> carga <strong>de</strong> um motor diesel . . . . . . . . . . . . . . . . . . . . . . . 80


Lista <strong>de</strong> Tabelas<br />

1.1 Valores <strong>de</strong> K na fórmula <strong>de</strong> Alexan<strong>de</strong>r. . . . . . . . . . . . . . . . . . . . . . . 6<br />

2.1 Valores do coeficiente <strong>de</strong> correcção c A em função do comprimento do navio. . . 29<br />

3.1 Séries sistemáticas <strong>de</strong> propulsores. . . . . . . . . . . . . . . . . . . . . . . . . . 48<br />

3.2 Coeficiente para atribuição do diâmetro máximo do hélice pela Eq. (3.34). . . . 59<br />

3.3 Constante para o cálculo do diâmetro equivalente em água livres pela Eq. (3.35). 59<br />

v


vi<br />

LISTA DE TABELAS


Capítulo 1<br />

Introdução<br />

1.1 Geometria do navio<br />

A variação da proporção relativa das dimensões principais <strong>de</strong> um navio tem um importante<br />

efeito nas suas características operacionais. Afecta as suas características hidrodinâmicas, a<br />

sua resistência estrutural e, naturalmente a capacida<strong>de</strong> <strong>de</strong> carga.<br />

Os navios existentes, em particular as unida<strong>de</strong>s <strong>de</strong> construção mais recente, constituem<br />

uma boa “fonte <strong>de</strong> inspiração” para o pré-dimensionamento <strong>de</strong> um navio novo. No que diz<br />

respeito à informação mais <strong>de</strong>talhada, estas bases <strong>de</strong> dados são, regra geral, bem resguardadas<br />

pelos gabinetes <strong>de</strong> estudo e projecto, bem como pelos estaleiros construtores. No entanto,<br />

alguns <strong>de</strong>stes dados estão disponíveis nos registos publicados pelas socieda<strong>de</strong>s classificadoras<br />

e por alguns gabinetes <strong>de</strong> estudo.<br />

Depois <strong>de</strong> um processo iterativo <strong>de</strong> dimensionamento do navio, durante o qual são tidas<br />

em consi<strong>de</strong>ração as variáveis <strong>de</strong> optimização seleccionadas, a solução final da forma do navio<br />

constitui o plano geométrico do navio. Na prática, este plano geométrico é gerado por uma<br />

das seguintes vias:<br />

- <strong>de</strong>formação <strong>de</strong> um navio <strong>de</strong> referência;<br />

- mo<strong>de</strong>lo matemático para <strong>de</strong>finição <strong>de</strong> forma em função <strong>de</strong> parâmetros do navio;<br />

- utilização das séries sistemáticas.<br />

1.1.1 Principais dimensões dos navios<br />

O casco <strong>de</strong> um navio é uma forma tridimensional, na maior parte dos casos simétrica relativamente<br />

a um plano vertical longitudinal do navio. O contorno do casco fica <strong>de</strong>finido pela<br />

sua intersecção com três planos ortogonais (Fig. 1.1):<br />

- o plano <strong>de</strong> flutuação <strong>de</strong> projecto;<br />

- o plano longitudinal;<br />

- o plano transversal.<br />

1


2<br />

CAPÍTULO 1. INTRODUÇÃO<br />

Figura 1.1: Plano <strong>de</strong> flutuação, longitudinal e transversal <strong>de</strong> um navio.<br />

O plano longitudinal, único plano <strong>de</strong> simetria do navio, é o plano <strong>de</strong> referência. A forma<br />

do navio cortada por este plano é o perfil. O plano <strong>de</strong> flutuação <strong>de</strong> projecto é um plano<br />

perpendicular ao plano longitudinal, escolhido como plano <strong>de</strong> referência. Os planos paralelos<br />

ao plano <strong>de</strong> flutuação <strong>de</strong> projecto são conhecidos como planos <strong>de</strong> água, ou <strong>de</strong> flutuação, e as<br />

linhas <strong>de</strong> intersecção como linhas <strong>de</strong> água. Os planos <strong>de</strong> flutuação são simétricos relativamente<br />

ao plano longitudinal. Os planos perpendiculares ao plano longitudinal e ao plano <strong>de</strong> flutuação<br />

<strong>de</strong> projecto são os planos transversais. As secções transversais exibem simetria relativamente<br />

ao plano longitudinal.<br />

A secção do navio equidistante das perpendiculares e normal aos planos <strong>de</strong> flutuação <strong>de</strong><br />

verão e longitudinal é <strong>de</strong>signada por secção <strong>de</strong> meio-navio, ou secção mestra. Na Fig. 1.2<br />

está representado um plano <strong>de</strong> linhas do navio, que inclui o plano do casco, no qual, por<br />

convenção, sempre que o navio é simétrico, se exibem meta<strong>de</strong>s das secções. Do lado direito<br />

representam-se meta<strong>de</strong>s das secções avante <strong>de</strong> meio-navio e do lado esquerdo meta<strong>de</strong>s das<br />

secções a ré. O plano <strong>de</strong> linhas do navio inclui ainda o plano da meta<strong>de</strong> da boca, no qual são<br />

representados os planos <strong>de</strong> flutuação.<br />

Figura 1.2: Plano geométrico <strong>de</strong> um navio.


1.1. GEOMETRIA DO NAVIO 3<br />

Na Fig. 1.3 estão representadas as dimensões mais frequentemente utilizadas para <strong>de</strong>finir<br />

o navio. Quanto ao comprimento do navio, são três as <strong>de</strong>finições a consi<strong>de</strong>rar:<br />

- o comprimento entre perpendiculares, L pp , distância medida ao longo do plano <strong>de</strong> flutuação<br />

<strong>de</strong> verão entre a perpendicular da popa e a perpendicular da proa;<br />

- o comprimento na linha <strong>de</strong> água, L wl , distância na linha <strong>de</strong> flutuação que se verifique, se<br />

nada for referido <strong>de</strong>verá enten<strong>de</strong>r-se a linha <strong>de</strong> flutuação <strong>de</strong> verão, entre as intersecções<br />

da proa e popa com a mesma linha <strong>de</strong> flutuação;<br />

- o comprimento fora a fora, L oa , distância entre os pontos extremos a vante e a ré do<br />

navio, medida numa direcção paralela à linha <strong>de</strong> flutuação <strong>de</strong> verão.<br />

Designa-se por boca, a máxima distância entre as faces interiores das chapas <strong>de</strong> costado<br />

nos dois bordos do navio, na secção mestra, se outra secção não for indicada. O pontal é a<br />

distância na vertical, medida a meio navio, entre a face inferior do convés e a face superior<br />

da chapa da quilha. O calado <strong>de</strong> um navio em qualquer ponto do seu comprimento é a<br />

distância na vertical entre a quilha e a linha <strong>de</strong> água. O calado varia não só com o estado <strong>de</strong><br />

carregamento do navio mas também com a <strong>de</strong>nsida<strong>de</strong> da água em que este se encontra.<br />

A altura <strong>de</strong>s<strong>de</strong> a linha <strong>de</strong> flutuação e o convés é <strong>de</strong>signada por bordo livre. Po<strong>de</strong> ser<br />

calculado pela diferença entre o pontal e o calado.<br />

Um aspecto importante relativamente à segurança <strong>de</strong> um navio mercante pren<strong>de</strong>-se com<br />

a alocação regulamentar <strong>de</strong> um valor mínimo do bordo livre, como forma <strong>de</strong> garantir uma<br />

reserva <strong>de</strong> estabilida<strong>de</strong> suficiente para a segurança da navegação. Este valor mínimo do bordo<br />

livre <strong>de</strong>pen<strong>de</strong> do local <strong>de</strong> navegação e da época do ano. No costado do navio estão marcadas<br />

as linhas <strong>de</strong> carga por forma a permitir verificar facilmente se as condições <strong>de</strong> segurança são<br />

verificadas. O valor <strong>de</strong> referência é a linha <strong>de</strong> Verão que é marcada no centro <strong>de</strong> um círculo,<br />

Fig. 1.4. Ao lado <strong>de</strong>ste círculo, são marcadas na horizontal linhas adicionais que correspon<strong>de</strong>m<br />

ao:<br />

- bordo livre <strong>de</strong> Inverno, superior em 1/48 avos do bordo livre <strong>de</strong> Verão;<br />

- bordo livre <strong>de</strong> Inverno no Atlântico Norte, ainda superior em 50 mm;<br />

- bordo livre tropical, inferior em 1/48 avos do bordo livre <strong>de</strong> Verão;<br />

- bordo livre em água doce, inferior em ∆ / (40 t) cm, sendo ∆ o <strong>de</strong>slocamento em ton e<br />

t as ton por cm <strong>de</strong> imersão;<br />

- bordo livre tropical em água doce é inferior em 1/48 avos do bordo livre <strong>de</strong> Verão ao<br />

bordo livre em água doce.<br />

1.1.2 Coeficientes <strong>de</strong> forma do navio<br />

O <strong>de</strong>slocamento do navio é o peso do volume <strong>de</strong> água que o navio <strong>de</strong>sloca quando a flutuar<br />

em águas tranquilas,<br />

∆ = ρg∇ (1.1)<br />

em que ρ é a massa volúmica da água em que o navio se encontra a flutuar, g é a aceleração<br />

da gravida<strong>de</strong> e ∇ o volume <strong>de</strong>slocado.<br />

A partir das principais dimensões da navio, <strong>de</strong>finem-se os seguintes coeficientes <strong>de</strong> forma:


4<br />

CAPÍTULO 1. INTRODUÇÃO<br />

Figura 1.3: Principais dimensões dos navios.<br />

- o coeficiente <strong>de</strong> finura total (“block coeficient”):<br />

C b =<br />

∇<br />

L pp BT<br />

(1.2)<br />

on<strong>de</strong>:<br />

- ∇ é o volume do <strong>de</strong>slocamento;<br />

- L pp o comprimento entre perpendiculares;<br />

- B a boca (máxima abaixo da linha <strong>de</strong> água);<br />

- e T é o calado médio do navio.<br />

- o coeficiente <strong>de</strong> finura da flutuação:<br />

em que:<br />

C wp =<br />

A wp<br />

L wp B<br />

(1.3)<br />

- A wp é a área do plano <strong>de</strong> flutuação;


1.1. GEOMETRIA DO NAVIO 5<br />

Figura 1.4: Marcação no costado das linhas <strong>de</strong> carga do navio.<br />

- L wp o comprimento na linha <strong>de</strong> flutuação;<br />

- e B a boca (máxima na linha <strong>de</strong> flutuação).<br />

- o coeficiente <strong>de</strong> finura da secção mestra:<br />

C m = A m<br />

BT<br />

representando por:<br />

(1.4)<br />

- A m a área imersa na secção mestra;<br />

- B a boca na secção mestra;<br />

- e T o calado a meio navio.<br />

- o coeficiente prismático longitudinal:<br />

C p =<br />

em que novamente:<br />

∇<br />

A m L pp<br />

(1.5)<br />

- ∇ é o volume da querena;<br />

- A m a área imersa a meio navio;<br />

- e L pp o comprimento entre perpendiculares.<br />

Como exemplo da utilização dos coeficientes <strong>de</strong> forma no estabelecimento <strong>de</strong> relações<br />

empíricas para início do projecto <strong>de</strong> um navio, po<strong>de</strong>-se indicar a fórmula <strong>de</strong> Alexan<strong>de</strong>r,<br />

C b = K − 0.5 × V √<br />

L<br />

(1.6)<br />

em que K apresenta os valores da Tab. 1.1 <strong>de</strong> acordo com o tipo <strong>de</strong> navio. A fórmula <strong>de</strong><br />

Alexan<strong>de</strong>r estabelece uma relação empírica entre o coeficiente <strong>de</strong> finura total do navio, a sua<br />

velocida<strong>de</strong> e o comprimento. Pela especificida<strong>de</strong> <strong>de</strong> cada caso, o coeficiente <strong>de</strong> finura total<br />

C b do navio po<strong>de</strong>rá <strong>de</strong>pois <strong>de</strong>sviar-se do valor inicialmente previsto durante o processo <strong>de</strong><br />

optimização das características do navio.


6<br />

CAPÍTULO 1. INTRODUÇÃO<br />

Tipo <strong>de</strong> Navio K<br />

Petroleiro 1.13<br />

Graneleiro 1.11<br />

Carga geral 1.10<br />

Navio <strong>de</strong> linha 1.05<br />

Ferry 1.08<br />

Rebocador 1.18<br />

Tabela 1.1: Valores <strong>de</strong> K na fórmula <strong>de</strong> Alexan<strong>de</strong>r.<br />

1.2 Comportamento hidrodinâmico do navio<br />

A análise do comportamento hidrodinâmico do navio po<strong>de</strong> ser <strong>de</strong>composta em diversas áreas,<br />

<strong>de</strong> entre as quais se po<strong>de</strong> salientar:<br />

- a resistência;<br />

- a propulsão;<br />

- o comportamento do navio no mar;<br />

- a capacida<strong>de</strong> <strong>de</strong> manobra.<br />

O cálculo do escoamento e o projecto <strong>de</strong> hélices po<strong>de</strong> ser consi<strong>de</strong>rado como um sub-tópico do<br />

tema resistência e propulsão.<br />

As metodologias para o cálculo ou para a previsão dos parâmetros relevantes do comportamento<br />

do navio po<strong>de</strong>m ser classificadas como:<br />

- empíricas e estatísticas;<br />

- experimentais em mo<strong>de</strong>los à escala reduzida, ou à escala real;<br />

- numéricas, através <strong>de</strong> soluções analíticas ou com recurso à mecânica <strong>de</strong> fluidos computacional.<br />

Os princípios fundamentais <strong>de</strong>stas metodologias são sumariamente <strong>de</strong>scritos nas secções<br />

seguintes.<br />

1.3 Métodos empíricos<br />

Os métodos empíricos baseiam-se num mo<strong>de</strong>lo físico relativamente simples e na análise por<br />

regressão para a <strong>de</strong>terminação dos coeficientes relevantes, a partir <strong>de</strong> um só navio ou <strong>de</strong> uma<br />

série <strong>de</strong> navios. Os resultados assim obtidos são <strong>de</strong>pois expressos sob a forma <strong>de</strong> constantes,<br />

fórmulas, tabelas, gráficos, etc.<br />

Numerosos estudos realizados entre 1940 e 1960 permitiram criar séries <strong>de</strong> “boas” formas<br />

<strong>de</strong> carenas. O efeito da variação dos principais parâmetros do casco, como por exemplo o<br />

coeficiente <strong>de</strong> bloco, foi <strong>de</strong>terminado por alteração sistemática daqueles parâmetros.


1.4.<br />

MÉTODOS EXPERIMENTAIS 7<br />

Figura 1.5: Tanque <strong>de</strong> provas utilizado<br />

por W. Frou<strong>de</strong>.<br />

Figura 1.6: Tanque <strong>de</strong> testes actual.<br />

1.4 Métodos experimentais<br />

Esta abordagem baseia-se no teste <strong>de</strong> mo<strong>de</strong>los em escala reduzida para extrair informação que<br />

possa ser extrapolada para a escala do navio. Apesar dos gran<strong>de</strong>s esforços <strong>de</strong> investigação e<br />

normalização, a correlação mo<strong>de</strong>lo-navio está sujeita a algum grau <strong>de</strong> empirismo. Cada uma<br />

das principais instalações <strong>de</strong> teste (túneis, bacias, etc.) ten<strong>de</strong> a adoptar os métodos <strong>de</strong> ensaio<br />

e tratamento da informação que melhor se adaptam à experiência já incorporada nas suas<br />

bases <strong>de</strong> dados. Esta não uniformida<strong>de</strong> <strong>de</strong> processos dificulta, se não mesmo em muitos casos<br />

impossibilita, o aproveitamento estatístico dos dados <strong>de</strong> uma forma agregada.<br />

Embora a metodologia base para a avaliação da resistência <strong>de</strong> um mo<strong>de</strong>lo num tanque <strong>de</strong><br />

testes se mantenha praticamente inalterada <strong>de</strong>s<strong>de</strong> os tempos <strong>de</strong> Frou<strong>de</strong> (1874), vários aspectos<br />

técnicos sofreram gran<strong>de</strong> evolução. De entre estes, po<strong>de</strong>m-se salientar:<br />

- as técnicas experimentais não-intrusivas, como a Laser-Doppler Velocimetry, que permitem<br />

a medição do campo <strong>de</strong> velocida<strong>de</strong>s na esteira do navio para melhorar o projecto<br />

do hélice;<br />

- a análise do padrão da formação ondosa gerada pelo mo<strong>de</strong>lo para estimar a resistência<br />

<strong>de</strong> onda;<br />

- nos testes <strong>de</strong> mo<strong>de</strong>los com propulsão autónoma, é possível agora medir gran<strong>de</strong>zas relacionadas<br />

com o propulsor como o impulso, binário, rpm, etc.<br />

Instalações com características bem diferentes surgiram entretanto para possibilitar outro<br />

tipo <strong>de</strong> estudos. Trata-se <strong>de</strong> bacias equipadas com geradores <strong>de</strong> ondas, para ensaios <strong>de</strong> mo<strong>de</strong>los<br />

com o objectivo <strong>de</strong> estudar as questões <strong>de</strong> manobrabilida<strong>de</strong> e <strong>de</strong> comportamento do navio no<br />

mar, Fig. 1.7.<br />

Outro tipo <strong>de</strong> bacias para ensaios <strong>de</strong> mo<strong>de</strong>los <strong>de</strong> navios, Fig. 1.8, <strong>de</strong>dica-se preferencialmente<br />

a estudos e ensaios relacionados com a presença <strong>de</strong> gelo no mar.<br />

Por último, um outro tipo <strong>de</strong> instalação <strong>de</strong> teste nesta área <strong>de</strong>dica-se ao estudo do <strong>de</strong>sempenho<br />

<strong>de</strong> hélices propulsores. Neste tipo <strong>de</strong> instalação, que iremos abordar com um pouco<br />

mais <strong>de</strong> <strong>de</strong>talhe no Cap. 3, para além da <strong>de</strong>terminação <strong>de</strong> várias características <strong>de</strong> <strong>de</strong>sempenho<br />

do hélice, po<strong>de</strong>-se vizualizar o padrão <strong>de</strong> cavitação no hélice.


8<br />

CAPÍTULO 1. INTRODUÇÃO<br />

Figura 1.7: Bacia para testes<br />

com ondulação.<br />

Figura 1.8: Bacia para testes com<br />

águas geladas.<br />

Figura 1.9: Escoamento num hélice.<br />

1.5 Simulações numéricas<br />

As simulações <strong>de</strong> escoamento obtidas pela mecânica <strong>de</strong> fluidos computacional são ainda consi<strong>de</strong>radas<br />

pela indústria como pouco precisas para a previsão da resistência <strong>de</strong> um casco ou da<br />

força propulsiva <strong>de</strong> um hélice. No entanto, o contributo da mecânica <strong>de</strong> fluidos computacional<br />

está a tornar-se cada vez mais importante em <strong>de</strong>terminados passos do processo <strong>de</strong> projecto.<br />

Casos típicos <strong>de</strong> aplicação são, por exemplo:<br />

- a simulação <strong>de</strong> escoamento invíscido, com superfície livre, para análise do comportamento<br />

da proa, interacção com o bolbo, formação ondosa, etc.<br />

- as simulações <strong>de</strong> escoamento viscoso na zona da popa, <strong>de</strong>sprezando a formação ondosa<br />

para avaliação do comportamento <strong>de</strong> apêndice ou análise do escoamento <strong>de</strong> aproximação<br />

ao hélice.<br />

No caso mais geral, o escoamento <strong>de</strong> fluidos incompressíveis em regime não-estacionário é<br />

mo<strong>de</strong>lado pelas seguintes equações:


1.5.<br />

SIMULAÇÕES NUMÉRICAS 9<br />

- Equação da continuida<strong>de</strong>,<br />

∂u i<br />

∂x i<br />

= 0 (1.7)<br />

- Equação <strong>de</strong> conservação da quantida<strong>de</strong> <strong>de</strong> movimento,<br />

∂ρu i<br />

∂t<br />

+ ∂<br />

∂x j<br />

(ρu i u j ) = − ∂p<br />

∂x i<br />

+ µ ∂2 u i<br />

∂x j ∂x j<br />

+ ρb i (1.8)<br />

- Equação <strong>de</strong> conservação da energia (forma simplificada),<br />

∂θ<br />

∂t + ∂ (θu j)<br />

∂x j<br />

= κ ∂ 2 θ<br />

(1.9)<br />

ρc ∂x j ∂x j<br />

em que x i é a coor<strong>de</strong>nada na direcção i, u i é a componente da velocida<strong>de</strong> na direcção i, ρ<br />

e µ são a massa específica e a viscosida<strong>de</strong> do fluido, respectivamente, p é a pressão, κ é a<br />

condutivida<strong>de</strong> térmica, c é o calor específico, θ é a temperatura, b é a componente na direcção<br />

i das forças exteriores por unida<strong>de</strong> <strong>de</strong> massa e t é o tempo.<br />

As equações são discretizadas no espaço <strong>de</strong> acordo com uma malha colocada ou <strong>de</strong>sfasada.<br />

Na Fig. 1.10 está indicada a localização das variáveis, no caso bi-dimensional, para cada<br />

uma daqueles tipos <strong>de</strong> malhas. Cada um daqueles tipos <strong>de</strong> malha <strong>de</strong> discretização apresenta<br />

Figura 1.10: Malha colocada à esquerda e <strong>de</strong>sfasada à direita.<br />

algumas vantagens e <strong>de</strong>svantagens. As mais importantes estão relacionadas com:<br />

- a complexida<strong>de</strong> da programação;<br />

- o tratamento das fronteiras do problema;<br />

- a solução para o acoplamento pressão-velocida<strong>de</strong> (formato xadrez na solução da pressão).<br />

Selecionado o tipo <strong>de</strong> malha a utilizar, outras opções há a tomar para <strong>de</strong>senvolver o método<br />

<strong>de</strong> solução. Algumas das mais comuns são:


10<br />

CAPÍTULO 1. INTRODUÇÃO<br />

Figura 1.11: Representação esquemática<br />

<strong>de</strong> um “PC-cluster”.<br />

Figura 1.12: Um “PC-cluster”<br />

com 24 nós computacionais.<br />

- SIMPLE / método <strong>de</strong> projecção;<br />

- volume finito / diferenças finitas;<br />

- aproximação dos termos convectivos/difusivos das equações;<br />

- “upwind”;<br />

- diferenças centrais <strong>de</strong> or<strong>de</strong>m 2;<br />

- diferenças centrais <strong>de</strong> or<strong>de</strong>m 4;<br />

- o método <strong>de</strong> integração para a evolução temporal;<br />

- Euler;<br />

- Crank-Nicolson;<br />

- Adams-Bashforth;<br />

- Runge-Kutta.<br />

Tratando-se <strong>de</strong> cálculos complexos, o tempo <strong>de</strong> cálculo po<strong>de</strong>rá ser reduzido, sem acréscimo<br />

significativo <strong>de</strong> custos, com recurso <strong>de</strong> um “PC-cluster”, Fig. 1.11.<br />

Este tipo <strong>de</strong> estruturas computacionais caracterizam-se por dispor <strong>de</strong>:<br />

- 20 a 1000 CPU;<br />

- 2 a 8 GB RAM por nó;<br />

- comunicação em re<strong>de</strong> com velocida<strong>de</strong> superior a 1 Gbps;<br />

- elevada capacida<strong>de</strong> para armazenamento <strong>de</strong> dados;<br />

- sistema operativo estável.


1.5.<br />

SIMULAÇÕES NUMÉRICAS 11<br />

Para a solução <strong>de</strong> um problema <strong>de</strong> mecânica <strong>de</strong> fluidos num “PC-cluster” é necessário proce<strong>de</strong>r<br />

à <strong>de</strong>composição do domínio espacial do problema (Fig. 1.13) e recorrer a rotinas <strong>de</strong> uma<br />

das várias bibliotecas disponíveis para efectuar a troca <strong>de</strong> dados entre os nós computacionais,<br />

como por exemplo a biblioteca Message Passing Interface, necessária para a continuação do<br />

cálculo. Na Fig. 1.14 estão representados esquematicamente aquelas comunicações <strong>de</strong> dados<br />

relativos às fronteiras dos sub-domínios <strong>de</strong> cálculo.<br />

Figura 1.13: Decomposição 1D, 2D ou 3D do domínio espacial <strong>de</strong> um problema.<br />

Figura 1.14: Troca <strong>de</strong> valores nas fronteiras dos sub-domínios.


12<br />

CAPÍTULO 1. INTRODUÇÃO


Capítulo 2<br />

Resistência<br />

2.1 Análise dimensional<br />

A resistência do navio a uma velocida<strong>de</strong> constante é a força necessária para rebocar o navio<br />

a essa velocida<strong>de</strong> em águas tranquilas. Se a querena não tiver apêndices, a resistência diz-se<br />

da querena simples. Designaremos por potência efectiva, ou potência <strong>de</strong> reboque, a potência<br />

necessária para vencer a resistência do navio a uma dada velocida<strong>de</strong>,<br />

P e = V R T (2.1)<br />

em que V é a velocida<strong>de</strong> do navio e R T a sua resistência total.<br />

A resistência do navio R T = f (V, L, ρ, ν, g) <strong>de</strong>pen<strong>de</strong>:<br />

- da velocida<strong>de</strong> do navio V ;<br />

- das dimensões do navio, representadas aqui por uma dimensão linear L;<br />

- da massa específica do fluido ρ;<br />

- da viscosida<strong>de</strong> cinemática do fluido ν;<br />

- da aceleração da gravida<strong>de</strong> g.<br />

Assim, a resistência do navio <strong>de</strong>verá ser uma função da forma<br />

R T = V a L b ρ c ν d g e (2.2)<br />

Ao estudar a resistência <strong>de</strong> um navio é importante calcular não o seu valor absoluto, mas<br />

também a sua relação com outro valor, dimensionalmente semelhante, tomado como referência.<br />

Vamos dar o nome <strong>de</strong> coeficientes específicos a estas relações. No caso da resistência<br />

total do navio, o valor do coeficiente é obtido por<br />

c T =<br />

R T<br />

(2.3)<br />

1<br />

2 ρSV 2<br />

em que ρ é a massa específica do fluido, S a superfície molhada do navio e V a sua velocida<strong>de</strong>.<br />

13


14<br />

CAPÍTULO 2. RESISTÊNCIA<br />

Resolvendo o sistema <strong>de</strong> equações gerado pela Eq. (2.2) em or<strong>de</strong>m a a, b e c, e consi<strong>de</strong>rando<br />

a <strong>de</strong>finição do coeficiente em 2.3 dada pela Eq. (2.3), temos<br />

R T = ρV 2 L 2 f<br />

( V L<br />

ν , gL )<br />

V 2<br />

(2.4)<br />

Ou seja, a análise dimensional mostra que o coeficiente <strong>de</strong> resistência total do navio,<br />

( V L<br />

c t = f<br />

ν , gL )<br />

V 2 (2.5)<br />

<strong>de</strong>pen<strong>de</strong> dos grupos adimensionais <strong>de</strong>signados por número <strong>de</strong> Frou<strong>de</strong>,<br />

F r =<br />

V √ gL<br />

(2.6)<br />

e por número <strong>de</strong> Reynolds,<br />

Re = V L<br />

ν<br />

(2.7)<br />

calculados para o navio.<br />

2.2 Leis da semelhança<br />

No caso dos ensaios <strong>de</strong> mo<strong>de</strong>los para avaliação da resistência <strong>de</strong> uma querena, po<strong>de</strong>mos<br />

consi<strong>de</strong>rar três formas <strong>de</strong> semelhança:<br />

- semelhança geométrica;<br />

- semelhança cinemática;<br />

- semelhança dinâmica.<br />

2.2.1 Semelhança geométrica<br />

Verificar-se semelhança geométrica significa a existência <strong>de</strong> uma razão constante entre qualquer<br />

dimensão linear na escala real do protótipo (comprimento, boca, calado do navio, etc.)<br />

L s e o dimensão linear na escala do mo<strong>de</strong>lo L m . Aquela razão é a escala geométrica do mo<strong>de</strong>lo<br />

λ,<br />

L s = λ L m (2.8)<br />

Consequentemente, temos para as áreas,<br />

A s = λ 2 A m (2.9)<br />

e para os volumes,<br />

∇ s = λ 3 ∇ m (2.10)


2.2. LEIS DA SEMELHANÇA 15<br />

2.2.2 Semelhança cinemática<br />

A semelhança cinemática significa a existência <strong>de</strong> uma razão constante entre o “tempo” na<br />

escala real, t s e o “tempo” na escala do mo<strong>de</strong>lo t m , a escala cinemática τ:<br />

t s = τ · t m (2.11)<br />

A verificação simultânea das condições <strong>de</strong> semelhança geométrica e cinemática resulta nos<br />

seguintes factores <strong>de</strong> escala:<br />

- para a velocida<strong>de</strong>:<br />

V s = λ τ V m (2.12)<br />

- e para a aceleração:<br />

a s = λ τ 2 a m (2.13)<br />

2.2.3 Semelhança dinâmica<br />

Obter semelhança dinâmica significa que a razão entre cada uma das forças actuantes no navio<br />

à escala real e as correspon<strong>de</strong>ntes forças actuantes no mo<strong>de</strong>lo é constante, escala dinâmica do<br />

mo<strong>de</strong>lo κ,<br />

F s = κ · F m (2.14)<br />

As forças presentes, actuantes sobre o navio e sobre o mo<strong>de</strong>lo, po<strong>de</strong>m ser classificadas <strong>de</strong><br />

acordo com a sua natureza como:<br />

- as forças <strong>de</strong> inércia;<br />

- as forças gravíticas;<br />

- as forças <strong>de</strong> atrito.<br />

Forças <strong>de</strong> inércia<br />

As forças <strong>de</strong> inércia regem-se pela lei <strong>de</strong> Newton, expressa por<br />

F = m · a (2.15)<br />

em que F é a força <strong>de</strong> inércia, m a massa do corpo, e a a aceleração a que ele é sujeito.<br />

Consi<strong>de</strong>rando o volume <strong>de</strong>slocado pelo navio ∇, a massa do navio é<br />

m = ρ · ∇ (2.16)<br />

sendo ρ a massa volúmica da água.<br />

Então, a razão entre as forças <strong>de</strong> inércia é uma equação que incorpora os três factores <strong>de</strong><br />

escala, lei da Semelhança <strong>de</strong> Newton, é dada por<br />

κ = F s<br />

F m<br />

=<br />

que po<strong>de</strong> ser re-escrita como<br />

ρ s · ∇ s · a s<br />

ρ m · ∇ m · a m<br />

= ρ s<br />

ρ m<br />

· λ4<br />

τ 2 (2.17)<br />

κ = F s<br />

F m<br />

= ρ s<br />

ρ m<br />

· λ 2 ·<br />

( λ<br />

τ<br />

) 2<br />

= ρ s<br />

ρ m<br />

· As<br />

A m<br />

·<br />

(<br />

Vs<br />

V m<br />

) 2<br />

(2.18)


16<br />

CAPÍTULO 2. RESISTÊNCIA<br />

Forças <strong>de</strong> origem hidrodinâmica<br />

As forças <strong>de</strong> origem hidrodinâmica são normalmente <strong>de</strong>scritas recorrendo a um coeficiente<br />

adimensional c na seguinte forma, semelhante à Eq. (2.3),<br />

F = c · 1<br />

2 ρ · V 2 · A (2.19)<br />

em que V é uma velocida<strong>de</strong> <strong>de</strong> referência, por exemplo a velocida<strong>de</strong> do navio e A uma área <strong>de</strong><br />

referência como, por exemplo, a área das obras vivas com mar calmo. Aplicando a Eq. (2.19)<br />

ao navio e ao mo<strong>de</strong>lo e combinando as duas equações, obtem-se<br />

F s<br />

= c s · ρ s · Vs 2 · A s<br />

F m c m · ρ m · Vm 2 = c ( )<br />

s ρ 2<br />

s<br />

· As Vs<br />

·<br />

(2.20)<br />

· A m c m ρ m A m V m<br />

Daqui resulta que igualando o valor dos coeficientes no navio e no mo<strong>de</strong>lo, c s = c m , fica<br />

garantida a verificação da lei da semelhança <strong>de</strong> Newton.<br />

Forças Gravíticas<br />

As forças gravíticas po<strong>de</strong>m ser <strong>de</strong>scritas <strong>de</strong> forma semelhante às forças <strong>de</strong> inércia, para o<br />

navio<br />

G s = ρ s · g · ∇ s (2.21)<br />

e para o mo<strong>de</strong>lo<br />

G s = ρ s · g · ∇ s G m = ρ m · g · ∇ m (2.22)<br />

daqui resultando uma nova escala,<br />

κ g = G s<br />

G m<br />

= ρ s<br />

ρ m<br />

· ∇s<br />

∇ m<br />

= ρ s<br />

ρ m<br />

· λ 3 (2.23)<br />

Para que se possa verificar a semelhança dinâmica, os factores <strong>de</strong> escala <strong>de</strong>vem apresentar<br />

o mesmo valor, ou seja, κ = κ g . Se<br />

e<br />

κ = ρ s<br />

· λ4<br />

ρ m τ 2<br />

κ g = ρ s<br />

ρ m<br />

· λ 3<br />

então, para que κ = κ g é necessário verificar-se<br />

τ = √ λ (2.24)<br />

Esta nova relação permite eliminar a escala temporal em todas as relações apresentadas,<br />

ficando a proporcionalida<strong>de</strong> apenas <strong>de</strong>pen<strong>de</strong>nte <strong>de</strong> λ como, por exemplo, na Eq. (2.12), fazendo<br />

V s<br />

V m<br />

= √ λ (2.25)


2.2. LEIS DA SEMELHANÇA 17<br />

Número <strong>de</strong> Frou<strong>de</strong><br />

A Eq. (2.25) po<strong>de</strong> ainda assumir a forma <strong>de</strong> uma relação entre a dimensão linear e a<br />

velocida<strong>de</strong> do mo<strong>de</strong>lo e do navio,<br />

V s<br />

√<br />

Ls<br />

=<br />

V m<br />

√<br />

Lm<br />

(2.26)<br />

Adimensionalisando a razão entre a velocida<strong>de</strong> V e a raiz quadrada do comprimento L<br />

com a aceleração da gravida<strong>de</strong>, g = 9.81 m/s 2 , obtemos o número <strong>de</strong> Frou<strong>de</strong><br />

F r =<br />

V √ g · L<br />

(2.27)<br />

Na ausência <strong>de</strong> forças viscosas, igual número <strong>de</strong> Frou<strong>de</strong> assegura semelhança dinâmica.<br />

Para igual número <strong>de</strong> Frou<strong>de</strong>, as ondulações no mo<strong>de</strong>lo e à escala real, <strong>de</strong>s<strong>de</strong> que <strong>de</strong> pequena<br />

amplitu<strong>de</strong>, po<strong>de</strong>m consi<strong>de</strong>rar-se geometricamente semelhantes.<br />

A lei <strong>de</strong> Frou<strong>de</strong> é verificada em todos os ensaios <strong>de</strong> mo<strong>de</strong>los <strong>de</strong> navios, ensaios <strong>de</strong> resistência,<br />

propulsão, comportamento no mar e manobrabilida<strong>de</strong>. A aplicação da lei <strong>de</strong> Frou<strong>de</strong><br />

impõe os seguintes factores <strong>de</strong> escala para a velocida<strong>de</strong>,<br />

força,<br />

e potência,<br />

V s<br />

V m<br />

= √ λ (2.28)<br />

F s<br />

F m<br />

= ρ s<br />

ρ m<br />

· λ 3 (2.29)<br />

P s<br />

P m<br />

= F s · V s<br />

F m · V m<br />

= ρ s<br />

ρ m<br />

· λ 3.5 (2.30)<br />

Forças <strong>de</strong> atrito<br />

As forças viscosas R, com origem no atrito entre camadas <strong>de</strong> fluido, são mo<strong>de</strong>ladas por<br />

R = µ · ∂u<br />

∂n · A (2.31)<br />

em que µ é a viscosida<strong>de</strong> dinâmica do fluido, A a área sujeita ao atrito e ∂u o gradiente <strong>de</strong><br />

∂n<br />

velocida<strong>de</strong>, avaliado na direcção normal ao escoamento.<br />

A razão das forças <strong>de</strong> atrito no navio e no mo<strong>de</strong>lo é dada por<br />

κ f = R s<br />

R m<br />

=<br />

µ s · ∂u s<br />

∂n s<br />

· A s<br />

µ m · ∂u = µ s λ 2<br />

m µ<br />

· A m τ<br />

m<br />

∂n m<br />

(2.32)<br />

Na presença das forças <strong>de</strong> atrito, para verificar a condição <strong>de</strong> semelhança dinâmica, será<br />

necessário que κ f = κ, ou seja:<br />

µ s<br />

µ m<br />

λ 2<br />

τ = ρ s<br />

ρ m<br />

λ 4<br />

τ 2 (2.33)


18<br />

CAPÍTULO 2. RESISTÊNCIA<br />

Se introduzirmos a viscosida<strong>de</strong> cinemática, como ν = µ/ρ, obtém-se:<br />

ou seja,<br />

ν s<br />

ν m<br />

= λ2<br />

τ = V s · L s<br />

V m · L m<br />

V s · L s<br />

ν s<br />

= V m · L m<br />

ν m<br />

(2.34)<br />

Número <strong>de</strong> Reynolds<br />

Então, <strong>de</strong> acordo com a Eq. (2.34), se apenas estiverem presentes forças <strong>de</strong> inércia e <strong>de</strong><br />

atrito, a igualda<strong>de</strong> do número <strong>de</strong> Reynolds,<br />

Re = V · L<br />

ν<br />

(2.35)<br />

assegura semelhança dinâmica entre o mo<strong>de</strong>lo e o navio.<br />

Para o cálculo do número <strong>de</strong> Reynolds, a viscosida<strong>de</strong> cinemática da água do mar (m 2 /s)<br />

po<strong>de</strong> ser estimada, em função da temperatura θ ( ◦ C) e da salinida<strong>de</strong> s (%), por<br />

ν = (0.014 · s + (0.000645 · θ − 0.0503) · θ + 1.75) · 10 −6 (2.36)<br />

Semelhança dinâmica<br />

O número <strong>de</strong> Frou<strong>de</strong> e o número <strong>de</strong> Reynolds estão relacionados por,<br />

Re<br />

F r = V · L √ √<br />

gL gL 3<br />

=<br />

ν V ν<br />

(2.37)<br />

A semelhança <strong>de</strong> Frou<strong>de</strong> é facilmente obtida para testes em mo<strong>de</strong>los porque para mo<strong>de</strong>los<br />

mais pequenos a velocida<strong>de</strong> <strong>de</strong> teste diminui. A semelhança <strong>de</strong> Reynolds é mais difícil <strong>de</strong><br />

obter pois mo<strong>de</strong>los mais pequenos exigem superior velocida<strong>de</strong> <strong>de</strong> teste para igual viscosida<strong>de</strong><br />

cinemática.<br />

os navios <strong>de</strong> superfície estão sujeitos a forças gravíticas e <strong>de</strong> atrito. Assim, nos testes <strong>de</strong><br />

mo<strong>de</strong>los à escala reduzida ambas as leis, <strong>de</strong> Frou<strong>de</strong> e <strong>de</strong> Reynolds, <strong>de</strong>veriam ser satisfeitas;<br />

Re s<br />

Re m<br />

= ν m<br />

ν s<br />

·<br />

√<br />

L 3 s<br />

L 3 m<br />

= ν m<br />

ν s<br />

· λ 1.5 = 1 (2.38)<br />

No entanto, não existem, ou pelo menos não são economicamente viáveis, fluidos que permitam<br />

satisfazer esta condição. Para diminuir os erros <strong>de</strong> extrapolação dos efeitos viscosos, a água em<br />

que são realizados os testes po<strong>de</strong> ser aquecida para aumentar a diferença entre as viscosida<strong>de</strong>s.<br />

2.3 Decomposição da resistência<br />

A resistência do navio tem origem complexa e, para facilida<strong>de</strong> <strong>de</strong> análise, é tradicionalmente<br />

<strong>de</strong>composta em vários termos. No entanto, não existe uniformida<strong>de</strong> nos diversos textos quanto<br />

à forma como realizar aquela <strong>de</strong>composição. Uma das abordagens a este assunto consiste<br />

em consi<strong>de</strong>rar as <strong>de</strong>composições constantes na Fig. 2.1. De acordo com a figura, po<strong>de</strong>mos<br />

consi<strong>de</strong>rar a seguinte <strong>de</strong>composição da resistência total:


2.3.<br />

DECOMPOSIÇÃO DA RESISTÊNCIA 19<br />

- a resistência <strong>de</strong> onda;<br />

- a resistência <strong>de</strong> atrito;<br />

- a resistência viscosa <strong>de</strong> pressão.<br />

Figura 2.1: Decomposição da resistência.<br />

Para além dos termos relativos a uma querena simples em águas tranquilas, outras componentes<br />

adicionais da resistência <strong>de</strong>verão ser consi<strong>de</strong>radas:<br />

- a resistência aerodinâmica, resistência ao avanço no ar da parte emersa do casco e<br />

superestruturas do navio;<br />

- a resistência adicional em mar ondoso, resistência resultante da acção <strong>de</strong> ondas inci<strong>de</strong>ntes<br />

sobre a estrutura do navio;<br />

- a resistência adicional <strong>de</strong>vida aos apêndices da querena.<br />

2.3.1 Resistência <strong>de</strong> onda<br />

Quando o navio avança na superfície tranquila do mar é ro<strong>de</strong>ado e seguido por uma formação<br />

ondosa. Esta formação é quase imperceptível a baixa velocida<strong>de</strong>. No entanto, a partir <strong>de</strong><br />

uma dada velocida<strong>de</strong> torna-se claramente visível e, a partir daí, tem dimensão crescente<br />

com a velocida<strong>de</strong>. Para além da <strong>de</strong>pendência com a velocida<strong>de</strong>, a formação ondosa <strong>de</strong>pen<strong>de</strong><br />

também da forma da querena.


20<br />

CAPÍTULO 2. RESISTÊNCIA<br />

Nos estudos <strong>de</strong> resistência <strong>de</strong> onda não se po<strong>de</strong> afirmar que uma dada velocida<strong>de</strong> é elevada<br />

ou baixa sem conhecermos também a dimensão do navio. Assim, surge frequentemente a<br />

referência ao conceito <strong>de</strong> velocida<strong>de</strong> relativa, como razão entre a velocida<strong>de</strong> do navio e um<br />

parâmetro representativo da dimensão do navio,<br />

v rel = V √<br />

L<br />

(2.39)<br />

com V em nós e L em pés, em substituição do adimensional número <strong>de</strong> Frou<strong>de</strong>.<br />

Numa perspectiva do estudo hidrodinâmico do escoamanto, o navio po<strong>de</strong> ser consi<strong>de</strong>rado<br />

como um campo <strong>de</strong> pressão em movimento. Kelvin resolveu analiticamente o caso simplificado<br />

do sistema <strong>de</strong> ondas criado pelo movimento <strong>de</strong> um ponto <strong>de</strong> pressão. Demonstrou que o padrão<br />

da formação ondosa inclui um sistemas <strong>de</strong> ondas divergentes e um outro sistema cujas cristas<br />

das ondas se apresentam normais à direcção do movimento, como representado na Fig. 2.2.<br />

Ambos os sistemas <strong>de</strong> ondas viajam à velocida<strong>de</strong> do ponto <strong>de</strong> pressão.<br />

Figura 2.2: Sistema <strong>de</strong> ondas gerado por um ponto <strong>de</strong> pressão em movimento.<br />

O sistema <strong>de</strong> ondas associado ao movimento <strong>de</strong> um navio é bastante mais complicado.<br />

No entanto, como primeira aproximação, o navio po<strong>de</strong> ser consi<strong>de</strong>rado com um campo <strong>de</strong><br />

pressão em movimento composto por uma sobrepressão consi<strong>de</strong>rada pontual na proa e uma<br />

<strong>de</strong>pressão, também pontual, na popa. Assim, num navio que se <strong>de</strong>sloque a uma velocida<strong>de</strong><br />

relativa elevada, a formação ondosa provocada é constituída por dois sistemas principais <strong>de</strong><br />

ondas, Fig. 2.3:<br />

- o sistema da proa;<br />

- o sistema da popa.<br />

Cada um dos sistemas <strong>de</strong> ondas formados, com origem na proa e na popa do navio, é<br />

constituído por dois tipos <strong>de</strong> ondas:<br />

- as ondas transversais;<br />

- as ondas divergentes.<br />

Geralmente, os dois sistemas <strong>de</strong> ondas divergentes são <strong>de</strong>tectáveis apesar <strong>de</strong> o sistema da<br />

popa ser muito mais fraco. Não é normalmente possível isolar o sistema transversal da popa,<br />

sendo apenas visível a ré do navio a composição dos dois sistemas, transversal e divergente.


2.3.<br />

DECOMPOSIÇÃO DA RESISTÊNCIA 21<br />

Figura 2.3: Sistemas <strong>de</strong> ondas da proa e da popa.<br />

A proa produz um sistema <strong>de</strong> ondas semelhante ao <strong>de</strong>scrito por Kelvin para um ponto <strong>de</strong><br />

pressão em movimento e, pelo contrário, na popa forma-se um sistema <strong>de</strong> ondas semelhante,<br />

mas com uma <strong>de</strong>pressão localizada na popa. Conforme representado na Fig. 2.3, se a linha<br />

que une os pontos <strong>de</strong> maior elevação das cristas das ondas divergentes fizer com a direcção<br />

longitudinal do navio um ângulo α, então a direcção <strong>de</strong>stas fará um ângulo 2α com a mesma<br />

direcção.<br />

O comprimento <strong>de</strong> onda <strong>de</strong> ambos os sistemas transversais é igual e dado por:<br />

λ = 2πV 2<br />

g<br />

(2.40)<br />

Existe uma interacção entre as formações ondosa transversais dos sistemas <strong>de</strong> ondas da<br />

proa e da popa. Se os sistemas estiverem “em fase”, <strong>de</strong> tal forma que as cristas das ondas<br />

coincidam, o sistema resultante terá maior altura e, consequentemente, maior energia. Se,<br />

pelo contrário, a cava <strong>de</strong> um dos sistemas <strong>de</strong> ondas ficar sobreposta com uma crista do outro<br />

sistema, a energia consumida para gerar o sistema <strong>de</strong> ondas será reduzida. A velocida<strong>de</strong> V<br />

e o comprimento do navio L são muito importantes para a <strong>de</strong>terminação da energia total do<br />

sistema <strong>de</strong> ondas gerado e, consequentemente, para a resistência <strong>de</strong> onda do navio.<br />

Continuando a assumir o mo<strong>de</strong>lo físico que aproxima o movimento do navio por um<br />

campo <strong>de</strong> pressão em movimento, a distância entre os dois pontos <strong>de</strong> pressão, proa e popa,<br />

é aproximada por 0, 9 L. Sabendo que uma onda gravítica com comprimento <strong>de</strong> onda λ se<br />

<strong>de</strong>sloca em águas profundas à velocida<strong>de</strong><br />

C =<br />

√<br />

λg<br />

2π<br />

(2.41)<br />

para que haja coincidência <strong>de</strong> uma crista ou cava do sistema da proa com a primeira cava<br />

gerada na popa, <strong>de</strong>verá verificar-se<br />

V 2<br />

0, 9L = g<br />

Nπ<br />

(2.42)<br />

Tomando em consi<strong>de</strong>ração a Fig. 2.4, verifica-se que as cavas vão coincidir para N =<br />

1, 3, 5, ... enquanto que para N par as cristas do sistema da proa coinci<strong>de</strong>m com as cavas do<br />

sistema da popa. Se não existisse esta interacção entre os dois sistemas <strong>de</strong> ondas a resistência<br />

<strong>de</strong> onda apresentaria uma evolução “bem comportada” crescente com a velocida<strong>de</strong> do navio,


22<br />

CAPÍTULO 2. RESISTÊNCIA<br />

Figura 2.4: Interacção entre os dois sistemas <strong>de</strong> ondas.<br />

conforme representado pela linha tracejada da Fig. 2.5. Na realida<strong>de</strong>, a partir <strong>de</strong> uma dada<br />

velocida<strong>de</strong> a partir da qual esta interacção se torna significativa, verifica-se a existência <strong>de</strong><br />

elevações e <strong>de</strong>pressões na curva correspon<strong>de</strong>ndo aos casos extremos <strong>de</strong> interacção entre os<br />

sistemas <strong>de</strong> ondas. É <strong>de</strong> esperar que a maior elevação se verifique para N = 1 porque a<br />

velocida<strong>de</strong> é mais elevada para esta condição.<br />

Como a curva <strong>de</strong> resistência <strong>de</strong> onda exibe estes máximos e mínimos locais, o navio <strong>de</strong>ve<br />

ser projectado para operar num mínimo local da curva <strong>de</strong> resistência <strong>de</strong> onda, a velocida<strong>de</strong><br />

económica.<br />

Quando o comprimento <strong>de</strong> onda das ondas transversais é igual ao comprimento do navio,<br />

o número <strong>de</strong> Frou<strong>de</strong> é aproximadamente 0, 4. Até este valor do número <strong>de</strong> Frou<strong>de</strong>, as<br />

ondas transversais são as principais responsáveis pelas elevações e <strong>de</strong>pressões na curva da<br />

resistência <strong>de</strong> onda. Se o número <strong>de</strong> Frou<strong>de</strong> aumentar, aumentará também a resistência <strong>de</strong><br />

onda sobretudo à custa da influência das ondas divergentes. O máximo da resistência <strong>de</strong><br />

onda verifica-se para F r ≈ 0, 5. A velocida<strong>de</strong> correspon<strong>de</strong>nte <strong>de</strong>signa-se por “velocida<strong>de</strong> da<br />

querena”. Acima da “velocida<strong>de</strong> da querena” a resistência <strong>de</strong> onda do navio <strong>de</strong>cresce. Navios<br />

rápidos que operem acima da velocida<strong>de</strong> <strong>de</strong> querena <strong>de</strong>verão naturalmente dispor <strong>de</strong> potência<br />

instalada suficiente para vencer aquele pico <strong>de</strong> resistência.<br />

Bolbo <strong>de</strong> proa<br />

A finalida<strong>de</strong> da instalação dos bolbos <strong>de</strong> proa é a redução da resistência <strong>de</strong> onda. O<br />

mecanismo <strong>de</strong> redução consiste na interferência dos sistemas <strong>de</strong> onda. O sistema <strong>de</strong> ondas<br />

gerado pela pressão elevada no bolbo interfere com o sistema <strong>de</strong> ondas da proa, reduzindo a<br />

sua amplitu<strong>de</strong>. A interferência favorável ocorre quando a cava do sistema transversal <strong>de</strong> ondas


2.3.<br />

DECOMPOSIÇÃO DA RESISTÊNCIA 23<br />

Figura 2.5: Curva da resistência <strong>de</strong> onda.<br />

do bolbo surgir na crista do sistema <strong>de</strong> ondas da proa do navio. Esta situação <strong>de</strong> interferência<br />

favorável sendo optimizada para uma dada velocida<strong>de</strong>, po<strong>de</strong> no entanto ser consi<strong>de</strong>rada como<br />

tendo efeito favorável num <strong>de</strong>terminado intervalo <strong>de</strong> velocida<strong>de</strong>s.<br />

Efeito da profundida<strong>de</strong> restrita<br />

Os efeitos da profundida<strong>de</strong> finita começam a fazer-se sentir quando a profundida<strong>de</strong> h é<br />

menor que meta<strong>de</strong> do comprimento <strong>de</strong> onda da formação ondosa gerada pelo movimento do<br />

navio, h < λ/2. Doutra forma, po<strong>de</strong>mos consi<strong>de</strong>rar profundida<strong>de</strong> infinita sempre que,<br />

h > λ 2<br />

(2.43)<br />

No caso <strong>de</strong> profundida<strong>de</strong>s muito pequenas, h < 0, 05λ ∞ , a velocida<strong>de</strong> <strong>de</strong> propagação <strong>de</strong>ixa<br />

<strong>de</strong> <strong>de</strong>pen<strong>de</strong>r do comprimento <strong>de</strong> onda, Eq. (2.41) e passa a <strong>de</strong>pen<strong>de</strong>r apenas da profundida<strong>de</strong><br />

C = √ gh (2.44)<br />

Neste caso, a velocida<strong>de</strong> <strong>de</strong> grupo é igual à velocida<strong>de</strong> <strong>de</strong> propagação, a velocida<strong>de</strong> crítica:<br />

C g = C = √ gh (2.45)<br />

Para caracterizar o efeito da profundida<strong>de</strong> é usado o número <strong>de</strong> Frou<strong>de</strong> baseado na profundida<strong>de</strong><br />

h:


24<br />

CAPÍTULO 2. RESISTÊNCIA<br />

- se V/ √ gh < 0, 4, o padrão <strong>de</strong> ondas é semelhante ao caso <strong>de</strong> profundida<strong>de</strong> infinita;<br />

- se V/ √ gh se aproximar <strong>de</strong> 1, o ângulo da envolvente aproxima-se <strong>de</strong> 90 ◦ ;<br />

- se V/ √ gh > 1, sin α = √ gh/V .<br />

2.3.2 Resistência <strong>de</strong> atrito<br />

A resistência <strong>de</strong> atrito do navio resulta do escoamento em torno da querena com número <strong>de</strong><br />

Reynolds elevado. Quando um corpo se move num fluido em repouso, uma fina camada <strong>de</strong><br />

fluido a<strong>de</strong>re ao corpo em movimento, ou seja, tem velocida<strong>de</strong> nula relativamente ao corpo.<br />

A variação <strong>de</strong> velocida<strong>de</strong> é elevada nas proximida<strong>de</strong>s da superfície do corpo e diminui com<br />

o aumento da distância ao mesmo. É prática habitual convencionar-se para a <strong>de</strong>finição da<br />

espessura da camada limite, a distância a partir da superfície do corpo até que a velocida<strong>de</strong><br />

do fluido seja 1% da velocida<strong>de</strong> do corpo.<br />

Desenvolve-se assim da proa para a popa do navio uma camada limite tridimensional. Esta<br />

camada limite inicia-se em escoamento laminar e sofre transição para o regime turbulento.<br />

Normalmente, esta transição ocorre junto à proa do navio. Esta transição é controlada pelo<br />

número <strong>de</strong> Reynolds do escoamento. Consi<strong>de</strong>rando o caso da placa lisa plana, a transição<br />

ocorre para valores entre Re = 3×10 5 e Re = 10 6 . Em regime turbulento os efeitos dissipativos<br />

<strong>de</strong> energia vão além do atrito molecular. Com crescente número <strong>de</strong> Reynolds, verificam-se<br />

intensas trocas <strong>de</strong> quantida<strong>de</strong> <strong>de</strong> movimento em camadas adjacentes do fluido, ou seja, maior<br />

transporte <strong>de</strong> energia.<br />

No caso <strong>de</strong> uma placa plana, a espessura da camada limite turbulenta po<strong>de</strong> ser aproximada<br />

por:<br />

δx<br />

L = 0, 37 (Re L) −1/5 (2.46)<br />

Num navio, o gradiente lontitudinal <strong>de</strong> pressão na região da proa é, em geral, favorável<br />

ao escoamento. Pelo contrário, este gradiente é adverso na região da popa e a camada limite<br />

aumenta significativamente <strong>de</strong> espessura <strong>de</strong>ixando <strong>de</strong> po<strong>de</strong>r ser consi<strong>de</strong>rada pequena quando<br />

comparada com o comprimento ou a boca do navio. Para todos os efeitos práticos, a camada<br />

limite <strong>de</strong> um navio po<strong>de</strong> ser consi<strong>de</strong>rada completamente turbulenta.<br />

A <strong>de</strong>pendência da resistência <strong>de</strong> atrito com o número <strong>de</strong> Reynolds e com a rugosida<strong>de</strong> da<br />

superfície é indicada pelo gráfico da Fig. 2.6. Para uma superfície rugosa, a resistência segue<br />

a linha da superfície lisa até que, para um dado valor <strong>de</strong> Re, se separa e tem a partir daí<br />

um andamento quase horizontal, ou seja, o coeficiente torna-se in<strong>de</strong>pen<strong>de</strong>nte do Re. Quanto<br />

mais rugosa for a superfície mais cedo se evi<strong>de</strong>ncia este comportamento.<br />

A resistência <strong>de</strong> atrito <strong>de</strong> um navio é habitualmente dividida em duas componentes:<br />

- a resistência a que ficaria sujeita uma placa plana com área equivalente;<br />

- o aumento <strong>de</strong> resistência originado pela forma do navio.<br />

A resistência <strong>de</strong> atrito foi estimada durante décadas por expressões empíricas como, por<br />

exemplo, a fórmula <strong>de</strong> Frou<strong>de</strong>:<br />

R F = 1 − 0, 0043 (θ − 15) fSV 1,825 (2.47)


2.3.<br />

DECOMPOSIÇÃO DA RESISTÊNCIA 25<br />

Figura 2.6: Variação do coeficiente da resistência <strong>de</strong> atrito com o número<br />

<strong>de</strong> Reynolds e com a rugosida<strong>de</strong> da superfície.<br />

em que θ é a temperatura do fluido, expressa em ◦ C e<br />

f = 0, 1392 +<br />

0, 258<br />

2, 68 + L<br />

(2.48)<br />

Outra fórmula empírica muito popular para a previsão do coeficiente da resistência <strong>de</strong> atrito é<br />

<strong>de</strong>vida a Schoenherr e conhecida como fórmula da ATTC (American Towing Tank Conference)<br />

0, 242<br />

√<br />

cF<br />

= log (Re · c F ) (2.49)<br />

Esta correlação prevê coeficientes <strong>de</strong> atrito excessivos quando aplicada a mo<strong>de</strong>los muito<br />

pequenos. Para ultrapassar este problema foi proposta na ITTC (International Towing Tank<br />

Conference) <strong>de</strong> 1957 uma nova fórmula,<br />

c F =<br />

0, 075<br />

(logRe − 2) 2 (2.50)<br />

<strong>de</strong>signada por linha <strong>de</strong> correlação mo<strong>de</strong>lo-navio da ITTC 1957.<br />

2.3.3 Resistência viscosa <strong>de</strong> pressão<br />

A componente da pressão originada pelas ondas formadas pelo movimento do navio já foi<br />

consi<strong>de</strong>rada. Resta agora consi<strong>de</strong>rar a resistência originada por diferenças <strong>de</strong> pressão a actuar<br />

no casco <strong>de</strong>vida a efeitos viscosos do escoamento. Num escoamento i<strong>de</strong>al, ver Fig. 2.7, a<br />

pressão exercida na popa do navio seria igual à exercida na proa, ou seja força resultante<br />

nula. Na prática, os efeitos viscosos vão reduzir a pressão exercida na popa do navio.<br />

Parte <strong>de</strong>sta resistência será <strong>de</strong>vida à geração <strong>de</strong> vórtices nas <strong>de</strong>scontinuida<strong>de</strong>s do casco.<br />

Outra parte será <strong>de</strong>vida a um aumento <strong>de</strong> espessura da camada limite nalguns casos potenciada<br />

por fenómenos <strong>de</strong> separação do escoamento. Estes aspectos são fundamentalmente<br />

condicionados pela forma do casco pelo que são normalmente consi<strong>de</strong>rados como uma “resistência<br />

<strong>de</strong> forma”.


26<br />

CAPÍTULO 2. RESISTÊNCIA<br />

Figura 2.7: Distribuição <strong>de</strong> pressão num escoamento i<strong>de</strong>al, invíscido.<br />

2.4 Ensaios <strong>de</strong> resistência em tanques <strong>de</strong> reboque<br />

Apesar da crescente importância dos métodos numéricos, os ensaios com mo<strong>de</strong>los à escala<br />

reduzida <strong>de</strong> navios em tanques <strong>de</strong> reboque são ainda essenciais para a avaliação hidrodinâmica<br />

dos novos projectos e para a validação <strong>de</strong> novas soluções.<br />

Os testes <strong>de</strong>vem ser realizados em condições que permitam consi<strong>de</strong>rar que o mo<strong>de</strong>lo e o<br />

navio têm comportamentos semelhantes por forma a que os resultados obtidos para o mo<strong>de</strong>lo<br />

possam ser extrapolados para a escala real do navio. Com este objectivo, os ensaios realizamse<br />

respeitando a igualda<strong>de</strong> do número <strong>de</strong> Frou<strong>de</strong>.<br />

Os testes são realizados em tanques <strong>de</strong> reboque, com água imóvel e o mo<strong>de</strong>lo rebocado por<br />

um “carrinho” ou, em alternativa, os testes po<strong>de</strong>m ser realizados em “tanques <strong>de</strong> circulação”,<br />

em que o mo<strong>de</strong>lo está imóvel e a água circula.<br />

No primeiro caso, após um percurso inicial <strong>de</strong> aceleração, a velocida<strong>de</strong> do “carrinho” <strong>de</strong>ve<br />

ser mantida constante para obter um regime estacionário e garantir o rigor das observações<br />

efectuadas. A fase final é <strong>de</strong> <strong>de</strong>saceleração e imobilização do mo<strong>de</strong>lo. Assim, os tanques <strong>de</strong><br />

reboque apresentam frequentemente centenas <strong>de</strong> metros <strong>de</strong> extensão.<br />

O comprimento do mo<strong>de</strong>lo, como o exemplo representado esquematicamente na Fig. 2.8,<br />

é escolhido <strong>de</strong> acordo com as condições experimentais no tanque <strong>de</strong> reboque. O mo<strong>de</strong>lo <strong>de</strong>ve<br />

ser tão gran<strong>de</strong> quanto possível por forma a minimizar efeitos <strong>de</strong> escala relativos aos aspectos<br />

viscosos, nomeadamente as diferenças relativas a escoamentos laminares e turbulentos e as<br />

questões relacionadas com fenómenos <strong>de</strong> separação do escoamento. Por outro lado, a dimensão<br />

do mo<strong>de</strong>lo <strong>de</strong>ve ainda permitir evitar <strong>de</strong>formações resultantes <strong>de</strong> esforços no mo<strong>de</strong>lo e no<br />

equipamento <strong>de</strong> teste.<br />

A dimensão do mo<strong>de</strong>lo <strong>de</strong>ve ser suficientemente pequena para permitir que o “carrinho”<br />

<strong>de</strong> reboque do mo<strong>de</strong>lo atinja a velocida<strong>de</strong> correspon<strong>de</strong>nte e evitar os efeitos <strong>de</strong> águas restritas<br />

nos testes efectuados. Estes constrangimentos conduzem naturalmente a um intervalo<br />

prático <strong>de</strong> comprimentos admissíveis. Os mo<strong>de</strong>los para ensaios <strong>de</strong> resistência e propulsão<br />

têm normalmente comprimentos entre 4 m < L m < 10 m. A escala dos mo<strong>de</strong>los está entre<br />

15 < λ < 45.


2.5.<br />

CÁLCULO DA RESISTÊNCIA 27<br />

Figura 2.8: Mo<strong>de</strong>lo à escala reduzida para ensaios <strong>de</strong> resistência.<br />

Durante o movimento, o mo<strong>de</strong>lo mantém o rumo através <strong>de</strong> fios-guia, sendo livre para<br />

adoptar o caimento que resultar do seu movimento. Ainda <strong>de</strong> acordo com a Fig. 2.8, a<br />

resistência total <strong>de</strong> reboque do mo<strong>de</strong>lo é dada por,<br />

R T = G 1 + sin αG 2 (2.51)<br />

Com os ensaios <strong>de</strong> resistência com o mo<strong>de</strong>lo à escala reduzida preten<strong>de</strong>-se obter dados<br />

que permitam estimar a resistência do navio sem o propulsor e apêndices, ou seja, dita da<br />

querena simples. Dos ensaios no tanque <strong>de</strong> reboque obtém-se a resistência nas condições do<br />

tanque, ou seja:<br />

- águas suficientemente profundas;<br />

- ausência <strong>de</strong> correntes;<br />

- ausência <strong>de</strong> vento;<br />

- água doce à temperatura ambiente.<br />

O número <strong>de</strong> Reynolds é normalmente superior duas or<strong>de</strong>ns <strong>de</strong> gran<strong>de</strong>za na escala do navio<br />

que na escala do mo<strong>de</strong>lo, tipicamente na or<strong>de</strong>m <strong>de</strong> 10 9 e 10 7 , respectivamente. O mo<strong>de</strong>lo tem<br />

frequentemente uma fita rugosa para estimular artificialmente a transição da camada limite<br />

laminar para turbulenta mais perto da proa do mo<strong>de</strong>lo. Globalmente, o <strong>de</strong>svio originado<br />

pelo facto <strong>de</strong> não se manter constante o número <strong>de</strong> Reynolds no ensaio é <strong>de</strong>pois compensado<br />

através <strong>de</strong> correcções empíricas.<br />

2.5 Cálculo da resistência<br />

2.5.1 Métodos <strong>de</strong> extrapolação<br />

A resistência do mo<strong>de</strong>lo tem <strong>de</strong>pois <strong>de</strong> ser convertida por forma a obter-se uma estimativa<br />

da resistência do navio na escala real. Para tal, estão disponíveis, entre outros, os seguintes<br />

métodos:


28<br />

CAPÍTULO 2. RESISTÊNCIA<br />

- o método ITTC 1957;<br />

- o método <strong>de</strong> Hughes/Prohaska;<br />

- o método ITTC 1978;<br />

- o método Geosim <strong>de</strong> Telfer.<br />

Actualmente, o método mais frequentemente utilizado na prática é o método ITTC 1978.<br />

Método ITTC 1957<br />

Para a aplicação <strong>de</strong>ste método, a resistência total da querena, R T , é consi<strong>de</strong>rada <strong>de</strong>composta<br />

nos seguintes termos,<br />

R T = R F + R R (2.52)<br />

a resistência <strong>de</strong> atrito, R F , e a resistência residual, R R .<br />

Os coeficientes <strong>de</strong> resistência, adimensionais, são genericamente calculados por,<br />

c i =<br />

R i<br />

1<br />

2 ρV 2 S<br />

(2.53)<br />

Na aplicação <strong>de</strong>ste método <strong>de</strong> previsão é consi<strong>de</strong>rado igual para o mo<strong>de</strong>lo e para o navio<br />

o coeficiente <strong>de</strong> resistência residual,<br />

c R = c T m − c F m (2.54)<br />

<strong>de</strong>terminado a partir do coeficiente <strong>de</strong> resistência total do mo<strong>de</strong>lo,<br />

c T m =<br />

R T m<br />

1<br />

2 ρ (2.55)<br />

mVmS 2 m<br />

e da fórmula “ITTC 1957” (Eq. (2.50)) para o cálculo do coeficiente <strong>de</strong> resistência <strong>de</strong> atrito<br />

c F ,<br />

c F =<br />

0.075<br />

(log 10 Re − 2) 2<br />

O coeficiente <strong>de</strong> resistência total para o navio é então estimado por:<br />

c T s = c F s + c R + c A = c F s + (c T m − c F m ) + c A (2.56)<br />

em que c A é um factor <strong>de</strong> correcção tradicionalmente associado à rugosida<strong>de</strong> do casco. De<br />

facto, embora o mo<strong>de</strong>lo esteja construído a uma dada escala geométrica, a rugosida<strong>de</strong> das<br />

superfícies do mo<strong>de</strong>lo e do navio não respeitam esta escala. O valor <strong>de</strong> c A po<strong>de</strong> ser obtido<br />

por correlações empíricas como, por exemplo,<br />

c A = 0.35 × 10 −3 − 2 × L pp × 10 −6 (2.57)<br />

ou a partir <strong>de</strong> valores tabelados (Tab. 2.1).<br />

A previsão da resistência total do navio é dada por<br />

R T s = c T s · 1<br />

2 ρ sV 2<br />

s S s (2.58)


2.5.<br />

CÁLCULO DA RESISTÊNCIA 29<br />

L pp (m) c A<br />

50 - 150 0,0004-0,00035<br />

150 - 210 0,0002<br />

210 - 260 0,0001<br />

260 - 300 0<br />

300 - 350 -0,0001<br />

350 - 400 0,00025<br />

Tabela 2.1: Valores do coeficiente <strong>de</strong> correcção c A em função do comprimento<br />

do navio.<br />

Método <strong>de</strong> Hughes-Prohaska<br />

O método <strong>de</strong> Hughes-Prohaska é normalmente classificado como um método <strong>de</strong> factor <strong>de</strong><br />

forma. É consi<strong>de</strong>rada a <strong>de</strong>composição da resistência total em duas componentes, uma associada<br />

à resistência <strong>de</strong> onda e outra <strong>de</strong>pen<strong>de</strong>nte da forma do casco. Consi<strong>de</strong>rando então os<br />

coeficientes adimensionais, fica<br />

c T = (1 + k) · c F 0 + c w (2.59)<br />

Para a <strong>de</strong>terminação do factor <strong>de</strong> forma, presume-se aqui a relação<br />

c T<br />

c F 0<br />

= (1 + k) + α F r4<br />

c F 0<br />

(2.60)<br />

que é particularmente válida para valores reduzidos <strong>de</strong> velocida<strong>de</strong>.<br />

Após vários ensaios a diferentes velocida<strong>de</strong>s, diferentes números <strong>de</strong> Frou<strong>de</strong>, é possível<br />

construir um gráfico semelhante ao representado na Fig. 2.9 e, com base naqueles valores,<br />

obter o valor <strong>de</strong> k por regressão linear.<br />

Figura 2.9: Representação gráfica da <strong>de</strong>pendência <strong>de</strong> c T<br />

c F 0<br />

com F r4<br />

c F 0<br />

.<br />

Este factor <strong>de</strong> forma, (1 + k),é assumido como in<strong>de</strong>pen<strong>de</strong>nte dos valores <strong>de</strong> F r e <strong>de</strong> Re e<br />

igual para o navio e mo<strong>de</strong>lo.<br />

O procedimento <strong>de</strong> cálculo do método <strong>de</strong> Hughes-Prohaska é o seguinte:


30<br />

CAPÍTULO 2. RESISTÊNCIA<br />

- <strong>de</strong>terminar o coeficiente <strong>de</strong> resistência total,<br />

c T m =<br />

R T m<br />

1<br />

2 ρ mV 2 mS m<br />

- <strong>de</strong>terminar o coeficiente <strong>de</strong> resistência <strong>de</strong> onda, o mesmo para o mo<strong>de</strong>lo e o navio,<br />

c w = c T m − c F 0m · (1 + k) (2.61)<br />

- <strong>de</strong>terminar o coeficiente <strong>de</strong> resistência total para o navio,<br />

c T s = c w + c F 0s · (1 + k) + c A (2.62)<br />

- <strong>de</strong>terminar a resistência total para o navio, novamente por<br />

R T s = c T s · 1<br />

2 ρ sV 2<br />

s S s<br />

O coeficiente da resistência <strong>de</strong> atrito, c F 0 , é neste caso obtido pela correlação <strong>de</strong> Hughes,<br />

c F 0 =<br />

0.067<br />

(log 10 Re − 2) 2 (2.63)<br />

Quanto ao coeficiente <strong>de</strong> correcção c A , a ITTC recomenda a aplicação universal <strong>de</strong><br />

c A = 0.0004 (2.64)<br />

na aplicação <strong>de</strong>ste método.<br />

Método ITTC 1978<br />

É uma modificação do método <strong>de</strong> Hughes-Prohaska, geralmente mais preciso que os anteriormente<br />

apresentados. Ao contrário dos métodos anteriormente <strong>de</strong>scritos, este método <strong>de</strong><br />

extrapolação dos resultados obtidos nos ensaios com mo<strong>de</strong>los à escala reduzida inclui o efeito<br />

da resistência do ar.<br />

A previsão do coeficiente <strong>de</strong> resistência total para o navio é, também aqui, <strong>de</strong>scrita em<br />

termos do factor <strong>de</strong> forma, ou seja,<br />

em que:<br />

c T s = (1 + k) c F s + c w + c A + c AA (2.65)<br />

- c w é o coeficiente <strong>de</strong> resistência <strong>de</strong> onda, igual para o navio e mo<strong>de</strong>lo;<br />

- c A é o coeficiente <strong>de</strong> correcção;<br />

- e c AA a resistência do ar, c AA = 0.001 · AT<br />

S .


2.5.<br />

CÁLCULO DA RESISTÊNCIA 31<br />

O coeficiente da resistência <strong>de</strong> atrito é <strong>de</strong>terminada <strong>de</strong> forma semelhante à preconizada<br />

para o método ITTC 57, Eq. (2.50).<br />

Para a <strong>de</strong>terminação da correcção <strong>de</strong>vida pela variação da rugosida<strong>de</strong> da querena, é aconselhada<br />

aqui a seguinte fórmula:<br />

c A · 10 3 = 105 3 √<br />

ks<br />

L oss<br />

− 0.64 (2.66)<br />

em que k s é a rugosida<strong>de</strong> do casco e L oss é o comprimento do navio no plano <strong>de</strong> flutuação.<br />

Para navios novos k s /L oss = 10 −6 e c A = 0.00041.<br />

Os <strong>de</strong>talhes sugeridos pela ITTC na aplicação <strong>de</strong>ste método estão indicados no Apêndice<br />

A.<br />

Método Geosim<br />

Este método foi proposto por Telfer em 1927. Dos métodos aqui enunciados, é consi<strong>de</strong>rado<br />

como o método <strong>de</strong> extrapolação com previsões mais precisas da resistência do navio. A<br />

gran<strong>de</strong> vantagem do método resulta <strong>de</strong> não recorrer a qualquer <strong>de</strong>composição, teoricamente<br />

questionável, da resistência total.<br />

São realizados vários ensaios com mo<strong>de</strong>los geometricamente semelhantes mas a diferentes<br />

escalas. Isto significa que os testes po<strong>de</strong>m ser realizados, para a mesma velocida<strong>de</strong> equivalente,<br />

com igual número <strong>de</strong> Frou<strong>de</strong> e diferente número <strong>de</strong> Reynolds. O coeficiente <strong>de</strong> resistência total,<br />

obtido naqueles ensaios, é representado em função <strong>de</strong> logRe −1/3 . Para cada um dos mo<strong>de</strong>los,<br />

obtém-se uma curva da resistência, em função do F r, que permite fazer a extrapolação para<br />

a escala do navio.<br />

Pela gran<strong>de</strong> quantida<strong>de</strong> <strong>de</strong> mo<strong>de</strong>los a construir e ensaios a realizar, trata-se <strong>de</strong> um método<br />

muito dispendioso, utilizado sobretudo apenas para fins <strong>de</strong> investigação.<br />

2.5.2 Resistências adicionais<br />

As condições <strong>de</strong> ensaio dos mo<strong>de</strong>los são substancialmente diferentes daquelas em que o navio<br />

irá operar. As principais diferenças a consi<strong>de</strong>rar resultam <strong>de</strong>:<br />

- a presença <strong>de</strong> apêndices na querena;<br />

- a navegação em águas pouco profundas;<br />

- o vento;<br />

- a crescente rugosida<strong>de</strong> do casco durante a vida do navio;<br />

- as condições <strong>de</strong> mar.<br />

Para estimar as alterações causadas por estes itens no comportamento do navio, usam-se<br />

correcções empíricas, baseadas em pressupostos físicos, para correlacionar os valores obtidos<br />

no mo<strong>de</strong>lo, ou no navio em provas <strong>de</strong> mar, com os estimados para as condições normais <strong>de</strong><br />

serviço do navio. A resistência adicional <strong>de</strong>vida a apêndices e a resistência do navio em águas<br />

pouco profundas são os tópicos sucintamente abordados nos parágrafos seguintes.


32<br />

CAPÍTULO 2. RESISTÊNCIA<br />

Resistência adicional dos apêndices<br />

Os mo<strong>de</strong>los <strong>de</strong> navios à escala reduzida po<strong>de</strong>m ser testados com apêndices à escala geométrica<br />

apropriada. No entanto, nem sempre nesta altura do projecto estes estão completamente<br />

<strong>de</strong>finidos. Por outro lado, o escoamento em torno dos apêndices é predominantemente governado<br />

pelas forças <strong>de</strong> origem viscosa. Seria então necessário, para obter resultados fiáveis,<br />

verificarem-se condições <strong>de</strong> semelhança <strong>de</strong> Reynolds, o que, como já referido, não é viável<br />

se, cumulativamente, preten<strong>de</strong>rmos manter a igualda<strong>de</strong> do número <strong>de</strong> Frou<strong>de</strong>. Consequentemente,<br />

a presença dos apêndices em condições <strong>de</strong> semelhança <strong>de</strong> Frou<strong>de</strong> tem pouca relevância.<br />

Em primeira análise, os apêndices do casco contribuem para um aumento da superfície<br />

molhada do navio. Por outro lado, da sua presença surgem também alterações no factor <strong>de</strong><br />

forma do casco. Para a <strong>de</strong>terminação da resistência <strong>de</strong> forma dos apêndices po<strong>de</strong> recorrer-se a<br />

dois ensaios, com e sem apêndices, a uma velocida<strong>de</strong> superior. Se admitirmos que a resistência<br />

<strong>de</strong> onda é igual nos dois casos, a diferença <strong>de</strong> resistência verificada, tendo <strong>de</strong>scontado a<br />

diferença <strong>de</strong> resistência <strong>de</strong> atrito resultante da variação da área molhada, dá-nos a resistência<br />

<strong>de</strong> forma dos apêndices.<br />

Os valores típicos <strong>de</strong> acréscimo <strong>de</strong> resistência originados pela presença <strong>de</strong> apêndices são<br />

os seguintes:<br />

- robaletes: 1 a 2%;<br />

- impulsores:<br />

- <strong>de</strong> proa: 0 a 1%;<br />

- transversais <strong>de</strong> popa: 1 a 6%;<br />

- aranhas <strong>de</strong> veios: 5 a 12% (“twin-screw” po<strong>de</strong> chegar a 20%);<br />

- leme: 1%.<br />

Resistência em águas pouco profundas<br />

Quando um navio navega em águas pouco profundas verifica-se um aumento, quer da resistência<br />

<strong>de</strong> atrito, quer da resistência <strong>de</strong> onda. Em particular, a resistência aumenta significativamente<br />

para valores próximos do número <strong>de</strong> Frou<strong>de</strong> crítico, baseado na profundida<strong>de</strong>,<br />

F nh = V/ √ gH = 1.<br />

O aumento da resistência do navio quando a navegar em águas pouco profundas foi estudado<br />

por Schlichting. A sua hipótese <strong>de</strong> trabalho foi a seguinte: a resistência <strong>de</strong> onda é a<br />

mesma se o comprimento <strong>de</strong> onda da ondulação transversal for igual.<br />

O gráfico da Fig. 2.10 permite prever a perda <strong>de</strong> velocida<strong>de</strong> do navio em águas pouco<br />

profundas. Correcções simples não são possíveis para águas muito pouco profundas já que os<br />

fenómenos envolvidos são complexos. Nestes casos, só testes em mo<strong>de</strong>los ou simulações por<br />

CFD po<strong>de</strong>rão contribuir para uma melhor previsão.<br />

2.6 Previsão da resistência com dados sistemáticos ou estatísticos<br />

Na fase preliminar do projecto <strong>de</strong> um navio po<strong>de</strong>m ser utilizados métodos aproximados para a<br />

previsão da resistência baseados em ensaios <strong>de</strong> séries sistemáticas <strong>de</strong> navios ou, pela regressão


2.6.<br />

PREVISÃO COM DADOS SISTEMÁTICOS OU ESTATÍSTICOS 33<br />

Figura 2.10: Redução <strong>de</strong> velocida<strong>de</strong> (%) em águas pouco profundas.<br />

estatística <strong>de</strong> dados experimentais relativos a mo<strong>de</strong>los e a navios à escala real.<br />

Séries sistemáticas são conjuntos <strong>de</strong> formas <strong>de</strong> querena em que se provocou a variação,<br />

sistemática, <strong>de</strong> um ou mais dos seus parâmetros <strong>de</strong> forma. As variações sistemáticas são<br />

feitas em torno <strong>de</strong> uma “forma mãe” (“parent form”). Os resultados dos ensaios <strong>de</strong> resistência<br />

dos mo<strong>de</strong>los que constituem a série permitem <strong>de</strong>terminar um coeficiente adimensional <strong>de</strong><br />

resistência para uma forma <strong>de</strong> querena contida ou interpolada na série.<br />

Taylor mediu, entre 1907 e 1914, 80 mo<strong>de</strong>los obtidos por variação sistemática <strong>de</strong>:<br />

- a razão entre o comprimento e a raiz cúbica do <strong>de</strong>slocamento (5 valores <strong>de</strong> L/∆ 1/3 );<br />

- a razão entre a boca e o calado (B/T = 2, 25; 3, 75);<br />

- o coeficiente prismático (8 valores <strong>de</strong> 0,48 a 0,86);<br />

a partir <strong>de</strong> uma “forma mãe”: o cruzador “Leviathan”.<br />

Estes dados foram posteriormente re-trabalhados por Gertler em 1954, disponibilizando<br />

diagramas <strong>de</strong> resistência residual.<br />

Outra série sistemática, com particular interesse para os navios mercantes, é a série 60,<br />

<strong>de</strong>vida aos trabalhos <strong>de</strong> Todd. Consta <strong>de</strong> 5 “formas mãe” com coeficientes <strong>de</strong> finura, 0,60,<br />

0,65, 0,70, 0,75 e 0,80. Para cada uma daquelas “formas mãe” existem variações <strong>de</strong> L/B,<br />

B/T , etc.<br />

Como exemplo <strong>de</strong> um método <strong>de</strong> previsão da resistência <strong>de</strong> navios envolvendo dados<br />

estatísticos po<strong>de</strong>-se indicar o método <strong>de</strong> Holtrop e Mennen. Este método po<strong>de</strong> ser aplicado<br />

para efectuar uma análise qualitativa do projecto <strong>de</strong> um navio no que diz respeito à sua<br />

resistência. O método baseia-se na regressão estatística <strong>de</strong> resultados <strong>de</strong> ensaios em mo<strong>de</strong>los<br />

e <strong>de</strong> resultados <strong>de</strong> provas <strong>de</strong> mar <strong>de</strong> navios. A base <strong>de</strong> dados é muito vasta cobrindo uma<br />

gama muito alargada <strong>de</strong> tipos <strong>de</strong> navios. No entanto, para formas muito específicas <strong>de</strong> navio,


34<br />

CAPÍTULO 2. RESISTÊNCIA<br />

a precisão das previsões po<strong>de</strong> reduzir-se pelo menor número <strong>de</strong> elementos daquele tipo na<br />

base.<br />

2.7 Ensaios à escala real<br />

Os resultados obtidos nas provas <strong>de</strong> mar <strong>de</strong> um navio são talvez o mais importante requisito<br />

para a aceitação <strong>de</strong>ste pelo armador. A especificação <strong>de</strong>talhada <strong>de</strong>stas provas <strong>de</strong>ve estar<br />

claramente contratualizada entre o armador e o estaleiro. Entre outros organismos, a ITTC<br />

recomenda alguns procedimentos para a realização <strong>de</strong>stas provas. As recomendações para as<br />

provas <strong>de</strong> velocida<strong>de</strong> e <strong>de</strong> potência estão incluídas no Apêndice B.<br />

Os problemas surgem normalmente em consequência <strong>de</strong> as provas se realizarem em condições<br />

diferentes, quer das que foram consi<strong>de</strong>radas como condições <strong>de</strong> projecto, quer daquelas<br />

que se verificaram nos ensaios com o mo<strong>de</strong>lo à escala reduzida.<br />

O contrato <strong>de</strong> construção <strong>de</strong>ve especificar uma velocida<strong>de</strong> contratual do navio, à carga <strong>de</strong><br />

projecto, para uma dada percentagem da MCR do motor, em águas tranquilas e profundas e<br />

na ausência <strong>de</strong> vento. São raras as ocasiões em que é possível realizar as provas <strong>de</strong> mar em<br />

condições próximas das condições contratuais. As condições em que se realizam as provas <strong>de</strong><br />

mar incluem, frequentemente:<br />

- condição <strong>de</strong> carga parcial ou em condição <strong>de</strong> lastro;<br />

- presença <strong>de</strong> correntes e ondulação;<br />

- águas pouco profundas;<br />

Para prevenir maior diversida<strong>de</strong> <strong>de</strong> resultados, é habitual <strong>de</strong>finir contratualmente valores<br />

limite para as condições ambientais em que as provas <strong>de</strong> mar se realizarão. As condições<br />

recomendadas pela ITTC para a realização das provas <strong>de</strong> velocida<strong>de</strong> e potência estão no<br />

Apêndice C. As diferenças entre as condições contratuais e verificadas durante a realização<br />

das provas <strong>de</strong> mar impõem a utilização <strong>de</strong> correlações para corrigir os resultados obtidos para<br />

as condições <strong>de</strong> contrato. Para além <strong>de</strong> todas as incertezas experimentais, todo este processo<br />

<strong>de</strong> correcção, com recurso a gráficos e tabelas, oferece muitas dúvidas <strong>de</strong> aplicação.<br />

A “prova da milha” po<strong>de</strong> ser avaliada com velocida<strong>de</strong> “over ground” ou velocida<strong>de</strong> “in<br />

water”. A velocida<strong>de</strong> na água exclui o efeito das correntes. A velocida<strong>de</strong> “over ground”<br />

era avaliada através <strong>de</strong> equipamentos <strong>de</strong> navegação mas, a disponibilida<strong>de</strong> <strong>de</strong> sistemas <strong>de</strong><br />

posicionamento por satélite (GPS) permitiu eliminar muitos problemas e incertezas <strong>de</strong>stas<br />

provas. Para reduzir os efeitos <strong>de</strong> ventos e correntes, as provas <strong>de</strong> velocida<strong>de</strong>, consumo, etc.<br />

<strong>de</strong>vem ser realizadas repetidamente em sentidos opostos.<br />

De notar que as provas <strong>de</strong> mar <strong>de</strong> um navio vão muito para além das provas <strong>de</strong> velocida<strong>de</strong><br />

e potência. Todas as funcionalida<strong>de</strong>s do navio, operacionais e <strong>de</strong> segurança, <strong>de</strong>verão ser<br />

<strong>de</strong>monstradas. Para as restantes provas, nomeadamente as que dizem respeito à manobrabilida<strong>de</strong><br />

do navio, existem também recomendações exaustivas da ITTC para a sua realização.


Capítulo 3<br />

Propulsão<br />

3.1 Sistemas <strong>de</strong> propulsão<br />

Em qualquer tipo <strong>de</strong> navio temos presente um propulsor cuja finalida<strong>de</strong> é a geração <strong>de</strong> uma<br />

força propulsiva. As soluções propulsivas são muito diversas mas predominantemente os navios<br />

continuam a utilizar hélices simples como meio <strong>de</strong> propulsão. Outros meios <strong>de</strong> propulsão com<br />

expressão significativa em aplicações específicas são:<br />

- os hélices “especiais”, com particular <strong>de</strong>staque para os hélices com tubeira e os hélices<br />

contra-rotativos;<br />

- os sistemas <strong>de</strong> jacto <strong>de</strong> água (“water-jets” ou “pump-jets”);<br />

- os propulsores azimutais (“AziPod’s)”;<br />

- e os propulsores cicloidais (“Voith-Schnei<strong>de</strong>r”).<br />

Na escolha da solução propulsiva <strong>de</strong>verá ser sempre consi<strong>de</strong>rado o seu rendimento e a<br />

interacção com a querena. Outro aspecto genérico a consi<strong>de</strong>rar durante o projecto da solução<br />

propulsiva é o fenómeno da cavitação originada pela velocida<strong>de</strong> elevada do movimento das<br />

pás do hélice na água.<br />

3.1.1 Hélices<br />

O hélice é colocado tradicionalmente à popa do navio para recuperar parte da energia dispendida<br />

para vencer a resistência da querena. Na forma mais tradicional da popa dos navios,<br />

a esteira nominal é muito não-uniforme. A uniformida<strong>de</strong> da esteira da querena é uma das<br />

condições necessárias para o bom funcionamento do hélice. A utilização da popa aberta ou<br />

<strong>de</strong> um bolbo na popa permite melhorar a esteira.<br />

As pás do hélice, animadas <strong>de</strong> velocida<strong>de</strong> <strong>de</strong> rotação e <strong>de</strong> avanço, funcionando como<br />

superfícies sustentadoras, estão distribuídas simetricamente em torno do cubo. As secções<br />

das pás funcionam como perfis alares a ângulo <strong>de</strong> ataque gerando uma força <strong>de</strong> sustentação.<br />

Esta força <strong>de</strong> sustentação contribui para a força propulsiva axial e para o binário resistente<br />

ao veio.<br />

Classificam-se com hélices “direitos” aqueles que, quando observados <strong>de</strong> ré, rodam no<br />

sentido horário. Nos navios com dois hélices, são normalmente utilizados:<br />

35


36<br />

CAPÍTULO 3. PROPULSÃO<br />

- um hélice direito a estibordo;<br />

- e um hélice esquerdo a bombordo.<br />

Nestes navios, a popa é relativamente plana e os veios estão expostos e suportados por<br />

aranhas (“shaft brackets”). A presença <strong>de</strong>stas aranhas provoca ainda não-uniformida<strong>de</strong>s na<br />

esteira em que, <strong>de</strong>vido à forma da popa, o escoamento entra no hélice com um certo ângulo.<br />

Figura 3.1: Hélice com tubeira.<br />

A aplicação <strong>de</strong> uma tubeira aceleradora, Fig. 3.1, permite aumentar o rendimento, relativamente<br />

a um hélice convencional, no caso <strong>de</strong> hélices fortemente carregados como os aplicados<br />

em rebocadores, arrastões, petroleiros, etc. Outro objectivo da aplicação das tubeiras po<strong>de</strong><br />

ser a uniformização do escoamento <strong>de</strong> entrada no hélice. Para este fim trata-se normalmente<br />

<strong>de</strong> tubeiras assimétricas colocadas avante do hélice. Frequentemente este tipo <strong>de</strong> tubeiras é<br />

instalada <strong>de</strong>pois <strong>de</strong> o navio estar em serviço.<br />

Figura 3.2: Hélices <strong>de</strong> passo fixo e <strong>de</strong> passo controlável.


3.1. SISTEMAS DE PROPULSÃO 37<br />

Para um hélice <strong>de</strong> passo fixo, a velocida<strong>de</strong> do navio e a força propulsiva são controladas<br />

pela velocida<strong>de</strong> <strong>de</strong> rotação do hélice. Para um hélice <strong>de</strong> passo controlável, a força propulsiva<br />

po<strong>de</strong> também ser controlada por variação do passo do hélice. A variação do passo obtém-se<br />

por rotação das pás em torno <strong>de</strong> um eixo, à direita na Fig. 3.2. Utiliza-se quando a velocida<strong>de</strong><br />

<strong>de</strong> rotação é constante, ou variável numa gama restrita, quando o hélice tem <strong>de</strong> funcionar em<br />

mais <strong>de</strong> uma condição.<br />

Apesar <strong>de</strong> constituírem uma solução cara, pela complicação <strong>de</strong> chumaceiras e engranagens<br />

necessária, encontram-se exemplos <strong>de</strong> propulsão por hélices contrarotativos. São dois hélices,<br />

em que o hélice <strong>de</strong> trás tem um diâmetro ligeiramente menor que o hélice da frente, a rodar<br />

em sentidos contrários, permitindo ao hélice <strong>de</strong> trás eliminar a perda <strong>de</strong> energia cinética<br />

<strong>de</strong> rotação do hélice da frente, Fig. 3.3. Em consequência, apresentam rendimentos típicos<br />

superiores a um hélice isolado.<br />

Figura 3.3: Hélices em contra-rotação.<br />

Outro tipo particular <strong>de</strong> hélice é o hélice supercavitante, Fig. 3.4. É um hélice para<br />

funcionar com elevada velocida<strong>de</strong> <strong>de</strong> rotação em que as secções das pás são concebidas para<br />

provocar uma bolsa <strong>de</strong> cavitação que envolve toda a pá. O perigo <strong>de</strong> implosão é eliminado<br />

porque a implosão das bolhas <strong>de</strong> cavitação ocorre longe das faces das pás. Aplicam-se em<br />

navios <strong>de</strong> alta velocida<strong>de</strong> com rendimento, em geral, fraco.<br />

3.1.2 Outros meios <strong>de</strong> propulsão<br />

Jacto <strong>de</strong> água<br />

Nestes sistemas, a força propulsiva é obtida pela <strong>de</strong>scarga <strong>de</strong> um jacto <strong>de</strong> água à popa do<br />

navio. Para transmitir a energia pretendida ao jacto po<strong>de</strong>m ser utilizadas bombas axiais,<br />

como no caso da Fig. 3.5, ou bombas centrífugas.<br />

Os sistemas <strong>de</strong> jacto <strong>de</strong> água constituem actualmente um solução comprovada para a propulsão<br />

<strong>de</strong> embarcações rápidas, com divulgação crescente nas embarcações <strong>de</strong> recreio,“ferries”,<br />

embarcações <strong>de</strong> patrulha, etc. São boas soluções quando os principais requisitos colocados<br />

passam pela manobrabilida<strong>de</strong> do navio, bom rendimento propulsivo, bom comportamento em<br />

águas restritas e pouca necessida<strong>de</strong> <strong>de</strong> manutenção. Actualmente, já estão disponíveis no<br />

mercado soluções <strong>de</strong>ste tipo para potências propulsivas da or<strong>de</strong>m dos 30MW.


38<br />

CAPÍTULO 3. PROPULSÃO<br />

Figura 3.4: Hélices supercavitante.<br />

Figura 3.5: Propulsão por jacto <strong>de</strong> água.<br />

Propulsores azimutais<br />

Esta configuração, ver Fig. 3.6, possibilita a geração <strong>de</strong> força propulsiva em qualquer direcção<br />

por rotação do propulsor em torno do eixo vertical. No sistema tradicional <strong>de</strong> propulsão<br />

azimutal, o motor era colocado no interior do casco e um sistema mecânico relativamente<br />

complexo fazia a transmissão do movimento às pás. Actualmente, o accionamento é feito<br />

por um motor eléctrico colocado no veio <strong>de</strong> propulsor. Estes sistemas permitem combinar a<br />

propulsão e o governo do navio, dispensando a presença do leme.<br />

Apresentam como principais vantagens um bom rendimento, justificado em gran<strong>de</strong> parte<br />

pela maior uniformida<strong>de</strong> do escoamento à entrada do propulsor, elevada capacida<strong>de</strong> <strong>de</strong> manobra<br />

e economia <strong>de</strong> espaço. A sua aplicação, inicialmente quase que restrita a ferries, tem-se<br />

alargado nos tempos mais recentes a praticamente quase todos os tipos <strong>de</strong> navios.


3.1. SISTEMAS DE PROPULSÃO 39<br />

Figura 3.6: Propulsores azimutais.<br />

Propulsores cicloidais<br />

Esta solução propulsiva, representada na Fig. 3.7, <strong>de</strong>senvolvida pela Voight a partir duma<br />

i<strong>de</strong>ia inicial <strong>de</strong> Ernst Schnei<strong>de</strong>r, permite gerar impulso <strong>de</strong> magnitu<strong>de</strong> variável em qualquer<br />

direcção. As variações daquele impulso são rápidas, contínuas e precisas, combinando assim<br />

as funções <strong>de</strong> propulsão e governo do navio.<br />

Figura 3.7: Propulsores cicloidais.<br />

O propulsor, colocado no fundo do navio, é composto por um conjunto <strong>de</strong> lâminas paralelas<br />

com movimento <strong>de</strong> rotação, segundo um eixo vertical, com velocida<strong>de</strong> variável. Para gerar o<br />

impulso, cada uma daquelas lâminas tem um movimento oscilante em torno do seu próprio<br />

eixo. O percurso das lâminas vai <strong>de</strong>terminar a força impulsiva gerada, enquanto um ângulo<br />

<strong>de</strong> fase entre 0 ◦ e 360 ◦ vai <strong>de</strong>finir a direcção do impulso. Desta forma, po<strong>de</strong> ser gerada a<br />

mesma força propulsiva em qualquer direcção. A intensida<strong>de</strong> e a direcção da força propulsiva


40<br />

CAPÍTULO 3. PROPULSÃO<br />

são controladas por um conjunto cinemático <strong>de</strong> transmissão mecânica.<br />

Pelas suas características, esta solução apresenta bom <strong>de</strong>sempenho na propulsão <strong>de</strong> rebocadores,<br />

ferries, gran<strong>de</strong>s iates, navios <strong>de</strong> apoio a plataformas petrolíferas e outros navios<br />

especiais.<br />

3.2 Hélices propulsores<br />

O projecto do hélice <strong>de</strong>verá dar resposta às seguintes questões:<br />

- será que o hélice <strong>de</strong>senvolverá a <strong>de</strong>sejada força propulsiva à velocida<strong>de</strong> rpm <strong>de</strong> projecto?<br />

- qual vai ser a eficiência do hélice?<br />

- qual vai ser o <strong>de</strong>sempenho do hélice em condições diferentes das condições <strong>de</strong> projecto?<br />

- será a distribuição <strong>de</strong> pressões favorável à prevenção da cavitação?<br />

- qual será o valor das forças e momentos gerados pelo hélice sobre o veio propulsor e<br />

chumaceiras <strong>de</strong> apoio e <strong>de</strong> impulso?<br />

- qual a pressão induzida pelo funcionamento do hélice no casco do navio, potencialmente<br />

responsável por vibrações e ruído?<br />

Os principais métodos <strong>de</strong> cálculo disponíveis para, <strong>de</strong> alguma forma, dar resposta àquelas<br />

questões são:<br />

- a teoria da quantida<strong>de</strong> <strong>de</strong> movimento;<br />

- a teoria dos elementos <strong>de</strong> pá;<br />

- a teoria da linha sustentadora;<br />

- a teoria da superfície <strong>de</strong> sustentação;<br />

- o método <strong>de</strong> painel;<br />

- as simulações RANSE.<br />

Outro contributo importante para o projecto do hélice vem das séries sistemáticas <strong>de</strong><br />

hélices, para as quais são já conhecidos os principais parâmetros <strong>de</strong> funcionamento em águas<br />

livres.<br />

Por último, há que citar o contributo importante dos ensaios experimentais em mo<strong>de</strong>los<br />

à escala reduzida, os ensaios do hélice em águas livres e o ensaio <strong>de</strong> propulsão.<br />

3.2.1 Geometria do hélice<br />

Na complexa geometria do hélice, conjunto <strong>de</strong> pás distribuídas uniformemente em torno do<br />

cubo montado na extremida<strong>de</strong> do veio, representada esquematicamente na Fig. 3.8, distinguemse<br />

as seguintes áreas, linhas e pontos:<br />

- o bordo <strong>de</strong> ataque (“leading edge”), a linha frontal das pás;<br />

- o bordo <strong>de</strong> fuga (“trailing edge”), a aresta atrás;


3.2.<br />

HÉLICES PROPULSORES 41<br />

Figura 3.8: Geometria do hélice.<br />

- a extremida<strong>de</strong> da pá (“tip”) é o ponto linha ou secção <strong>de</strong> maior raio;<br />

- o dorso (“back”) e a face da pá são, respectivamente, a superfície da pá do lado do veio,<br />

aspiração, e a superfície do lado <strong>de</strong> pressão;<br />

No cubo, com uma forma axisimétrica, unem-se as pás pela sua raiz (“ bla<strong>de</strong> root”).<br />

A geometria do hélice propulsor é caracterizada, entre outras, pelas seguintes dimensões,<br />

também representadas naquela figura:<br />

- diâmetro do hélice (“propeller diameter”), D;<br />

- diâmetro do cubo (“boss (or hub) diameter”), d;<br />

- número <strong>de</strong> pás do hélice (“propeller bla<strong>de</strong> number”), Z;<br />

- passo do hélice (“propeller pitch”), P ;<br />

- área do disco, A 0 = πD 2 /4;<br />

- área projectada, área da projecção das pás num plano normal ao eixo do hélice, A P ;<br />

- área expandida, soma das áreas das faces das pás, A E ;<br />

- <strong>de</strong>slocamento circunferencial (“skew”);<br />

- abatimento axial (“rake”), i G .<br />

3.2.2 Valores característicos<br />

Como parâmetros adimensionais para caracterização dos hélices propulsores po<strong>de</strong>mos apontar:<br />

- a razão entre os diâmetros do cubo e do hélice, d/D;<br />

- a razão entre a área expandida e a área do disco, A E /A 0 , frequentemente <strong>de</strong>signada por<br />

“bla<strong>de</strong> area ratio” (BAR);


42<br />

CAPÍTULO 3. PROPULSÃO<br />

- e a razão entre o passo e o diâmetro do hélice, P/D.<br />

São valores típicos para a razão <strong>de</strong> área expandida 0.3 < A E /A 0 < 1.5. Razões superiores<br />

a 1 significam que o hélice tem pás sobrepostas o que o torna dispendioso. O valor <strong>de</strong><br />

A E /A 0 é selecionado <strong>de</strong> tal forma que a carga das pás seja suficientemente baixa para evitar<br />

uma situação inaceitável <strong>de</strong> cavitação. Quanto mais carregada for a condição <strong>de</strong> funcionamento<br />

prevista para o hélice maior <strong>de</strong>verá ser a razão A E /A 0 consi<strong>de</strong>rada na sua selecção. O<br />

rendimento do hélice diminui com o aumento da razão A E /A 0 .<br />

O número <strong>de</strong> pás Z é um parâmetro muito importante para as vibrações induzidas pelo<br />

hélice. Em geral, um número ímpar <strong>de</strong> pás Z proporciona melhores características no que diz<br />

respeito a vibrações. Maior número <strong>de</strong> pás reduz a vibração, <strong>de</strong>vido aos inferiores picos <strong>de</strong><br />

pressão, mas aumenta os custos <strong>de</strong> fabrico.<br />

Os hélices propulsores para navios são sempre adaptados às características específicas do<br />

navio após exaustivo estudo hidrodinâmico. O número <strong>de</strong> pás está normalmente entre 4 e 7.<br />

Os hélices propulsores para pequenas embarcações, regra geral com o número <strong>de</strong> pás entre 2<br />

e 4, são produzidos em massa.<br />

3.3 Teoria da quantida<strong>de</strong> <strong>de</strong> movimento<br />

A teoria mais simples para representar o funcionamento <strong>de</strong> um hélice propulsor é a teoria da<br />

quantida<strong>de</strong> <strong>de</strong> movimento, também <strong>de</strong>signda por vezes como do disco actuante. Esta teoria<br />

permite relacionar a força propulsiva do hélice com as velocida<strong>de</strong>s induzidas. Tem como<br />

principais hipóteses simplificativas:<br />

- consi<strong>de</strong>rar o escoamento <strong>de</strong> fluido perfeito e incompressível;<br />

- o número <strong>de</strong> pás do hélice é infinito;<br />

- o hélice propulsor exerce uma força axial T que se distribui uniformemente sobre o disco<br />

do hélice <strong>de</strong> diâmetro D;<br />

- o hélice não induz velocida<strong>de</strong> velocida<strong>de</strong> <strong>de</strong> rotação no fluido, ou seja, não há velocida<strong>de</strong><br />

circunferencia induzida.<br />

3.3.1 Força propulsiva<br />

Consi<strong>de</strong>remos o escoamento axisimétrico através do plano do hélice, representado na Fig. 3.9,<br />

e <strong>de</strong>notar por V A a velocida<strong>de</strong> <strong>de</strong> aproximação da água ao hélice e por p ∞ a pressão em<br />

pontos suficientemente afastados quer a vante quer a ré do hélice. Conforme representado,<br />

sendo a água incompressível, a secção do escoamento reduz-se pelo aumento <strong>de</strong> velocida<strong>de</strong><br />

transmitido pelo hélice ao escoamento <strong>de</strong> água. Na figura po<strong>de</strong>mos ainda ver que no disco<br />

existe uma <strong>de</strong>scontinuida<strong>de</strong> <strong>de</strong> pressão ∆p. Esta <strong>de</strong>scontinuida<strong>de</strong>, como resultado do referido<br />

“disco actuante”, gera uma força propulsiva do hélice dada por<br />

T = ∆pA 0 (3.1)<br />

Quanto à distribuição <strong>de</strong> velocida<strong>de</strong>s, vamos consi<strong>de</strong>rar que a velocida<strong>de</strong> no disco é V A +V 0<br />

e, no infinito, a velocida<strong>de</strong> é V A + V ∞ .


3.3. TEORIA DA QUANTIDADE DE MOVIMENTO 43<br />

Figura 3.9: Distribuição espacial <strong>de</strong> velocida<strong>de</strong> e pressão para a teoria da<br />

quantida<strong>de</strong> <strong>de</strong> movimento.<br />

Representando por A −∞ e A ∞ as áreas no infinito, a montante e a juzante, respectivamente,<br />

do tubo <strong>de</strong> corrente que passa pelo disco actuante, para se verificar a conservação <strong>de</strong><br />

massa no escoamento será necessário que,<br />

V a A −∞ = (V a + V 0 ) A 0 = (V a + V ∞ ) A ∞ (3.2)<br />

Então, aquelas áreas, A −∞ e A ∞ estão relacionadas com a área do disco e com a velocida<strong>de</strong><br />

induzida por<br />

e<br />

A −∞ = V a + V 0<br />

V a<br />

A 0 (3.3)<br />

A ∞ = V a + V 0<br />

V a + V ∞<br />

A 0 (3.4)<br />

Aplicando agora o princípio da conservação da quantida<strong>de</strong> <strong>de</strong> movimento ao escoamento<br />

<strong>de</strong> fluido no tubo <strong>de</strong> corrente, obtemos a equação,<br />

T = ρ (V a + V ∞ ) 2 A ∞ − ρV 2<br />

a A −∞ (3.5)<br />

Usando a equação <strong>de</strong> conservação da massa, Eq. (3.2), po<strong>de</strong>mos dizer então que a força<br />

propulsiva T é dada por,<br />

T = ρ (V a + V 0 ) V ∞ A 0 (3.6)<br />

e, que o “salto <strong>de</strong> pressão” no disco actuante vale<br />

∆p = ρ (V a + V 0 ) V ∞ (3.7)


44<br />

CAPÍTULO 3. PROPULSÃO<br />

Por fim, vamos aplicar a equação <strong>de</strong> Bernoulli ao tubo <strong>de</strong> corrente. A montante do disco<br />

temos,<br />

p ∞ + 1 2 ρV 2<br />

a = p 0 + 1 2 ρ (V a + V 0 ) 2 (3.8)<br />

e, a juzante,<br />

p ∞ + 1 2 ρ (V a + V ∞ ) 2 = p 0 + ∆p + 1 2 ρ (V a + V 0 ) 2 (3.9)<br />

Fazendo agora a subtracção das equações, Eq. (3.9) − Eq. (3.8), temos uma nova equação<br />

para avaliar o valor <strong>de</strong> ∆p<br />

(<br />

∆p = ρ V a + 1 )<br />

2 V ∞ V ∞ (3.10)<br />

Naturalmente que o “salto <strong>de</strong> pressão” avaliado pela última equação não po<strong>de</strong> ser diferente<br />

daquele que resulta da Eq. (3.7). Logo,<br />

(<br />

ρ (V a + V 0 ) V ∞ = ρ V a + 1 )<br />

2 V ∞ V ∞ (3.11)<br />

e, então, daqui resulta que a velocida<strong>de</strong> induzida no disco é meta<strong>de</strong> da velocida<strong>de</strong> induzida<br />

na esteira no infinito,<br />

V 0 = 1 2 V ∞ (3.12)<br />

A força propulsiva T obtida no disco actuante po<strong>de</strong> ser calculada, em função da velocida<strong>de</strong><br />

induzida no disco, por<br />

T = πD2<br />

4 ρ (V a + V 0 ) 2V 0 (3.13)<br />

3.3.2 Coeficiente <strong>de</strong> carga<br />

Se <strong>de</strong>finirmos para um hélice propulsor como coeficiente <strong>de</strong> carga, C T ,<br />

C T =<br />

T<br />

π<br />

4 D2 1<br />

2 ρV a<br />

2<br />

e consi<strong>de</strong>rarmos a força propulsiva resultante da teoria do disco actuante, obtém-se<br />

C T = 4 V (<br />

0<br />

1 + V )<br />

0<br />

V a V a<br />

ou, em termos <strong>de</strong> velocida<strong>de</strong> induzida no disco,<br />

V 0<br />

= 1 (−1 + √ )<br />

1 + C T<br />

V a 2<br />

(3.14)<br />

(3.15)<br />

(3.16)


3.4. ENSAIOS COM MODELOS REDUZIDOS DE HÉLICES 45<br />

3.3.3 Rendimento i<strong>de</strong>al do hélice<br />

O rendimento i<strong>de</strong>al do hélice é o rendimento máximo que po<strong>de</strong> ser obtido em fluido perfeito<br />

com um hélice propulsor que não induza velocida<strong>de</strong> <strong>de</strong> rotação no fluido.<br />

Num referencial em repouso no fluido, consi<strong>de</strong>re-se que o hélice avança com velocida<strong>de</strong><br />

V a , exercendo uma força propulsiva T . A potência efectiva do hélice é dada por<br />

P E = T V a (3.17)<br />

A perda <strong>de</strong> energia cinética axial por unida<strong>de</strong> <strong>de</strong> tempo é o fluxo <strong>de</strong> energia por unida<strong>de</strong><br />

<strong>de</strong> tempo através <strong>de</strong> um plano perpendicular à direcção <strong>de</strong> avanço, no infinito, a juzante.<br />

Este fluxo <strong>de</strong> energia é calculado pelo produto do caudal mássico que se escoa pelo tubo <strong>de</strong><br />

corrente pela energia cinética específica,<br />

E˙<br />

p = ρ πD2<br />

4 (V a + V 0 ) × 1 2 V ∞<br />

2<br />

ou seja, consi<strong>de</strong>rando a relação conhecida entre a velocida<strong>de</strong> no disco e na esteira no infinito,<br />

E˙<br />

p = ρ πD2<br />

2 (V a + V 0 ) V0 2<br />

(3.18)<br />

O rendimento i<strong>de</strong>al do hélice propulsor será então dado por<br />

η i =<br />

T V a<br />

T V a + ˙ E p<br />

(3.19)<br />

ou, consi<strong>de</strong>rando (3.13) e (3.18), e simplificando, ficamos com<br />

η i = 1<br />

1 + V 0<br />

V a<br />

(3.20)<br />

3.4 Ensaios com mo<strong>de</strong>los reduzidos <strong>de</strong> hélices<br />

Apesar <strong>de</strong> o hélice ir funcionar numa esteira não-uniforme do navio, são realizados ensaios<br />

para avaliação do seu <strong>de</strong>sempenho numa esteira uniforme, recorrendo ao ensaio em águas<br />

livres <strong>de</strong> um mo<strong>de</strong>lo à escala reduzida do hélice, em condições apropriadas <strong>de</strong> semelhança.<br />

Neste ensaio, o chamado “open water test”, um mo<strong>de</strong>lo do hélice é <strong>de</strong>slocado com a velocida<strong>de</strong><br />

da avanço V a num fluido em repouso. O escoamento <strong>de</strong> aproximação <strong>de</strong>ve ser tão uniforme<br />

quanto possível. Durante o <strong>de</strong>slocamento do hélice este é posto a rodar por um pequeno motor<br />

eléctrico à velocida<strong>de</strong> n (rps) pretendida. O ensaio realiza-se normalmente a uma velocida<strong>de</strong><br />

<strong>de</strong> rotação constante, ou seja, para um dado número <strong>de</strong> Reynolds.<br />

As características propulsivas em águas livres, nomeadamente a força propulsiva T e o<br />

binário Q, são medidas em regime estacionário <strong>de</strong> funcionamento. Depois <strong>de</strong> adimensionalizados,<br />

os valores medidos da força propulsiva e do binário para vários regimes <strong>de</strong> funcionamento<br />

constituem o “diagrama em águas livres” do hélice em questão.<br />

A força propulsiva T e o binário Q disponibilizados por um hélice propulsor <strong>de</strong>pen<strong>de</strong>m <strong>de</strong><br />

várias variáveis:<br />

- a velocida<strong>de</strong> <strong>de</strong> avanço V a ;


46<br />

CAPÍTULO 3. PROPULSÃO<br />

- a velocida<strong>de</strong> <strong>de</strong> rotação n;<br />

- o diâmetro D;<br />

- a massa específica do fluido ρ;<br />

- a viscosida<strong>de</strong> cinemática do fluido ν.<br />

Aplicando a análise dimensional, expressando a <strong>de</strong>pendência dos coeficientes <strong>de</strong> força<br />

propulsiva e <strong>de</strong> binário dos seguintes grupos adimensionais:<br />

ou seja,<br />

- coeficiente <strong>de</strong> avanço, J = V a<br />

nD ;<br />

- e número <strong>de</strong> Reynolds, aqui <strong>de</strong>finido como Re = nD2<br />

ν ;<br />

K T = K T (J, Re) e K Q = K Q (J, Re)<br />

obtêm-se os seguintes expressões para os referidos coeficientes adimensionais:<br />

- coeficiente <strong>de</strong> força propulsiva K T = T<br />

ρn 2 D 4 ;<br />

- coeficiente <strong>de</strong> binário K Q = Q<br />

ρn 2 D 5 .<br />

3.4.1 Diagrama em águas livres<br />

O diagrama em águas livres do hélice integra a representação gráfica da variação dos coeficientes<br />

da força propulsiva, K T , e <strong>de</strong> binário, K Q , com o coeficiente <strong>de</strong> avanço, V a . Um exemplo<br />

<strong>de</strong> diagrama em águas livres está representado na Fig. 3.10.<br />

As curvas traçadas nestes diagramas servem principalmente para a optimização do hélice<br />

e <strong>de</strong>terminação do ponto <strong>de</strong> funcionamento. Na prática, já não são utilizadas aquelas representações<br />

gráficas no projecto <strong>de</strong> hélices, mas sim os polinómios representativos daquelas<br />

evoluções para permitir o cálculo computacional. As tabelas têm cerca <strong>de</strong> 50 coeficientes<br />

para os polinómios relativos à série sistemática <strong>de</strong> hélices <strong>de</strong> Wageningen. Embora o trabalho<br />

inicial <strong>de</strong> registo <strong>de</strong>stes coeficientes seja moroso e fastidioso, os processos <strong>de</strong> cálculo e optimização<br />

posteriores ficam muito facilitados e expeditos pela utilização <strong>de</strong> programas ou folhas<br />

<strong>de</strong> cálculo. A importância da representação gráfica está actualmente restrita à verificação<br />

da tendência <strong>de</strong> variação do <strong>de</strong>sempenho do hélice com a alteração <strong>de</strong> algumas condições<br />

operacionais.<br />

3.4.2 Rendimento<br />

Definindo o rendimento <strong>de</strong> um hélice propulsor como sendo a razão entre a potência efectiva<br />

e a potência fornecida pelo veio ao hélice, o rendimento em águas livres é calculado por<br />

η 0 = P E<br />

P D<br />

=<br />

V aT<br />

2πnQ<br />

(3.21)


3.5.<br />

SÉRIES SISTEMÁTICAS 47<br />

Figura 3.10: Diagrama <strong>de</strong> águas livres.<br />

a partir das medições observadas durante o ensaio.<br />

Ou, se quisermos expressá-lo em termos dos coeficientes adimensionais, po<strong>de</strong>mos obter,<br />

η 0 = JK T<br />

2πK Q<br />

(3.22)<br />

3.4.3 Índice <strong>de</strong> qualida<strong>de</strong><br />

A qualida<strong>de</strong> <strong>de</strong> um propulsor não fica bem caracterizada apenas pelo seu rendimento máximo.<br />

O índice <strong>de</strong> qualida<strong>de</strong>, que permite caracterizar melhor um hélice para uma dada aplicação<br />

específica, é dado por<br />

q = η 0<br />

η i<br />

(3.23)<br />

em que η 0 é o rendimento em águas livres e η i é o rendimento i<strong>de</strong>al.<br />

Como C T = 8K T<br />

, substituindo em (3.23):<br />

πJ 2<br />

(<br />

q =<br />

K √ )<br />

T<br />

J + J<br />

4πK 2 + 8<br />

Q π K T<br />

(3.24)<br />

3.5 Séries sistemáticas<br />

Uma série sistemática <strong>de</strong> hélices é um conjunto <strong>de</strong> hélices obtidos por variação sistemática <strong>de</strong><br />

parâmetros geométricos. Ao longo <strong>de</strong> décadas, por todo o mundo têm sido realizados ensaios<br />

em séries sistemáticas <strong>de</strong> propulsores para navios. As principais características <strong>de</strong> alguns<br />

exemplos <strong>de</strong> séries sistemáticas <strong>de</strong> hélices propulsores simples <strong>de</strong> passo fixo estão incluídas na<br />

Tab. 3.1.<br />

O principal objectivo perseguido na realização dos ensaios sistemáticos nestes conjuntos<br />

<strong>de</strong> hélices é criar uma base <strong>de</strong> dados que permita ajudar o projectista a enten<strong>de</strong>r os principais


48<br />

CAPÍTULO 3. PROPULSÃO<br />

Série N o Z A E /A 0 P/D D(mm)<br />

Wageningen B ≈ 120 2 − 7 0, 3 − 1, 05 0, 5 − 1, 4 250<br />

Au 34 4 − 7 0, 4 − 0, 758 0, 5 − 1, 2 250<br />

Gawn 37 3 0, 2 − 1, 1 0, 4 − 2, 0 508<br />

KCA ≈ 30 3 0, 50 − 1, 25 0, 6 − 2, 0 406<br />

Ma 32 3 e 5 0, 75 − 1, 20 1, 0 − 1, 45 250<br />

Newton-Ra<strong>de</strong>r 12 3 0, 5 − 1, 0 1, 05 − 2, 08 254<br />

KCD 24 3 − 6 0, 44 − 0, 80 0, 6 − 1, 6 406<br />

Meridian 20 6 0, 45 − 1, 05 0, 4 − 1, 2 305<br />

Tabela 3.1: Séries sistemáticas <strong>de</strong> propulsores.<br />

factores que influenciam o <strong>de</strong>sempenho do hélice, bem como a ocorrência <strong>de</strong> cavitação, em<br />

várias condições <strong>de</strong> funcionamento. Um segundo objectivo é a construção <strong>de</strong> diagramas que<br />

permitam ajudar à selecção das características mais apropriadas para uma dada aplicação à<br />

escala do navio.<br />

3.5.1 Série sistemática <strong>de</strong> Wageningen<br />

Uma das séries sistemáticas <strong>de</strong> hélices propulsores mais populares é a série B <strong>de</strong> Wageningen.<br />

Esta série, em que os trabalhos iniciais datam <strong>de</strong> 1940, será talvez a mais vasta. As principais<br />

características <strong>de</strong>stes hélices são:<br />

- ter distribuição radial do passo constante;<br />

- um pequeno <strong>de</strong>slocamento circunferencial (“skew”);<br />

- distribuição radial do abatimento axial (“rake”) linear 15 ◦ ;<br />

- contorno largo da pá junto à extremida<strong>de</strong>;<br />

- secção das pás NSMB, indicada na Fig. 3.11.<br />

Figura 3.11: Aspecto geométrico das pás da série B <strong>de</strong> Wageningen<br />

Os parâmetros cuja variação sistemática foi consi<strong>de</strong>rada na realização <strong>de</strong>sta série foram<br />

os seguintes:


3.5.<br />

SÉRIES SISTEMÁTICAS 49<br />

- o número <strong>de</strong> pás: 2 ≤ Z ≤ 7;<br />

- a razão <strong>de</strong> área expandida: 0.3 ≤ A E /A 0 ≤ 1.05;<br />

- a razão passo-diâmetro: 0.5 ≤ P/D ≤ 1.4.<br />

A nomenclatura dos hélices <strong>de</strong>sta série, consi<strong>de</strong>rando a título <strong>de</strong> exemplo um hélice B-4.85,<br />

é a seguinte:<br />

- Série B;<br />

- Número <strong>de</strong> pás: 4;<br />

- razão <strong>de</strong> área expandida: 0.85.<br />

Para cada caso existe um diagrama, ou uma tabela com os já referidos coeficientes polinomiais,<br />

com as curvas características dos diagrams <strong>de</strong> águas livres, para diferentes razões<br />

passo-diâmetro, P/D. Na Fig. 3.12 está representado o caso dos hélices com duas pás, razão<br />

<strong>de</strong> área expandida 0, 3 e razão passo-diâmetro compreendida entre 0, 5 e 1, 4.<br />

3.5.2 Outras séries sistemáticas<br />

A série sistemática <strong>de</strong> hélices propulsores Au é muito popular no Japão mas, fora <strong>de</strong>le, não<br />

conseguiu uma divulgação semelhante à série <strong>de</strong> Wageningen po<strong>de</strong>ndo, no entanto, consi<strong>de</strong>rarse<br />

como uma série complementar daquela.<br />

A série Gawn apresenta como característica distintiva o maior diâmetro dos hélices que<br />

a integram. Isto significa que muitos dos efeitos <strong>de</strong> escala presentes nas outras séries foram<br />

aqui evitados ou, pelo menos, reduzidos. A série KCA, também <strong>de</strong>signada por vezes como<br />

Gawn-Burrill, é complementar da série <strong>de</strong> Gawn. São 30 hélices com 3 pás, também com<br />

gran<strong>de</strong> diâmetro, 400mm. Esta série foi ensaiada num tanque <strong>de</strong> cavitação, e não num tanque<br />

<strong>de</strong> reboque, a diferentes números <strong>de</strong> cavitação e, consequentemente, permite verificar num<br />

<strong>de</strong>terminado projecto <strong>de</strong> aplicação os aspectos relacionados com o fenómeno da cavitação.<br />

Os hélices da série <strong>de</strong> Lindgren, série Ma, são mais pequenos, 250mm, e as suas pás<br />

têm passo constante. Foram testados num tanque <strong>de</strong> reboque e num tanque <strong>de</strong> cavitação e,<br />

assim, resultou dos ensaios um extenso e integrado conjunto <strong>de</strong> dados a<strong>de</strong>quado para a fase<br />

preliminar do projecto.<br />

A série <strong>de</strong> Newton-Ra<strong>de</strong>r compreen<strong>de</strong> um conjunto limitado <strong>de</strong> 12 hélices com três pás<br />

vocacionados para a propulsão <strong>de</strong> embarcações rápidas.<br />

Para além <strong>de</strong>stas séries sistemáticas <strong>de</strong> hélices simples, existem também alguns estudos<br />

relativos a formas particulares <strong>de</strong> hélices como, por exemplo, as séries <strong>de</strong> hélices contrarotativos<br />

do MARIN e SSPA, ou a série <strong>de</strong> Wageningen <strong>de</strong> hélices com tubeira.


50<br />

CAPÍTULO 3. PROPULSÃO<br />

Figura 3.12: Diagrama em águas livres <strong>de</strong> um hélice da série sistemática<br />

<strong>de</strong> Wageningen.


3.5.<br />

SÉRIES SISTEMÁTICAS 51<br />

3.5.3 Diagrama <strong>de</strong> 4 quadrantes<br />

No caso dos hélices <strong>de</strong> passo fixo, a forma convencional <strong>de</strong> operação do hélice, velocida<strong>de</strong> <strong>de</strong><br />

rotação positiva e velocida<strong>de</strong> <strong>de</strong> avanço nula ou positiva, correspon<strong>de</strong> ao funcionamento no<br />

primeiro quadrante do diagrama <strong>de</strong> funcionamento.<br />

No diagrama completo, ver Fig. 3.13, necessário por exemplo para estudar a manobrabilida<strong>de</strong><br />

do navio ou o seu <strong>de</strong>sempenho em marcha a ré, estão <strong>de</strong>finidos quatro quadrantes, <strong>de</strong><br />

acordo o ângulo <strong>de</strong> avanço,<br />

(<br />

)<br />

β = tan −1 V a<br />

(3.25)<br />

0, 7 · π · n · D<br />

Figura 3.13: Notação do diagrama com 4 quadrantes.<br />

Como já referido, o primeiro quadrante correspon<strong>de</strong> a:<br />

- velocida<strong>de</strong> <strong>de</strong> rotação do hélice correspon<strong>de</strong>nte à marcha a vante;<br />

- velocida<strong>de</strong> do navio a vante;<br />

- ou seja, ângulo <strong>de</strong> avanço 0 ≤ β ≤ 90 ◦ .<br />

O segundo quadrante correspon<strong>de</strong> a:<br />

- velocida<strong>de</strong> <strong>de</strong> rotação do hélice correspon<strong>de</strong>nte à marcha a ré;<br />

- velocida<strong>de</strong> do navio a vante;<br />

- ou seja, ângulo <strong>de</strong> avanço 90 ◦ < β ≤ 180 ◦ .<br />

No terceiro quadrante, as condições <strong>de</strong> operação do hélice são:<br />

- velocida<strong>de</strong> <strong>de</strong> rotação do hélice correspon<strong>de</strong>nte à marcha a ré;


52<br />

CAPÍTULO 3. PROPULSÃO<br />

- velocida<strong>de</strong> do navio a ré;<br />

- ou seja, ângulo <strong>de</strong> avanço 180 ◦ < β ≤ 270 ◦ .<br />

E, por fim, no quarto quadrante temos naturalmente:<br />

- velocida<strong>de</strong> <strong>de</strong> rotação do hélice correspon<strong>de</strong>nte à marcha a vante;<br />

- velocida<strong>de</strong> do navio a ré;<br />

- ou seja, ângulo <strong>de</strong> avanço 270 ◦ < β < 360 ◦ .<br />

Se existirem dados experimentais suficientes torna-se possível <strong>de</strong>finir uma função para<br />

estimar o <strong>de</strong>sempenho do hélice, no que diz respeito à força propulsiva e ao binário, nos<br />

quatro quadrantes do diagrama em águas livres. Um exemplo <strong>de</strong> um diagrama <strong>de</strong>ste tipo,<br />

multi-quadrante, está representado na Fig. 3.14, relativo aos hélices da série <strong>de</strong> Wageningen<br />

B4-70 com relação P/D entre 0, 5 e 1, 4.<br />

Justifica-se a introdução <strong>de</strong> uma notação para obter maior flexibilida<strong>de</strong> para trabalhar<br />

nestes diagramas multi-quadrante. De notar que para β = 90 ◦ ou β = 270 ◦ , situações em<br />

que a velocida<strong>de</strong> <strong>de</strong> rotação do hélice é nula, o coeficiente <strong>de</strong> avanço resultaria J = ∞. De<br />

forma semelhante, para prevenir o mesmo tipo <strong>de</strong> situações, são também <strong>de</strong>finidos os seguintes<br />

coeficientes:<br />

- coeficiente <strong>de</strong> força propulsiva modificado,<br />

CT ∗ T<br />

=<br />

(3.26)<br />

1<br />

2 ρV RA 2 0<br />

- coeficiente <strong>de</strong> binário modificado,<br />

CQ ∗ Q<br />

=<br />

1<br />

2 ρV RA 2 0 D<br />

(3.27)<br />

em que V R é a velocida<strong>de</strong> relativa <strong>de</strong> avanço para 0, 7R, ou seja,<br />

e<br />

CT ∗ T<br />

= π<br />

[<br />

8 ρ Va 2 + (0, 7πnD) 2] (3.28)<br />

D 2<br />

CQ ∗ Q<br />

= π<br />

[<br />

8 ρ Va 2 + (0, 7πnD) 2] (3.29)<br />

D 3<br />

Na Fig. 3.14 po<strong>de</strong>-se ver o efeito que a razão P/D tem no coeficiente <strong>de</strong> binário CQ<br />

∗<br />

para praticamente toda a gama <strong>de</strong> β. Em particular, é nos intervalos 40 ◦ < β < 140 ◦ e<br />

230 ◦ < β < 340 ◦ que a magnitu<strong>de</strong> <strong>de</strong> CQ ∗ varia mais significativamente.


3.6.<br />

CAVITAÇÃO 53<br />

Figura 3.14: Diagrama em águas livres <strong>de</strong> 4 quadrantes para os hélices<br />

Wageningen B-4.70.<br />

3.6 Cavitação<br />

3.6.1 Origem da cavitação<br />

A velocida<strong>de</strong> elevada do escoamento <strong>de</strong> água pelo hélice provoca regiões com baixa pressão.<br />

Se a pressão cair o suficiente, formar-se-ão cavida<strong>de</strong>s preenchidas com vapor. Estas cavida<strong>de</strong>s<br />

<strong>de</strong>saparecerão quando a pressão aumentar. O crescimento e o colapso <strong>de</strong>stas “bolhas” é<br />

extremamente rápido.<br />

A cavitação envolve fenómenos físicos complexos uma vez que se trata <strong>de</strong> escoamentos a<br />

duas fases, com mo<strong>de</strong>lação não-linear. Nos hélices dos navios, a velocida<strong>de</strong> em torno das pás<br />

po<strong>de</strong> ser suficiente para reduzir a localmente a pressão e <strong>de</strong>senca<strong>de</strong>ar a cavitação. Devido à<br />

pressão hidrostática, a pressão total será superior nas imediações da pá que se encontre com<br />

a máxima imersão (posição 06:00) do que naquela que se encontra na posição 12:00. Assim,<br />

as pás dos hélices em cavitação alternadamente passarão por regiões em que ten<strong>de</strong>ncialmente<br />

se formarão bolhas <strong>de</strong> cavitação e regiões on<strong>de</strong> as mesmas ten<strong>de</strong>rão a colapsar.<br />

Esta rápida sucessão <strong>de</strong> explosões e implosões nas proximida<strong>de</strong>s das pás do hélice tem<br />

várias consequências nefastas. As principais são:<br />

- vibração;


54<br />

CAPÍTULO 3. PROPULSÃO<br />

Figura 3.15: Efeito da cavitação no valor dos parâmetros relativos a águas<br />

livres.<br />

- ruído;<br />

- erosão da superfície das pás (sobretudo se o colapso das bolhas ocorrer na proximida<strong>de</strong>);<br />

- redução da força propulsiva.<br />

No diagrama em águas livres da Fig. 3.15 está assinalada a redução que é tipicamente<br />

provocada pela cavitação nos coeficientes <strong>de</strong> força propulsiva e binário.<br />

3.6.2 Controle da cavitação<br />

Num meio i<strong>de</strong>al, água sem impurezas ou ar dissolvido, a cavitação ocorrerá quando a pressão<br />

total atingir localmente a pressão <strong>de</strong> vapor a essa temperatura. Na prática, a cavitação iniciase<br />

para valores <strong>de</strong> pressão superiores pela presença <strong>de</strong> partículas microscópicas e da existência<br />

<strong>de</strong> ar dissolvido na água que facilitam e precipitam o início do processo <strong>de</strong> vaporização.<br />

O número <strong>de</strong> cavitação σ é um parâmetro adimensional que estima a possibilida<strong>de</strong> <strong>de</strong><br />

aparecimento do fenómeno <strong>de</strong> cavitação num escoamento,<br />

em que:<br />

σ = p 0 − p<br />

1<br />

2 ρ V 0<br />

2<br />

- p 0 é a pressão ambiente <strong>de</strong> referência;<br />

- p é a pressão local;<br />

- e V 0 é a velocida<strong>de</strong> <strong>de</strong> referência correspon<strong>de</strong>nte.<br />

(3.30)


3.6.<br />

CAVITAÇÃO 55<br />

Figura 3.16: Pressão <strong>de</strong> vapor da água em função da temperatura.<br />

Para σ inferior a σ v , o número <strong>de</strong> cavitação avaliado para a pressão <strong>de</strong> vapor p v , não<br />

ocorrerá cavitação num fluido i<strong>de</strong>al. Na prática, é necessário consi<strong>de</strong>rar um coeficiente <strong>de</strong><br />

segurança, consi<strong>de</strong>rando uma pressão limite superior à pressão <strong>de</strong> vapor.<br />

Para um hélice é habitual <strong>de</strong>finir o número <strong>de</strong> cavitação σ n como:<br />

σ n =<br />

p 0 − p<br />

1<br />

2 ρ n2 D 2 (3.31)<br />

adoptando-se como velocida<strong>de</strong> característica nD.<br />

3.6.3 Consi<strong>de</strong>ração da cavitação na selecção do hélice<br />

O fenómeno da cavitação é predominantemente dominado pelo campo <strong>de</strong> pressão no escoamento<br />

da água pelo plano do hélice. Prevenir a cavitação passa consequentemente pelo<br />

controlo da mínima pressão absoluta naquele escoamento. A possibilida<strong>de</strong> <strong>de</strong> ocorrência <strong>de</strong><br />

cavitação é evitada pela distribuição da força propulsiva por uma área maior, aumentando o<br />

diâmetro do hélice ou a razão da área expandida A E / A 0 . A forma mais usual <strong>de</strong> estimar,<br />

ainda que <strong>de</strong> uma forma não completamente rigorosa, o perigo <strong>de</strong> ocorrência da cavitação<br />

passa pela utilização do diagrama <strong>de</strong> Burrill (Fig. 3.17). O diagrama indica um limite inferior<br />

para a área projectada do hélice <strong>de</strong> um navio mercante. Nos eixos do diagrama <strong>de</strong> Burrill estão<br />

o número <strong>de</strong> cavitação, em abcissas, e o coeficiente <strong>de</strong> Burrill nas or<strong>de</strong>nadas. O coeficiente


56<br />

CAPÍTULO 3. PROPULSÃO<br />

Figura 3.17: Diagrama <strong>de</strong> Burrill.<br />

<strong>de</strong> Burrill é calculado por<br />

τ c =<br />

T<br />

q 0,7R A p<br />

(3.32)<br />

em que, A p é a área projectada do hélice, e o parâmetro q 0,7R é dado por<br />

q 0,7R = 1 2 ρ V 2 R<br />

em que V R é o valor absoluto da velocida<strong>de</strong> local a 0, 7 do raio do hélice, ou seja,<br />

√<br />

V R = Va 2 + (0, 7 π nD ) 2<br />

com V a a velocida<strong>de</strong> <strong>de</strong> entrada do escoamento no plano do hélice.<br />

Nos hélices da série <strong>de</strong> Wageningen, a área expandida está relacionada com a área projectada<br />

por<br />

A E =<br />

A P<br />

1, 067 − 0, 229P/D<br />

(3.33)<br />

3.6.4 Ensaios experimentais<br />

Os ensaios <strong>de</strong> cavitação, bem como frequentemente os ensaios em águas livres, realizam-se em<br />

instalações que compreen<strong>de</strong>m um canal fechado na qual é imposta a circulação da água por<br />

um impulsor. Na Fig. 3.18 está representada esquematicamente uma instalação <strong>de</strong>ste tipo.<br />

Estes túneis são concebidos por forma a proporcionar um escoamento tão uniforme quanto<br />

possível na secção <strong>de</strong> teste. A secção <strong>de</strong> teste, o troço horizontal superior, dispõe <strong>de</strong> visores<br />

para inspecção e vizualização do escoamento. O impulsor para a circulação da água está


3.6.<br />

CAVITAÇÃO 57<br />

Figura 3.18: Instalações <strong>de</strong> ensaio do RINA.<br />

colocado no troço inferior horizontal para garantir que, mesmo quando a pressão no tanque<br />

for reduzida, a coluna hidrostática vai impedir a cavitação neste propulsor.<br />

Normalmente, a pressão é reduzida por bombas <strong>de</strong> vácuo para ajuste do número <strong>de</strong> cavitação<br />

e a instalação dispõe <strong>de</strong> equipamento para reduzir o ar dissolvido na água. Po<strong>de</strong>m ser<br />

instaladas “grelhas metálicas” para induzir a turbulência <strong>de</strong>sejada no escoamento.<br />

Os hélices em teste são sujeitos a iluminação estroboscópica por forma a serem “vistos”<br />

sempre com as pás na mesma posição. Obtém-se assim uma visualização do padrão <strong>de</strong> cavitação<br />

“estacionária”.<br />

O funcionamento do hélice tem alguns pontos característicos que se passa a i<strong>de</strong>ntificar. A<br />

primeira <strong>de</strong>stas situações acontece quando o motor eléctrico faz rodar o veio do hélice a uma<br />

velocida<strong>de</strong> n mantendo-se a velocida<strong>de</strong> <strong>de</strong> avanço nula, ou seja V a = 0. Nestas condições,<br />

verifica-se J = 0 e η = 0, e diz-se que o hélice funciona a ponto fixo. Se em seguida se<br />

fizer avançar o hélice a uma velocida<strong>de</strong> V a , mantendo a mesma velocida<strong>de</strong> <strong>de</strong> rotação, este<br />

<strong>de</strong>senvolverá um impulso T e absorverá um certo momento Q. Esta fase é a fase propulsora,<br />

utilizada para a propulsão dos navios. Continuando a aumentar o coeficiente <strong>de</strong> impulso por<br />

diminuição da velocida<strong>de</strong> <strong>de</strong> rotação n, o impulso vai diminuindo até o hélice chegar ao ponto<br />

<strong>de</strong> impulso nulo. Inicia-se a fase <strong>de</strong> travagem, até um ponto, no qual o hélice trabalha em<br />

concordância com o coeficiente <strong>de</strong> avanço J, com K Q = 0, hélice livre. Um hélice livre opõe<br />

resistência ao avanço. Continuando a reduzir a velocida<strong>de</strong> <strong>de</strong> rotação do hélice e mantendo<br />

V a , entra-se na fase motora, em que o hélice po<strong>de</strong>ria fornecer energia. Quando a velocida<strong>de</strong><br />

do hélice for nula, o hélice diz-se bloqueado.


58<br />

CAPÍTULO 3. PROPULSÃO<br />

Figura 3.19: Imagem da cavitação num hélice.<br />

3.7 Selecção do hélice<br />

No cálculo do hélice procura-se a optimização das principais variáveis, número e área das<br />

pás, diâmetro, velocida<strong>de</strong> <strong>de</strong> rotação e passo, por forma a que a propulsão se faça com bom<br />

rendimento em todas as condições <strong>de</strong> carga do navio. É possível obter uma boa estimativa<br />

das características <strong>de</strong> funcionamento do hélice utilizando uma das várias séries sistemáticas<br />

referenciadas. As variáveis <strong>de</strong> optimização do hélice são <strong>de</strong>scritas sucintamente nos parágrafos<br />

seguintes.<br />

3.7.1 Variáveis <strong>de</strong> optimização<br />

Diâmetro<br />

O rendimento do hélice aumenta o diâmetro do mesmo, estando no entanto a dimensão<br />

<strong>de</strong>ste limitada pela geometria da popa. Deve-se referir no entanto que o aumento do diâmetro<br />

<strong>de</strong> hélice provoca vibrações mais fortes e a redução do rendimento do casco. As socieda<strong>de</strong>s<br />

classificadoras têm normas próprias para <strong>de</strong>finir valores mínimos <strong>de</strong> folga entre o hélice e o<br />

casco do navio.<br />

O diâmetro máximo do hélice é normalmente consi<strong>de</strong>rado como uma fracção do calado<br />

máximo do navio,<br />

D max = a T (3.34)<br />

<strong>de</strong>pen<strong>de</strong>nte do tipo <strong>de</strong> navio, conforme indicado na Tab. 3.2.<br />

Para compensar a não uniformida<strong>de</strong> do escoamento <strong>de</strong> aproximação ao hélice quando este<br />

se encontra atrás da querena, o diâmetro equivalente em águas livres é consi<strong>de</strong>rado como:<br />

D 0 =<br />

D<br />

1 − b<br />

(3.35)<br />

em que b toma os valores constantes na Tab. 3.3.


3.7.<br />

SELECÇÃO DO HÉLICE 59<br />

Tipo <strong>de</strong> Navio a<br />

Graneleiros/Petroleiros


60<br />

CAPÍTULO 3. PROPULSÃO<br />

No entanto, a curvatura, o ângulo <strong>de</strong> ataque e a espessura das têm também uma gran<strong>de</strong><br />

importância no controle da cavitação. A maior espessura das pás favorece a cavitação nas costas<br />

das pás enquanto que as pás pouco espessas têm maior propensão para gerarem cavitação<br />

no bordo <strong>de</strong> ataque.<br />

Quanto ao rendimento, ele é favorecido pela diminuição da corda das pás, ou seja da sua<br />

área, mas por razões estruturais, esta redução tem que ser acompanhada por um aumento <strong>de</strong><br />

espessura que vai provocar um aumento da resistência <strong>de</strong> forma.<br />

A utilização apropriada do <strong>de</strong>svio circunferencial das pás do hélice (“skew”) permite controlar<br />

muito eficazmente a cavitação e a vibração induzida tendo apenas como contrapartida<br />

uma redução do rendimento do hélice em marcha a ré.<br />

3.7.2 Tipos <strong>de</strong> problema<br />

É possível obter uma boa estimativa das características <strong>de</strong> funcionamento do hélice utilizando<br />

uma das várias séries sistemáticas referenciadas. Uma vez <strong>de</strong>terminado o número e a área<br />

das pás, resta a <strong>de</strong>terminar a combinação do passo e do coeficiente <strong>de</strong> avanço que permite<br />

optimizar o rendimento do hélice. De acordo com o tipo <strong>de</strong> problema em causa, po<strong>de</strong>mos<br />

consi<strong>de</strong>rar várias situações. Quando a potência e a velocida<strong>de</strong> <strong>de</strong> rotação são conhecidas, da<br />

eliminação do diâmetro resulta a seguinte equação:<br />

K Q<br />

J 5 = P Dn 2<br />

2πρV 5 a<br />

(3.37)<br />

Quando a potência e o diâmetro do hélice estão <strong>de</strong>terminados, a eliminação da velocida<strong>de</strong><br />

<strong>de</strong> rotação permite estabelecer:<br />

K Q<br />

J 3 = P D<br />

2πρD 2 V 3 a<br />

(3.38)<br />

Sendo prescritas a força propulsiva e a velocida<strong>de</strong> <strong>de</strong> rotação, a eliminação do diâmetro<br />

conduz à equação:<br />

K T<br />

J 4<br />

= T n2<br />

ρV 4 a<br />

(3.39)<br />

Por fim, quando são conhecidos o diâmetro do hélice e a força propulsiva, a eliminação da<br />

velocida<strong>de</strong> <strong>de</strong> rotação permite estabelecer a seguinte relação:<br />

K T<br />

J 2 = T<br />

ρD 2 V 2 a<br />

3.8 Interacção entre casco e hélice<br />

(3.40)<br />

Os ensaios <strong>de</strong> hélices à escala reduzida em águas livres, conseguindo efectuar uma avaliação<br />

preliminar das características propulsivas <strong>de</strong> um hélice, não permitem uma previsão do seu<br />

<strong>de</strong>sempenho numa dada aplicação específica, porque, na realida<strong>de</strong>, o hélice não vai operar em<br />

águas livres mas sim atrás do navio.<br />

As características <strong>de</strong> um hélice trabalhando atrás <strong>de</strong> um navio a uma dada velocida<strong>de</strong><br />

diferem consi<strong>de</strong>ravelmente das características obtidas em ensaios com mo<strong>de</strong>los em águas livres,<br />

à velocida<strong>de</strong> correspon<strong>de</strong>nte, <strong>de</strong>vido aos seguintes factores:


3.8.<br />

INTERACÇÃO ENTRE CASCO E HÉLICE 61<br />

- a velocida<strong>de</strong> da água na esteira do navio é menor que a velocida<strong>de</strong> do navio;<br />

- a não-uniformida<strong>de</strong> da esteira do navio afecta a distribuição das forças aplicadas nas<br />

pás do hélice;<br />

- a aceleração da água pelo hélice reduz a pressão sobre o casco e, consequentemente<br />

aumentando a resistência efectiva da querena.<br />

3.8.1 Ensaios <strong>de</strong> propulsão<br />

Os ensaios <strong>de</strong> propulsão têm por objectivo <strong>de</strong>terminar, para cada velocida<strong>de</strong> <strong>de</strong> rotação, a<br />

potência propulsiva e a consequente velocida<strong>de</strong> do navio. Os resultados dos ensaios permitem<br />

também a <strong>de</strong>terminação dos coeficientes <strong>de</strong> <strong>de</strong>dução da força propulsiva e da velocida<strong>de</strong> da<br />

esteira necessários para a selecção ou projecto do hélice. O mo<strong>de</strong>lo é equipado com um<br />

hélice pré-seleccionado <strong>de</strong> acordo com as necessida<strong>de</strong>s operacionais previstas para o navio. A<br />

optimização a partir <strong>de</strong>ste hélice-base <strong>de</strong>correrá a partir dos resultados obtidos neste ensaio<br />

<strong>de</strong> auto-propulsão. O accionamento <strong>de</strong>ste hélice é normalmente realizado por um pequeno<br />

motor eléctrico, conforme representado esquematicamente na Fig. 3.20.<br />

Figura 3.20: Mo<strong>de</strong>lo para ensaios <strong>de</strong> propulsão.<br />

As condições <strong>de</strong> realização do ensaio <strong>de</strong> propulsão contemplam:<br />

- semelhança geométrica;<br />

- semelhança cinemática;<br />

- semelhança <strong>de</strong> Frou<strong>de</strong>;<br />

- igual número <strong>de</strong> cavitação.<br />

Pelas razões apontadas anteriormente, não é possível acumular com aquelas condicionantes<br />

a igualda<strong>de</strong> do número <strong>de</strong> Reynolds. Assim, existem efeitos <strong>de</strong> escala a consi<strong>de</strong>rar na<br />

extrapolação dos resultados para a escala do navio.<br />

O primeiro efeito <strong>de</strong> escala a consi<strong>de</strong>rar no ensaio <strong>de</strong> propulsão é o efeito <strong>de</strong> escala na<br />

resistência. O coeficiente <strong>de</strong> resistência total é superior no teste do mo<strong>de</strong>lo ao que se verificará<br />

no navio porque o coeficiente <strong>de</strong> resistência <strong>de</strong> atrito diminui com o aumento do número


62<br />

CAPÍTULO 3. PROPULSÃO<br />

<strong>de</strong> Reynolds. Este efeito resultante da variação do número <strong>de</strong> Reynolds é resolvido pela<br />

aplicação <strong>de</strong> uma força <strong>de</strong> compensação. A intensida<strong>de</strong> da força <strong>de</strong> compensação necessária<br />

F D é <strong>de</strong>terminada por,<br />

F D = 1 2 ρ · V 2 m · S m · ((1 + k) (c F m − c F s ) − c A − c AA ) (3.41)<br />

O hélice tem portanto que produzir uma força propulsiva igual à resistência total R T menos<br />

a força <strong>de</strong> compensação F D .<br />

Outro efeito <strong>de</strong> escala a consi<strong>de</strong>rar no ensaio <strong>de</strong> propulsão diz respeito à esteira. A<br />

espessura da camada limite e esteira do mo<strong>de</strong>lo é relativamente maior que a correspon<strong>de</strong>nte<br />

espessura no navio. Ou seja, o coeficiente <strong>de</strong> esteira do mo<strong>de</strong>lo é maior que o do navio. A<br />

velocida<strong>de</strong> média <strong>de</strong> aproximação ao hélice, adimensionalizada pela velocida<strong>de</strong> do mo<strong>de</strong>lo, é<br />

menor que a correspon<strong>de</strong>nte velocida<strong>de</strong> adimensionalizada do navio.<br />

Por último, <strong>de</strong>verá ser consi<strong>de</strong>rado o efeito <strong>de</strong> escala nas características propulsivas do<br />

hélice. De facto, o número <strong>de</strong> Reynolds do hélice no mo<strong>de</strong>lo é menor que no hélice do navio<br />

e os coeficientes <strong>de</strong> força propulsiva e <strong>de</strong> binário são diferentes.<br />

Na realização dos ensaios <strong>de</strong> propulsão é normalmente mantida a velocida<strong>de</strong> do “carro” <strong>de</strong><br />

reboque constante e é variada a velocida<strong>de</strong> <strong>de</strong> rotação do hélice até ser obtida uma condição<br />

<strong>de</strong> equilíbrio. São assim obtidos dados <strong>de</strong> força propulsiva e binário em função da velocida<strong>de</strong>.<br />

Adicionalmente, po<strong>de</strong>m ainda ser registados dados sobre o calado e o caimento do mo<strong>de</strong>lo<br />

durante o ensaio.<br />

O ponto <strong>de</strong> auto-propulsão do mo<strong>de</strong>lo é encontrado quando as forças exteriores sobre o<br />

mo<strong>de</strong>lo são nulas. O ensaio é realizado com o número <strong>de</strong> Frou<strong>de</strong> do navio, fazendo variar a<br />

velocida<strong>de</strong> <strong>de</strong> rotação do hélice até que a força <strong>de</strong> reboque se anule. Nesta situação, a força<br />

propulsiva iguala a resistência da querena, alterada pela presença <strong>de</strong> hélice. Para compensar<br />

a diferença no coeficiente <strong>de</strong> resistência do navio e do mo<strong>de</strong>lo, é aplicada a força adicional <strong>de</strong><br />

reboque F D <strong>de</strong>terminada pela Eq. (3.41). É portanto mais correcto afirmar que no ponto <strong>de</strong><br />

auto-propulsão do mo<strong>de</strong>lo, a única força exterior aplicada ao mo<strong>de</strong>lo é a força F D .<br />

Para além do chamado ensaio <strong>de</strong> auto-propulsão, realizam-se os ensaios em sobrecarga.<br />

Cada ensaio em sobrecarga realiza-se também com o hélice a operar atrás do mo<strong>de</strong>lo com este<br />

a ser rebocado a velocida<strong>de</strong> constante. Faz-se variar a velocida<strong>de</strong> <strong>de</strong> rotação do hélice e, para<br />

cada uma das velocida<strong>de</strong>s ensaiadas n m regista-se a força <strong>de</strong> reboque F m , a força propulsiva<br />

T m e o binário Q m . Po<strong>de</strong>-se encontrar também o ponto <strong>de</strong> auto-propulsão do mo<strong>de</strong>lo por<br />

interpolação nos resultados dos ensaios em sobrecarga, mais concretamente interpolando na<br />

curva da força <strong>de</strong> reboque em função da velocida<strong>de</strong> <strong>de</strong> rotação, para o valor requerido <strong>de</strong> F D .<br />

3.8.2 Potência e velocida<strong>de</strong><br />

A potência efectiva P E , potência necessária para rebocar a querena, sem os apêndices associados<br />

à propulsão, à velocida<strong>de</strong> V s , é obtida por<br />

em que:<br />

P E = R T · V s (3.42)<br />

- R T é a resistência total em águas livres excluindo a resistência adicional dos apêndices<br />

associados à propulsão;<br />

- e V s é a velocida<strong>de</strong> do navio.


3.8.<br />

INTERACÇÃO ENTRE CASCO E HÉLICE 63<br />

De forma análoga, a potência propulsiva P T po<strong>de</strong> ser obtida por<br />

em que:<br />

P T = T · V a<br />

- T é a força propulsiva calculada a partir dos ensaios <strong>de</strong> propulsão;<br />

- e V a é a velocida<strong>de</strong> <strong>de</strong> avanço do hélice.<br />

A força propulsiva T é superior à resistência R T avaliada a partir do ensaio <strong>de</strong> resistência<br />

realizado sem hélice. Isto significa, como referido antes, que a presença do hélice induz uma<br />

resistência adicional porque:<br />

- a presença do hélice aumenta a velocida<strong>de</strong> do escoamento na zona da popa do navio e,<br />

em consequência a resistência <strong>de</strong> atrito;<br />

- a presença do hélice provoca uma diminuição da pressão nos painéis da popa do navio.<br />

O segundo <strong>de</strong>stes factores é normalmente o mais significativo.<br />

O aumento da resistência <strong>de</strong>vido ao efeito da presença do hélice é usualmente representado<br />

por uma redução da força propulsora expressa como fracção <strong>de</strong>ssa força. O coeficiente <strong>de</strong><br />

<strong>de</strong>dução da força propulsiva t associa então a força propulsiva e a resistência,<br />

t = 1 − R T<br />

T<br />

(3.43)<br />

em que t é normalmente consi<strong>de</strong>rado igual no mo<strong>de</strong>lo e no navio.<br />

Depois <strong>de</strong> realizados os ensaios <strong>de</strong> propulsão e calculados os coeficientes <strong>de</strong> força propulsiva,<br />

K T m e K Qm , o coeficiente <strong>de</strong> <strong>de</strong>dução da força propulsiva é calculado por<br />

t m = T m + F D − R C<br />

T m<br />

(3.44)<br />

em que R C é a resistência corrigida para a diferença <strong>de</strong> temperatura entre os dois ensaios,<br />

resistência e propulsão. O valor <strong>de</strong> R C será,<br />

R C = (1 + k) c F mC + c R<br />

(1 + k) c F m + c R<br />

R T m (3.45)<br />

em que c F mC é o coeficiente da resistência <strong>de</strong> atrito avaliado à temperatura da água no ensaio<br />

<strong>de</strong> propulsão.<br />

Para corrigir o efeito da velocida<strong>de</strong> da esteira, <strong>de</strong>fine-se o coeficiente <strong>de</strong> <strong>de</strong>dução da esteira,<br />

w, que permite relacionar a velocida<strong>de</strong> <strong>de</strong> avanço V a com a velocida<strong>de</strong> do navio V ,<br />

w = 1 − V a<br />

V<br />

(3.46)<br />

Consi<strong>de</strong>rando o diagrama em águas livres do hélice, com o valor <strong>de</strong> K T m avaliado com a<br />

força propulsiva experimental do ensaio <strong>de</strong> propulsão, po<strong>de</strong> obter-se através daquele diagrama<br />

um valor para o coeficiente <strong>de</strong> avanço J 0m . O coeficiente <strong>de</strong> esteira do mo<strong>de</strong>lo será então dado<br />

por<br />

w m = 1 − J 0mD m n m<br />

V m<br />

(3.47)


64<br />

CAPÍTULO 3. PROPULSÃO<br />

Ou seja, a velocida<strong>de</strong> média axial no plano do hélice atrás do navio à velocida<strong>de</strong> V , no<br />

ensaio <strong>de</strong> resistência sem hélice, é a velocida<strong>de</strong> da esteira nominal,<br />

V a = (1 − w n ) V (3.48)<br />

e, com o hélice em operação atrás do navio, o escoamento <strong>de</strong>vido à presença da querena é<br />

modificado obtendo-se a velocida<strong>de</strong> da esteira efectiva,<br />

V e = (1 − w e ) V (3.49)<br />

A velocida<strong>de</strong> total será a soma da velocida<strong>de</strong> da esteira efectiva e da velocida<strong>de</strong> axial induzida<br />

pelo hélice.<br />

O rendimento rotativo relativo η R é calculado por<br />

η R = K Q0m<br />

K Qm<br />

(3.50)<br />

em que K Q0m é obtido a partir do diagrama em águas livres do hélice e o coeficiente <strong>de</strong> binário<br />

K Qm é calculado com base nos resultados experimentais do ensaio <strong>de</strong> propulsão.<br />

Designa-se por rendimento do casco a razão entre a potência efectiva e a potência propulsiva,<br />

ou seja,<br />

η H = P E<br />

P T<br />

= R T · V s<br />

T · V a<br />

= 1 − t<br />

1 − w<br />

(3.51)<br />

A <strong>de</strong>terminação <strong>de</strong> w, t e η H é feita preferencialmente através <strong>de</strong> ensaios <strong>de</strong> mo<strong>de</strong>los em<br />

ensaios <strong>de</strong> auto-propulsão utilizando um hélice <strong>de</strong> “stock” com características conhecidas, tão<br />

aproximadas quanto possível do hélice óptimo. Se não for possível utilizar um mo<strong>de</strong>lo, aqueles<br />

parâmetros po<strong>de</strong>rão ser estimados com base em dados estatísticos. Para navios com um ou<br />

dois hélices, o diagrama <strong>de</strong> Harvald permite estimar os valores <strong>de</strong> w, t e η H em função do<br />

coeficiente <strong>de</strong> finura total e da razão B/L, com correcções associadas ao tipo <strong>de</strong> popa, cota do<br />

veio e diâmetro do hélice. Outros autores propuseram algumas expressões para a estimativa<br />

daqueles parâmetros. Destas, <strong>de</strong>stacam-se as <strong>de</strong> Taylor, Schoenherr e Luke, para navios com<br />

um hélice,<br />

e,<br />

w = 0, 5C b + 0, 025 (3.52)<br />

t = 0, 5w (3.53)<br />

com η H = 1, 02. Para navios com dois hélices,<br />

e,<br />

w = 0, 4533C b − 0, 114 (3.54)<br />

t = 0, 7w + 0, 01 (3.55)<br />

com η H = 0, 985. Po<strong>de</strong>rão aqui ser referidas as expressões mais complexas apresentadas por<br />

Holtrop, com base em mais <strong>de</strong> duzentos ensaios <strong>de</strong> auto-propulsão em mo<strong>de</strong>los <strong>de</strong> navios <strong>de</strong><br />

diversos tipos.


3.8.<br />

INTERACÇÃO ENTRE CASCO E HÉLICE 65<br />

A potência absorvida pelo hélice po<strong>de</strong> ser expressa em termos da velocida<strong>de</strong> <strong>de</strong> rotação n<br />

(em rps) e do binário Q por<br />

P D = 2π · n · Q (3.56)<br />

Devido às perdas mecânicas no veio e chumaceiras, a potência recebida pelo hélice P D é<br />

inferior à potência efectiva do motor (’brake power’) P B ,<br />

P D = η s · P B (3.57)<br />

em que η s é o rendimento da linha <strong>de</strong> veios. A eficiência do propulsor atrás do navio, avalia<br />

as perdas <strong>de</strong>s<strong>de</strong> a potência recebida pelo hélice P D e a potência propulsiva P T ,<br />

P T = η B · P D (3.58)<br />

Esta eficiência do propulsor atrás do navio η B é diferente da eficiência em águas livres η 0<br />

verificada experimentalmente. O rendimento rotativo relativo η R avalia as perdas associadas<br />

à diferença entre o escoamento em águas livres e o escoamento tridimensional não-uniforme<br />

no plano do propulsor,<br />

η B = η R · η 0 (3.59)<br />

Em resumo, verifica-se sempre a relação,<br />

P B > P D > P T > P E<br />

em que os valores daquelas potências são calculadas por<br />

P E = η H · P T = η H · η B · P D = η H · η 0 · η R · P D = η H · η 0 · η R · η S · P B<br />

Se o rendimento quase-propulsivo η D espressar o conjunto <strong>de</strong> eficiências hidrodinâmicas<br />

consi<strong>de</strong>radas,<br />

η D = η H · η 0 · η R (3.60)<br />

então, a potência efectiva po<strong>de</strong> ser dada por<br />

P E = η D · η S · P B<br />

As leis <strong>de</strong> semelhança permitem a extrapolação das medições efectuadas para a escala do<br />

navio,<br />

V s = √ λV m , (3.61)<br />

n s = n m / √ λ , (3.62)<br />

e,<br />

T s = T m · (ρ s /ρ m ) · λ 3 (3.63)<br />

Q s = Q m · (ρ s /ρ m ) · λ 4 (3.64)


66<br />

CAPÍTULO 3. PROPULSÃO<br />

3.8.3 Extrapolação dos resultados do ensaio <strong>de</strong> propulsão<br />

O procedimento recomendado pela ITTC para o tratamento dos dados experimentais resultantes<br />

dos ensaios <strong>de</strong> resistência e <strong>de</strong> propulsão para a previsão do <strong>de</strong>sempenho do navio está<br />

incluído no Apêndice A. Para além dos já referidos ensaios <strong>de</strong> reboque e propulsão, são ainda<br />

necessários testes do hélice em águas livres. De uma forma sucinta, o referido procedimento<br />

envolve os seguintes passos:<br />

- prever a resistência total do navio a partir da resistência avaliada no mo<strong>de</strong>lo, corrigindo<br />

<strong>de</strong> acordo com as resistências adicionais que <strong>de</strong>vam ser consi<strong>de</strong>radas;<br />

- estimar as características do hélice propulsor com base nos coeficientes propulsivos <strong>de</strong>terminados<br />

para o mo<strong>de</strong>lo;<br />

- estimar a esteira do navio e as condições <strong>de</strong> funcionamento do hélice;<br />

- estimar a velocida<strong>de</strong> <strong>de</strong> rotação do hélice e potência necessária com base em factores <strong>de</strong><br />

correlação entre o mo<strong>de</strong>lo e o navio.<br />

Os <strong>de</strong>talhes <strong>de</strong> cada um <strong>de</strong>stes passos, bem como o formulário <strong>de</strong> cálculo, <strong>de</strong>vem ser<br />

consultados no referido Apêndice A.<br />

As várias condições consi<strong>de</strong>radas nos ensaios do mo<strong>de</strong>lo servirão para fazer uma previsão<br />

do <strong>de</strong>sempenho do navio numa gama <strong>de</strong> velocida<strong>de</strong>s para as condições <strong>de</strong> lastro e carregado,<br />

conforme representado na Fig. 3.21.<br />

Figura 3.21: Resultados dos ensaios <strong>de</strong> propulsão.


Capítulo 4<br />

Instalações Propulsoras<br />

4.1 Introdução<br />

A escolha <strong>de</strong> uma máquina propulsora ou da configuração mais apropriada para a instalação<br />

propulsora num projecto <strong>de</strong> nova construção ou reconversão não é actualmente uma <strong>de</strong>cisão<br />

simples. É imperioso que esta <strong>de</strong>cisão seja precedida <strong>de</strong> uma análise rigorosa das várias opções<br />

disponíveis para o perfil <strong>de</strong> operação futura <strong>de</strong>finido para o navio.<br />

Uma vez <strong>de</strong>terminada a potência absorvida pelo hélice, torna-se necessário i<strong>de</strong>ntificar as<br />

soluções que satisfazem os requisitos <strong>de</strong> potência, velocida<strong>de</strong> <strong>de</strong> rotação, consumo e dimensões.<br />

A sua avaliação técnico-financeira será então realizada por critérios baseados nos seguintes<br />

factores:<br />

- o investimento inicial;<br />

- a fiabilida<strong>de</strong>;<br />

- os custos <strong>de</strong> manutenção previstos;<br />

- os custos <strong>de</strong> operação previstos;<br />

- a margem do motor, relacionada com a diferença entre a potência máxima e a potência<br />

<strong>de</strong> serviço do motor.<br />

Este processo <strong>de</strong> selecção terminará sempre numa solução <strong>de</strong> compromisso já que nenhum<br />

tipo <strong>de</strong> instalação apresentará apenas vantagens comparativas.<br />

No passado, o armador ou o projectista tinha como escolha imediata um motor diesel lento<br />

acoplado directamente a um hélice <strong>de</strong> passo fixo, ou um motor diesel <strong>de</strong> média velocida<strong>de</strong>,<br />

a quatro tempos, accionando através <strong>de</strong> engrenagens redutoras um hélice <strong>de</strong> passo fixo ou<br />

controlável.<br />

Actualmente, a propulsão dos navios que entram em serviço é obtida com o acoplamento<br />

directo, muito esporadicamente com engrenagens redutoras, <strong>de</strong> motores a dois tempos a hélices<br />

<strong>de</strong> passo fixo ou controlável, motores <strong>de</strong> média velocida<strong>de</strong> a quatro tempos e engrenagens<br />

redutoras ou ainda por instalações diesel-eléctricas com recurso a motores diesel, a quatro<br />

tempos, rápidos ou <strong>de</strong> média velocida<strong>de</strong>. Algumas variantes <strong>de</strong> instalações propulsoras estão<br />

representadas nas Fig. 4.1 e 4.2.<br />

67


68<br />

CAPÍTULO 4. INSTALAÇÕES PROPULSORAS<br />

Figura 4.1: Variantes <strong>de</strong> instalações propulsoras diesel-mecânicas lentas e<br />

<strong>de</strong> média velocida<strong>de</strong>.<br />

Os motores diesel lentos predominam no sector do transporte <strong>de</strong> granéis, líquidos e sólidos,<br />

e contentores <strong>de</strong> longo curso. Motores <strong>de</strong> média velocida<strong>de</strong> são preferidos em navios <strong>de</strong><br />

carga com menor dimensão, ferries, turismo <strong>de</strong> passageiros, RoRo’s, bem como em nichos <strong>de</strong><br />

mercado muito específicos como os quebra-gelos, navios <strong>de</strong> apoio a plataformas <strong>de</strong> exploração<br />

petrolífera, etc.<br />

No passado recente, estas tradicionais zonas <strong>de</strong> influência <strong>de</strong> cada um dos referidos tipos<br />

<strong>de</strong> motores têm-se sobreposto. As novas gerações <strong>de</strong> motores a quatro tempos, com cilindros<br />

<strong>de</strong> gran<strong>de</strong> diâmetro e média velocida<strong>de</strong> apresentam-se como soluções competitivas para navios<br />

a operar em viagens <strong>de</strong> longo curso. Em contrapartida, os motores lentos a dois tempos com<br />

cilindros <strong>de</strong> pequeno diâmetro também se apresentam como soluções válidas para os mercados<br />

costeiro e fluvial.<br />

Um aspecto fundamental a consi<strong>de</strong>rar no processo <strong>de</strong> <strong>de</strong>cisão na escolha da instalação<br />

propulsora será necessariamente o custo. Não só o custo inicial, o investimento a fazer na<br />

aquisição do motor, mas também os custos associados à operação do navio ou, <strong>de</strong> uma forma<br />

mais geral, os custos totais do ciclo <strong>de</strong> vida do navio. Naqueles custos <strong>de</strong> operação <strong>de</strong>verão<br />

ser tidos em conta, entre outros, os seguintes aspectos:<br />

- o tipo <strong>de</strong> combustível que a instalação vai permitir consumir;<br />

- uma previsão dos custos <strong>de</strong> manutenção;<br />

- os recursos humanos exigidos para a operação/condução da instalação;<br />

- a disponibilida<strong>de</strong> e quantida<strong>de</strong>/custo dos sobressalentes.


4.2.<br />

PROPULSÃO DIESEL-MECÂNICA 69<br />

Figura 4.2: Instalações propulsoras diesel-mecânica (em cima) e dieseleléctrica<br />

(em baixo).<br />

A avaliação dos custos <strong>de</strong> operação ao fim da vida <strong>de</strong> exploração do navio po<strong>de</strong> variar <strong>de</strong><br />

forma muito significativa com o tipo <strong>de</strong> motor escolhido, e com a configuração da instalação<br />

propulsora adoptada.<br />

A dimensão da casa da máquina, a cujo aumento correspon<strong>de</strong>rá uma redução do espaço<br />

<strong>de</strong> carga disponível para a exploração do navio, é essencialmente condicionada pela dimensão<br />

da máquina principal. A própria altura da casa da máquina é importante em alguns tipos <strong>de</strong><br />

navios como os ferries com convés para veículos.<br />

4.2 Propulsão diesel-mecânica<br />

Conforme já referido, a propulsão por um hélice <strong>de</strong> passo fixo accionado directamente por um<br />

motor diesel lento a dois tempos continua a ser o sistema mais frequentemente encontrado em<br />

navios <strong>de</strong> carga <strong>de</strong> longo curso. A ligeira redução no rendimento <strong>de</strong> propulsão reconhecida é<br />

admitida face à simplicida<strong>de</strong> da solução obtida e, a introdução <strong>de</strong> motores <strong>de</strong> longo, super-,<br />

e ultra-longo curso veio diminuir aquelas perdas. No entanto, a velocida<strong>de</strong> <strong>de</strong> 100/110 rpm<br />

não é necessariamente a mais a<strong>de</strong>quada para a propulsão <strong>de</strong> um gran<strong>de</strong> navio. Os motores<br />

actualmente disponíveis com maior curso <strong>de</strong>senvolvem a sua potência nominal a velocida<strong>de</strong>s<br />

tão baixas como 55 rpm até cerca <strong>de</strong> 250 rpm. Para um dado navio, é então possível prescrever<br />

uma solução <strong>de</strong> acoplamento directo motor/hélice que permita optimizar o rendimento <strong>de</strong><br />

propulsão.<br />

Um outro aspecto a consi<strong>de</strong>rar é o número <strong>de</strong> cilindros do motor. Os motores lentos actuais,<br />

com cilindros <strong>de</strong> gran<strong>de</strong> diâmetro, permitem extrair a potência necessária à propulsão <strong>de</strong><br />

um navio <strong>de</strong> um motor com um reduzido número <strong>de</strong> cilindros. Um motor com menos cilindros<br />

influencia naturalmente <strong>de</strong> forma favorável a dimensão da casa da máquina, o volume <strong>de</strong> trabalho<br />

afecto à sua manutenção e a quantida<strong>de</strong> <strong>de</strong> sobressalentes a manter no navio. Este tipo<br />

<strong>de</strong> solução é portanto bem acolhida <strong>de</strong>s<strong>de</strong> que daqui não resultem problemas <strong>de</strong> equilíbrio<br />

do motor e vibrações. Estes motores com cilindros <strong>de</strong> gran<strong>de</strong> diâmetro queimam bem combustíveis<br />

pesados <strong>de</strong> fraca qualida<strong>de</strong> e proporcionam um consumo específico <strong>de</strong> combustível


70<br />

CAPÍTULO 4. INSTALAÇÕES PROPULSORAS<br />

inferior ao obtido em motores com cilindros <strong>de</strong> menor diâmetro.<br />

Neste tipo <strong>de</strong> instalações, a energia eléctrica necessária ao funcionamento dos equipamentos<br />

auxiliares é normalmente fornecida por geradores accionados por motores diesel rápidos<br />

ou <strong>de</strong> média velocida<strong>de</strong>. A gran<strong>de</strong> parte dos fabricantes <strong>de</strong> motores diesel para accionamento<br />

<strong>de</strong> alternadores está já hoje em condições <strong>de</strong> oferecer soluções capazes <strong>de</strong> consumir o<br />

mesmo combustível que a máquina principal, ou “marine diesel-oil” ou ainda uma mistura<br />

(blen<strong>de</strong>d) <strong>de</strong> combustíveis pesado e <strong>de</strong>stilado. Actualmente, são já comuns instalações propulsoras<br />

“Unifuel”, nas quais máquina principal e motores auxiliares consomem o mesmo tipo<br />

<strong>de</strong> combustível.<br />

4.2.1 Accionamento <strong>de</strong> auxiliares<br />

Os custos associados à produção da energia eléctrica necessária ao funcionamento dos equipamentos<br />

auxiliares da instalação são também um factor importante na selecção da máquina<br />

principal. O <strong>de</strong>senvolvimento das máquinas tem tido como principais objectivos nesta área:<br />

- maximizar o aproveitamento <strong>de</strong> energia para permitir complementar a produção <strong>de</strong><br />

energia eléctrica durante as viagens;<br />

- permitir o uso <strong>de</strong> alternadores accionados pela máquina principal através <strong>de</strong> engrenagens<br />

multiplicadoras ou directamente montados na linha <strong>de</strong> veio;<br />

- possibilitar o accionamento <strong>de</strong> equipamentos auxiliares directamente pela máquina principal.<br />

A principal motivação para a produção <strong>de</strong> energia eléctrica a partir da máquina principal<br />

resulta do seu superior rendimento térmico, menor consumo específico <strong>de</strong> combustível e capacida<strong>de</strong><br />

para consumir combustíveis <strong>de</strong> inferior qualida<strong>de</strong> e custo. Outra vantagem resulta<br />

naturalmente do menor consumo <strong>de</strong> óleo lubrificante, <strong>de</strong> menos intervenções <strong>de</strong> manutenção e<br />

inferiores custos com sobressalentes resultantes da redução do tempo <strong>de</strong> funcionamento obtida<br />

com a paragem dos diesel-geradores durante a viagem.<br />

No caso <strong>de</strong> uma instalação com hélice <strong>de</strong> passo fixo, a utilização <strong>de</strong> um acoplamento por<br />

engrenagens, que permita manter constante a velocida<strong>de</strong> <strong>de</strong> rotação do alternador (Fig. 4.3),<br />

possibilita a utilização do gerador a plena carga numa gama <strong>de</strong> velocida<strong>de</strong>s da máquina<br />

principal que habitualmente ronda os 70 a 100% da sua velocida<strong>de</strong> nominal.<br />

A localização do alternador é também um aspecto importante para permitir a <strong>de</strong>sejável<br />

redução <strong>de</strong> espaço ocupado pela casa da máquina. São actualmente possíveis diversos arranjos<br />

que vão <strong>de</strong>s<strong>de</strong> a colocação lateral ao motor ou em qualquer uma das suas extremida<strong>de</strong>s.<br />

Em alternativa, quer no caso das instalações com hélice <strong>de</strong> passo fixo, quer no caso daquelas<br />

que dispõem <strong>de</strong> passo controlável, po<strong>de</strong>m ser utilizados sistemas baseados na conversão da<br />

frequência da energia eléctrica produzida (Fig. 4.4).<br />

Mais recentemente, as opções para a produção <strong>de</strong> energia eléctrica a bordo alargaramse<br />

à utilização <strong>de</strong> turbinas movimentadas pelos gases <strong>de</strong> evacuação do motor. O elevado<br />

rendimento dos sobrealimentadores mais mo<strong>de</strong>rnos torna exce<strong>de</strong>ntária uma fracção dos gases<br />

<strong>de</strong> evacuação. O aproveitamento <strong>de</strong>stes gases <strong>de</strong> evacuação em pequenas turbinas po<strong>de</strong>rá<br />

integrar-se em sistemas, que contemplando ainda grupos diesel-geradores, geradores-ao-veio e<br />

turbo-geradoras a vapor, <strong>de</strong> forma isolada ou combinada, permitirão a optimização dos custos<br />

<strong>de</strong> produção da energia eléctrica para os vários estados <strong>de</strong> operação do navio.


4.2.<br />

PROPULSÃO DIESEL-MECÂNICA 71<br />

Figura 4.3: Acoplamento com relação variável <strong>de</strong> velocida<strong>de</strong>s.<br />

4.2.2 Engrenagens redutoras<br />

Em muitas instalações propulsoras espera-se da caixa redutora:<br />

- a <strong>de</strong>terminação da velocida<strong>de</strong> e do sentido <strong>de</strong> rotação do hélice, e a capacida<strong>de</strong> <strong>de</strong><br />

inversão;<br />

- que proporcione uma forma <strong>de</strong> acoplamento, permitindo estabelecer e interromper a<br />

transmissão <strong>de</strong> potência entre o motor e o hélice;<br />

- que seja capaz <strong>de</strong> absorver o impulso recebido do hélice.<br />

O projecto <strong>de</strong> engrenagens, embraiagens ou outras formas <strong>de</strong> acoplamento usadas em instalações<br />

navais têm <strong>de</strong> satisfazer vários, e por vezes conflituantes, requisitos quanto à sua<br />

flexibilida<strong>de</strong> operacional, fiabilida<strong>de</strong>, ruído emitido e espaço ocupado. Os <strong>de</strong>senvolvimentos<br />

nas áreas do projecto, dos materiais e dos sistemas <strong>de</strong> controlo contribuíram para soluções<br />

inovadoras para instalações propulsoras versáteis com um ou mais motores, envolvendo tomadas<br />

<strong>de</strong> extração <strong>de</strong> potência (“Power Take-Off’s - PTO”) para accionamento <strong>de</strong> alternadores<br />

e tomadas para recepção <strong>de</strong> potência (“Power Take-In’s - PTI ”) para aumentar a potência<br />

<strong>de</strong> propulsão.<br />

A forma mais comum do accionamento indirecto do hélice passa pela utilização <strong>de</strong> um<br />

ou mais motores a quatro tempos <strong>de</strong> média velocida<strong>de</strong>, ligados através <strong>de</strong> embraiagens e<br />

acoplamentos a uma caixa redutora, para movimentar um hélice <strong>de</strong> passo fixo ou controlável<br />

(Fig. 4.5 e 4.6).<br />

A utilização <strong>de</strong> hélices <strong>de</strong> passo controlável permite eliminar a necessida<strong>de</strong> da reversibilida<strong>de</strong><br />

do motor. Por outro lado, a utilização da caixa redutora permite escolher a velocida<strong>de</strong><br />

<strong>de</strong> funcionamento do hélice mais apropriada. De uma forma geral, po<strong>de</strong>-se afirmar que as perdas<br />

mecânicas na transmissão são compensadas por um maior rendimento propulsivo, quando


72<br />

CAPÍTULO 4. INSTALAÇÕES PROPULSORAS<br />

Figura 4.4: Conversão da frequência da energia eléctrica.<br />

comparado com um caso <strong>de</strong> acoplamento directo para a mesma potência. Os custos adicionais<br />

da transmissão são também, pelo menos parcialmente, compensados pelo menor custo<br />

do motor a quatro tempos, quando comparado com um motor lento a dois tempos.<br />

São normalmente i<strong>de</strong>ntificadas como principais vantagens das instalações propulsoras com<br />

mais <strong>de</strong> um motor, rápido ou <strong>de</strong> média velocida<strong>de</strong>:<br />

- a redundância permite maior disponibilida<strong>de</strong> para a operação do navio:<br />

- no caso <strong>de</strong> avaria num motor, o outro ou os outros mantêm a navegabilida<strong>de</strong>;<br />

- o número <strong>de</strong> motores em serviço para a propulsão po<strong>de</strong> variar para garantir a forma<br />

mais económica para uma viagem:<br />

- quando o navio viaja em lastro, carga parcial ou a velocida<strong>de</strong> reduzida um<br />

dos motores po<strong>de</strong> ser utilizado à sua potência nominal, com bom rendimento,<br />

enquanto outro ou outros po<strong>de</strong>m ser parados;<br />

- pelo contrário, em condições operacionais semelhantes, um motor único, acoplado<br />

directamente ao hélice, funcionaria durante longos períodos a carga parcial<br />

com pouco rendimento;<br />

- A possibilida<strong>de</strong> <strong>de</strong> alterar o número <strong>de</strong> motores em serviço facilita o planeamento e a<br />

execução das tarefas <strong>de</strong> manutenção e reparação uma vez que estas po<strong>de</strong>rão ser realizadas<br />

em viagem.<br />

- Esta flexibilida<strong>de</strong> <strong>de</strong> operação é particularmente valorizada numa época em que se<br />

preten<strong>de</strong> uma exploração intensiva dos navios.<br />

- As operações <strong>de</strong> manutenção e reparação po<strong>de</strong>m ainda <strong>de</strong>correr em porto sem<br />

preocupações particulares relativas à necessida<strong>de</strong> <strong>de</strong> mudança <strong>de</strong> cais ou partida<br />

antecipada.<br />

- As instalações propulsoras <strong>de</strong> uma frota <strong>de</strong> navios po<strong>de</strong> ser baseada num só mo<strong>de</strong>lo<br />

<strong>de</strong> motor, ajustando o número <strong>de</strong> motores no navio e o número <strong>de</strong> cilindros por motor<br />

para as necessida<strong>de</strong>s <strong>de</strong> propulsão <strong>de</strong> cada um dos navios, com redução do custo <strong>de</strong>


4.2.<br />

PROPULSÃO DIESEL-MECÂNICA 73<br />

Figura 4.5: Instalação propulsora com quatro motores, engrenagens redutoras<br />

e dois hélices.<br />

sobressalentes e inventários, para além dos benefícios resultantes da familiarização das<br />

tripulações.<br />

Este conceito po<strong>de</strong> ainda ser alargado aos motores auxiliares (“uniform machinery installations<br />

”), em que os motores principais e auxiliares são do mesmo mo<strong>de</strong>lo.<br />

4.2.3 Configuração ”pai-e-filho”<br />

A flexibilida<strong>de</strong> <strong>de</strong> operação é potenciada pela adopção das instalações do tipo ”pai-e-filho”.<br />

Nestas instalações, motores a quatro tempos do mesmo mo<strong>de</strong>lo, ou <strong>de</strong> dois mo<strong>de</strong>los muito<br />

semelhantes, mas com diferente número <strong>de</strong> cilindros, fazem o accionamento do veio do hélice<br />

acoplados a uma caixa redutora comum. Cada um daqueles motores po<strong>de</strong> ser ainda acoplado<br />

a uma máquina eléctrica que po<strong>de</strong> funcionar como motor ou gerador.<br />

Numa configuração <strong>de</strong>ste tipo, a propulsão po<strong>de</strong> ser assegurada:<br />

- conjuntamente pelos dois motores diesel;<br />

- apenas por qualquer um dos motores diesel.<br />

Em qualquer dos casos, po<strong>de</strong>m ser ainda utilizados os, nesta situação, motores eléctricos<br />

acoplados ao veio como motores propulsores, alimentados com energia eléctrica produzida<br />

pelos geradores auxiliares.


74<br />

CAPÍTULO 4. INSTALAÇÕES PROPULSORAS<br />

Figura 4.6: Instalação com dois motores diesel diferentes, engrenagens redutoras,<br />

embraiagens e geradores acoplados aos veios.<br />

4.3 Propulsão diesel-eléctrica<br />

4.3.1 Propulsão por motor eléctrico<br />

A propulsão diesel-eléctrica, baseada em grupos electrogéneos <strong>de</strong> média velocida<strong>de</strong>, é uma<br />

forma <strong>de</strong> accionamento indirecto com crescente implantação no mercado. Após um período<br />

em que a utilização <strong>de</strong>ste tipo <strong>de</strong> sistemas esteve confinada a nichos <strong>de</strong> mercado <strong>de</strong> activida<strong>de</strong>s<br />

com elevada especificida<strong>de</strong>, como por exemplo os quebra-gelos, navios <strong>de</strong> investigação etc.,<br />

as mais recentes tecnologias para a conversão AC/DC alargaram o potencial <strong>de</strong> utilização da<br />

propulsão eléctrica ao mercado dos navios <strong>de</strong> passageiros, “shuttle tanker’s” no Mar do Norte.<br />

Estando já estabelecido como uma boa solução neste mercados, começam a surgir referências<br />

da aplicação <strong>de</strong>ste tipo <strong>de</strong> instalações propulsoras a navios <strong>de</strong> transporte <strong>de</strong> químicos<br />

(costeiro e longo curso), ferries e RoRo’s. Discute-se ainda as vantagens da sua aplicação<br />

pelo menos a algumas classes <strong>de</strong> porta-contentores. A propulsão diesel-eléctrica, combinada<br />

com motores “dual-fuel”, está também bem implantada no sector do transporte <strong>de</strong> LNG.<br />

A propulsão diesel-eléctrica exige gran<strong>de</strong>s motores eléctricos para accionamento dos hélices<br />

(Fig. 4.7) e grupos electrogéneos para fornecer a potência eléctrica. Po<strong>de</strong> parecer em<br />

primeira análise algo ilógico usar geradores eléctricos, conversores e motores eléctricos para o<br />

accionamento quando um acoplamento directo ou uma engrenagem redutora po<strong>de</strong> ser suficiente<br />

para cumprir aquela missão. As principais razões que justificam a complexida<strong>de</strong> e custo<br />

acrescidos daquele tipo <strong>de</strong> instalação são:<br />

- maior flexibilida<strong>de</strong> na distribuição dos equipamentos na casa da máquina;<br />

- maior diversida<strong>de</strong> <strong>de</strong> condições <strong>de</strong> fundionamento;<br />

- funcionamento mais económico a carga partial;<br />

- facilida<strong>de</strong> <strong>de</strong> controlo;<br />

- menor ruído;<br />

- maior segurança <strong>de</strong> operação e protecção ambiental.<br />

Estes aspectos serão abordados nos parágrafos seguintes.


4.3.<br />

PROPULSÃO DIESEL-ELÉCTRICA 75<br />

Figura 4.7: Motor eléctrico <strong>de</strong> propulsão.<br />

Flexibilida<strong>de</strong> na distribuição dos equipamentos<br />

A vantagem da transmissão eléctrica resulta <strong>de</strong> se po<strong>de</strong>r escolher a localização em cada<br />

caso mais apropriada para os grupos electrogéneos. É então possível colocar os motores, bem<br />

como os respectivos auxiliares, afastados do veio propulsor. Sempre que seja adoptado este<br />

tipo <strong>de</strong> instalação, a referida flexibilida<strong>de</strong> permite aos arquitectos navais criar navios com a<br />

casa da máquina muito compacta, libertando espaço para passageiros e/ou carga. O facto<br />

<strong>de</strong> a casa da máquina ser mais compacta permite reduzir ainda a cablagem e a tubagem, em<br />

particular a tubagem a instalar para a evacuação dos gases do motor (ver Fig. 4.8).<br />

A opção por uma instalação diesel-eléctrica facilita também ao estaleiro <strong>de</strong> construção a<br />

recepção <strong>de</strong> módulos <strong>de</strong> grupos electrogéneos pré-testados e prontos para serem incorporados<br />

na instalação.<br />

Deve aqui ser também referida a dificulda<strong>de</strong> <strong>de</strong> uma instalação diesel-eléctrica atingir o<br />

rendimento obtido com um motor lento, a dois tempos, acoplado directamente ao veio do<br />

hélice, quando a funcionar à sua carga i<strong>de</strong>al, tal como acontece numa viagem <strong>de</strong> longo curso<br />

<strong>de</strong> um navio petroleiro. No entanto, alguns navios <strong>de</strong>ste tipo têm um perfil <strong>de</strong> operação<br />

que inclui também largos períodos a carga parcial em lastro, navegação em águas restritas<br />

e manobras. Numa instalação diesel-eléctrica, a elevada disponibilida<strong>de</strong> para produção <strong>de</strong><br />

energia eléctrica po<strong>de</strong> ser aproveitada para movimentar as bombas <strong>de</strong> carga e impulsores <strong>de</strong><br />

proa/popa, conforme representado esquematicamente na Fig. 4.9.<br />

Varieda<strong>de</strong> <strong>de</strong> carga<br />

Alguns tipos <strong>de</strong> navios necessitam <strong>de</strong> quantida<strong>de</strong>s significativas <strong>de</strong> energia para auxiliares<br />

quando as necessida<strong>de</strong>s <strong>de</strong> propulsão são reduzidas. Uma gran<strong>de</strong> instalação <strong>de</strong> produção


76<br />

CAPÍTULO 4. INSTALAÇÕES PROPULSORAS<br />

Figura 4.8: Instalação diesel-eléctrica.<br />

<strong>de</strong> energia eléctrica nos navios <strong>de</strong> passageiros/cruzeiros é exigida pela carga dos serviços <strong>de</strong><br />

hotelaria e pelos propulsores tranversais <strong>de</strong> manobra. A potência eléctrica necessária nestes<br />

casos ronda os 30 a 40 % da potência <strong>de</strong> propulsão instalada e ainda há que contar com<br />

significativa redundância por motivos <strong>de</strong> segurança.<br />

Estes factores têm promovido um novo conceito <strong>de</strong> instalação, a diesel-eléctrica ”power<br />

station”, nas quais vários grupos electrogéneo movidos por motores diesel <strong>de</strong> média velocida<strong>de</strong><br />

satisfazem as necessida<strong>de</strong>s <strong>de</strong> energia para a propulsão, manobra e serviços <strong>de</strong> hotelaria nos<br />

gran<strong>de</strong>s navios <strong>de</strong> passageiros.<br />

Funcionamento económico a carga parcial<br />

Funcionamento económico a carga parcial é facilmente alcançado numa instalação dieseleléctrica<br />

”power station”. Uma instalação típica inclui quatro grupos electrogéneos, po<strong>de</strong>ndo<br />

ir no entanto até aos nove, e, através do funcionamento em paralelo dos grupos, é fácil ajustar<br />

a capacida<strong>de</strong> <strong>de</strong> produção às necessida<strong>de</strong>s <strong>de</strong> carga eléctrica. Por exemplo, no caso <strong>de</strong> quatro<br />

geradores, aumentar o número <strong>de</strong> grupos em funcionamento <strong>de</strong> dois, à carga máxima, para<br />

três a carga parcial resulta numa condição <strong>de</strong> carga a 67 % que, não sendo i<strong>de</strong>al também não<br />

é problemática.<br />

Os sistemas <strong>de</strong> redução instantânea da potência propulsora tornam <strong>de</strong>snecessário colocar<br />

em funcionamento geradores a carga parcial para prevenir a ocorrência súbita <strong>de</strong> avaria num<br />

grupo electrogéneo. O sistema <strong>de</strong> controlo monitoriza a capacida<strong>de</strong> <strong>de</strong> produção <strong>de</strong> energia<br />

eléctrica, e a sobrecarga <strong>de</strong> um gerador provoca um ajuste imediato no consumo dos motores<br />

<strong>de</strong> propulsão.


4.3.<br />

PROPULSÃO DIESEL-ELÉCTRICA 77<br />

Figura 4.9: Representação esquemática <strong>de</strong> uma instalação diesel-eléctrica.<br />

Facilida<strong>de</strong> <strong>de</strong> controlo<br />

Os accionamentos eléctricos permitem alcançar, com larga margem, as necessida<strong>de</strong>s <strong>de</strong><br />

controlo para um sistema <strong>de</strong> propulsão.<br />

Baixo ruído<br />

Um motor eléctrico proporciona um accionamento com vibrações reduzidas, característica<br />

particularmente valorizada nalguns tipos <strong>de</strong> navios como, por exemplo, os navios para cruzeiros,<br />

navios <strong>de</strong> investigação marinha e navios <strong>de</strong> guerra. A “transmissão eléctrica” permite<br />

procurar a melhor localização para os motores por forma a minimizar os efeitos da vibração<br />

transmitida à estrutura do navio. A emissão <strong>de</strong> vibrações po<strong>de</strong> ainda ser reduzida através do<br />

recurso à montagem <strong>de</strong> amortecedores <strong>de</strong> vibração.<br />

Protecção ambiental e segurança <strong>de</strong> operação<br />

O controlo das emissões <strong>de</strong> óxidos <strong>de</strong> azoto pelos motores diesel dos navios favorece também<br />

a especificação <strong>de</strong> instalações com “transmissão eléctrica”, uma vez que o funcionamento dos<br />

motores a velocida<strong>de</strong> constante e carga optimizada permite obter menores emissões.<br />

O aumento da segurança da navegação é também obtido nestas instalações pela redundância<br />

dos seus elementos constituintes. A redundância po<strong>de</strong> ser obtida não apenas pela<br />

existência <strong>de</strong> dois propulsores mas ainda po<strong>de</strong> ser acrescida colocando os dois, ou mais, motores<br />

<strong>de</strong> propulsão em diferentes compartimentos e ligando-os por uma engrenagem redutora.<br />

4.3.2 Propulsores azimutais<br />

As vantagens técnicas e económicas na concepção, construção e operação <strong>de</strong> navios com<br />

propulsão por “azipod’s”, inicialmente restritos a navios quebra-gelos e navios <strong>de</strong> passageiros,<br />

têm vindo a alargar o seu campo <strong>de</strong> aplicação a outro tipo <strong>de</strong> navios.<br />

Um propulsor azimutal incorpora o motor eléctrico num alojamento submerso <strong>de</strong> formas<br />

hidrodinâmicas optimizadas que, po<strong>de</strong>ndo rodar 360 ◦ no plano horizontal, permite extraor-


78<br />

CAPÍTULO 4. INSTALAÇÕES PROPULSORAS<br />

dinária capacida<strong>de</strong> <strong>de</strong> propulsão e manobra (ver Fig. 4.10). O motor eléctrico é acoplado<br />

directamente a um hélice <strong>de</strong> passo fixo. A energia eléctrica é provida pelos vários grupos<br />

electrogéneos do navio.<br />

Figura 4.10: Propulsores azimutais.<br />

Este tipo <strong>de</strong> propulsores, quando comparados com instalações diesel-eléctricas com linha(s)<br />

<strong>de</strong> veio(s) apresentam as seguintes vantagens:<br />

- maior liberda<strong>de</strong> para a concepção do casco e para o arranjo <strong>de</strong> máquinas no interior da<br />

casa da máquina;<br />

- o espaço no interior do casco <strong>de</strong>stinado aos motores po<strong>de</strong> ser libertado para outras<br />

finalida<strong>de</strong>s;<br />

- melhor capacida<strong>de</strong> <strong>de</strong> manobra quando comparado com o tradicional leme e possibida<strong>de</strong><br />

<strong>de</strong> eliminar propulsores transversais;<br />

- excelente reversibilida<strong>de</strong> e capacida<strong>de</strong> <strong>de</strong> manobra com propulsão a ré;<br />

- menor ruído e vibração, característicos da propulsão eléctrica, agora potenciados pela<br />

posição mais favorável dos hélices;<br />

- na construção do navio, as unida<strong>de</strong>s <strong>de</strong> propulsão po<strong>de</strong>m ser incorporadas mais tar<strong>de</strong><br />

reduzindo assim os custos <strong>de</strong> investimento;<br />

- menor custo <strong>de</strong> produção do navio.<br />

4.4 Selecção do motor<br />

Seleccionado o tipo <strong>de</strong> instalação pretendido para a propulsão do navio, chega-se finalmente<br />

à escolha do motor. Como as características <strong>de</strong> funcionamento das turbinas e dos motores


4.4.<br />

SELECÇÃO DO MOTOR 79<br />

eléctricos são bastante diferentes das características dos motores diesel, a abordagem terá <strong>de</strong><br />

ser também diferente.<br />

Em qualquer dos casos, <strong>de</strong>verá ser tida em conta a margem <strong>de</strong> serviço MS. A margem<br />

<strong>de</strong> serviço tem em conta a diferença entre a potência requerida para nas condições i<strong>de</strong>ais da<br />

prova <strong>de</strong> mar e a potência requerida pelas condições <strong>de</strong> serviço. É prática habitual <strong>de</strong>finir-se<br />

a margem <strong>de</strong> serviço como uma fracção da potência na prova <strong>de</strong> mar, ou seja,<br />

MS = P D serv<br />

− P Dtrial<br />

P Dtrial<br />

(4.1)<br />

O valor da margem <strong>de</strong> serviço está normalmente entre os 10 e os 25%, <strong>de</strong>pen<strong>de</strong>ndo das opções<br />

estratégicas do armador e da importância da pontualida<strong>de</strong> do serviço. Em princípio, a margem<br />

<strong>de</strong> serviço atribuída a um navio <strong>de</strong> linha será superior à margem consi<strong>de</strong>rada para um navio<br />

que vai operar no mercado do “tramping”. O valor estabelecido da margem <strong>de</strong> serviço <strong>de</strong>ve em<br />

conta uma estimativa da <strong>de</strong>gradação <strong>de</strong> velocida<strong>de</strong>, para as condições <strong>de</strong> operação do navio,<br />

bem com as condições habituais <strong>de</strong> mar e vento e a <strong>de</strong>gradação do casco.<br />

4.4.1 Turbinas e motores eléctricos<br />

No caso da turbinas, <strong>de</strong> vapor ou gás, a potência <strong>de</strong>senvolvida <strong>de</strong>pen<strong>de</strong> essencialmente do<br />

caudal <strong>de</strong> fluido em circulação, sendo portanto relativamente pouco sensível à velocida<strong>de</strong> <strong>de</strong><br />

rotação.<br />

As características dos sistemas com transmissão eléctrica são semelhantes às das turbinas,<br />

in<strong>de</strong>pen<strong>de</strong>ntemente <strong>de</strong> os geradores serem movidos por turbinas ou motores diesel, uma vez<br />

que a velocida<strong>de</strong> <strong>de</strong>stes po<strong>de</strong> ser mantida constante.<br />

Neste tipo <strong>de</strong> situação, em que a máquina propulsora po<strong>de</strong> trabalhar próximo da potência<br />

máxima em qualquer condição <strong>de</strong> serviço, a potência instalada (P I ) po<strong>de</strong> ser próxima da<br />

potência <strong>de</strong> serviço. Na prática, a turbina é ajustada para operar com o máximo rendimento<br />

a uma potência 10% inferior à máxima potência em contínuo (MCR, Maximum Continuous<br />

Rating). Assim, a potência instalada será<br />

P I (MCR) = P D serv<br />

0, 9η s<br />

= P Dtrial<br />

1 + MS<br />

0, 9η s<br />

(4.2)<br />

em que P Dserv e P Dtrial são as potências absorvidas pelo hélice nas condições <strong>de</strong> serviço e na<br />

prova <strong>de</strong> mar, respectivamente, para a velocida<strong>de</strong> <strong>de</strong> serviço e MS é a margem <strong>de</strong> serviço.<br />

4.4.2 Motores diesel<br />

Ao contrário das turbinas e dos motores eléctricos, em que a potência disponível é pouco<br />

sensível à velocida<strong>de</strong>, os motores diesel caracterizam-se por ter uma curva do binário bastante<br />

plana. Esta característica faz com que a potência varie <strong>de</strong> forma aproximadamente linear com<br />

a velocida<strong>de</strong> <strong>de</strong> rotação.<br />

Para além dos principais critérios consi<strong>de</strong>rados na avaliação dos projectos, outros aspectos<br />

que não <strong>de</strong>vem ser <strong>de</strong>scurados na escolha do motor são:<br />

- a possibilida<strong>de</strong> <strong>de</strong> queimar combustível pesado <strong>de</strong> baixa qualida<strong>de</strong> sem impacto nos<br />

componentes do motor e consequentemente nos custos previstos para sobressalentes e<br />

operações <strong>de</strong> manutenção;


80<br />

CAPÍTULO 4. INSTALAÇÕES PROPULSORAS<br />

- o volume <strong>de</strong> trabalho <strong>de</strong> manutenção, o número <strong>de</strong> cilindros, válvulas, camisas, aros<br />

e chumaceiras a necessitar <strong>de</strong> atenção periódica em relação ao número <strong>de</strong> tripulantes<br />

embarcados;<br />

- a a<strong>de</strong>quabilida<strong>de</strong> para operação não assistida explorando sistemas <strong>de</strong> controlo automático<br />

e sistemas <strong>de</strong> monitorização;<br />

- a dimensão e o peso da instalação propulsora.<br />

O valor máximo da potência <strong>de</strong>senvolvida por um motor diesel é condicionada pela carga<br />

térmica. Este limite é normalmente expresso em termos da pressão média efectiva. Depen<strong>de</strong>ndo<br />

das características do hélice seleccionado e das condições operacionais, assim o valor<br />

limite da pressão média efectiva será atingido, ou não, antes <strong>de</strong> o motor atingir a velocida<strong>de</strong><br />

<strong>de</strong> rotação correspon<strong>de</strong>nte às condições MCR.<br />

Figura 4.11: Diagrama <strong>de</strong> carga <strong>de</strong> um motor diesel<br />

Os fabricantes <strong>de</strong> motores diesel incluem diagramas <strong>de</strong> carga nos guias <strong>de</strong> selecção <strong>de</strong><br />

motores para auxiliar a escolha do ponto <strong>de</strong> funcionamento. Nestes diagramas, como o representado<br />

na Fig. 4.11, estão marcados:<br />

- o ponto L 1 , que correspon<strong>de</strong> ao MCR do motor;<br />

- a linha vertical L 1 − L 2 , velocida<strong>de</strong> <strong>de</strong> rotação máxima do motor, que limita a zona <strong>de</strong><br />

funcionamento do motor;<br />

No Apêndice D incluiu-se documentação da ”Burmeister & Wain” que permite ilustrar a<br />

forma <strong>de</strong> selecção do motor para uma aplicação concreta, consi<strong>de</strong>rando várias hipóteses: com<br />

ou sem gerador acoplado ao veio, com hélice <strong>de</strong> passo fixo ou <strong>de</strong> passo controlável.


4.4.<br />

SELECÇÃO DO MOTOR 81<br />

Alguns fabricantes anunciam um valor <strong>de</strong> “Normal Continuous Rating” (NCR) cerca <strong>de</strong><br />

10% inferior ao valor MCR e a uma velocida<strong>de</strong> inferior, ao qual correspon<strong>de</strong> um <strong>de</strong>sempenho<br />

optimizado do motor em termos <strong>de</strong> consumo e <strong>de</strong> necessida<strong>de</strong>s <strong>de</strong> manutenção. Po<strong>de</strong> ainda<br />

<strong>de</strong>finir-se uma “Service Continuous Rating” (SCR) que, <strong>de</strong>pen<strong>de</strong>ndo da política do armador,<br />

po<strong>de</strong>rá ser igual ou não do NCR indicado pelo fabricante do motor.<br />

A diferença entre a MCR e a SCR, ou, caso não esteja <strong>de</strong>finida, a NCR, dá origem à<br />

chamada margem do motor (MM). A margem do motor é avaliada por,<br />

MM =<br />

MCR − SCR<br />

MCR<br />

(4.3)<br />

Valores típicos <strong>de</strong>sta margem <strong>de</strong> motor rondam os 10 a 15%. De notar que as margens <strong>de</strong><br />

serviço e <strong>de</strong> motor surgem frequentemente combinadas numa só, a margem <strong>de</strong> serviço, apesar<br />

<strong>de</strong> as suas origens serem bem distintas.<br />

Uma vez atribuídas as margens <strong>de</strong> serviço e <strong>de</strong> motor, a potência instalada é calculada<br />

por<br />

1 + MS<br />

P I (MCR) = P Dtrial<br />

(4.4)<br />

(1 − MM) η s<br />

Nas provas <strong>de</strong> mar, nas condições <strong>de</strong> imersão e caimento contratuais, a potência absorvida<br />

pelo hélice, à velocida<strong>de</strong> <strong>de</strong> rotação correspon<strong>de</strong>nte ao MCR, <strong>de</strong>ve ser igual à potência SCR,<br />

<strong>de</strong>duzida das perdas na linha <strong>de</strong> veios. Como objectivo das provas, <strong>de</strong>verá garantir-se que a<br />

combinação motor e hélice permite que o anvio atinja a velocida<strong>de</strong> requerida sem ultrapassar<br />

os limites impostos pelo diagrama <strong>de</strong> carga.<br />

Sem prejuízo do exposto, o forte aumento do preço dos combustíveis nos anos mais recentes<br />

faz com que os custos operacionais dos navios sejam cada vez mais dominados por este<br />

factor. Neste contexto, po<strong>de</strong> ser uma hipótese <strong>de</strong> trabalho interessante a opção por um motor<br />

com a mesma potência, a potência calculada como necessária para a propulsão nas condições<br />

contratuais, mas com um cilindro extra. Esta técnica, o chamado ”<strong>de</strong>rating” do motor,<br />

exigindo maior valor <strong>de</strong> investimento inicial, po<strong>de</strong> apresentar um período <strong>de</strong> retorno atractivo.<br />

Wettstein e Brown apresentam as principais motivações para aplicação <strong>de</strong>sta técnica e<br />

discutem quatro casos <strong>de</strong> aplicação numa publicação da Wärtsillä, incluída no Apêndice E.


82<br />

CAPÍTULO 4. INSTALAÇÕES PROPULSORAS


Bibliografia<br />

[1] José P. Saraiva Cabral. Arquitectura Naval, estabilida<strong>de</strong>, cálculos, avaria e bordo livre.<br />

Centro do Livro Brasileiro, 1979.<br />

[2] Eric C. Tupper. Introduction to Naval Arquitecture. Elsevier, 2004.<br />

[3] Volker Bertram. Practical Ship Hydrodynamics. Butterworth-Heinemann, 2000.<br />

[4] Jorge d’Almeida. Arquitectura Naval - o dimensionamento do navio. Prime Books, 2009.<br />

[5] Editor Doug Woodyard. Poun<strong>de</strong>rs Marine Diesel Engines and Gas Turbines. Butterworth-<br />

Heinemann, 2004.<br />

[6] H. Schneekluth and V. Bertram. Ship Design for Efficiency and Economy. Butterworth-<br />

Heinemann, 1998.<br />

83


Índice Remissivo<br />

Auto-propulsão, 62<br />

Boca, 3<br />

Bolbo <strong>de</strong> proa, 22<br />

Bordo livre, 3<br />

Calado, 3<br />

Camada limite, 24<br />

Cavitação, 37, 53, 60<br />

Coeficiente<br />

<strong>de</strong> avanço, 46<br />

<strong>de</strong> binário, 46<br />

<strong>de</strong> Burrill, 55<br />

<strong>de</strong> carga do hélice, 44<br />

<strong>de</strong> <strong>de</strong>dução da esteira, 63<br />

<strong>de</strong> <strong>de</strong>dução da força propulsiva, 63<br />

<strong>de</strong> força propulsiva, 46<br />

<strong>de</strong> resistência, 28<br />

<strong>de</strong> resistência total, 13<br />

Comprimento<br />

entre perpendiculares, 3<br />

fora a fora, 3<br />

na linha <strong>de</strong> água, 3<br />

Consumo específico <strong>de</strong> combustível, 69<br />

Custos<br />

<strong>de</strong> manutenção, 68<br />

<strong>de</strong> operação, 68, 69<br />

totais, 68<br />

Diagrama<br />

<strong>de</strong> Burrill, 55<br />

em águas livres, 45, 46<br />

Dual-fuel, 74<br />

Engrenagens redutoras, 71<br />

Ensaios<br />

<strong>de</strong> auto-propulsão, 62<br />

<strong>de</strong> cavitação, 56<br />

<strong>de</strong> hélices em águas livres, 45<br />

<strong>de</strong> propulsão, 61<br />

<strong>de</strong> resistência, 26<br />

em sobrecarga, 62<br />

Fórmula<br />

<strong>de</strong> Alexan<strong>de</strong>r, 5<br />

<strong>de</strong> atrito da ATTC, 25<br />

<strong>de</strong> atrito da ITTC, 25<br />

<strong>de</strong> Keller, 59<br />

do atrito <strong>de</strong> Frou<strong>de</strong>, 24<br />

do atrito <strong>de</strong> Hugues, 30<br />

Força<br />

<strong>de</strong> compensação, 62<br />

<strong>de</strong> inércia, 15<br />

<strong>de</strong> origem hidrodinâmica, 16<br />

gravítica, 16<br />

propulsiva, 42<br />

Hélice, 35<br />

rendimento i<strong>de</strong>al, 45<br />

a ponto fixo, 57<br />

bloqueado, 57<br />

com tubeira, 36<br />

contrarotativo, 37<br />

<strong>de</strong> passo controlável, 37, 67, 70, 71<br />

<strong>de</strong> passo fixo, 37, 67, 70, 71, 78<br />

diâmetro do, 58<br />

distribuição radial <strong>de</strong> pressão, 59<br />

geometria do, 40, 59<br />

índice <strong>de</strong> qualida<strong>de</strong> do, 47<br />

interacção com o casco, 60<br />

número <strong>de</strong> pás do, 59<br />

projecto do, 40<br />

razão <strong>de</strong> área expandida, 41<br />

supercavitante, 37<br />

Método<br />

<strong>de</strong> Hughes/Prohaska, 28<br />

84


ÍNDICE REMISSIVO 85<br />

Geosim, 28, 31<br />

Hughes-Prohaska, 29<br />

ITTC 1957, 28<br />

ITTC 1978, 28, 30<br />

Margem<br />

<strong>de</strong> serviço, 79<br />

do motor, 81<br />

Maximum Continuous Rating, 79<br />

Número<br />

<strong>de</strong> cavitação, 54<br />

<strong>de</strong> Frou<strong>de</strong>, 17, 23<br />

<strong>de</strong> Reynolds, 18, 27, 46<br />

Navio<br />

coeficientes <strong>de</strong> forma, 3<br />

<strong>de</strong> passageiros, 68, 74, 76, 77<br />

<strong>de</strong>slocamento do, 3<br />

dimensões do, 3<br />

linhas <strong>de</strong> bordo livre do, 3<br />

planos do, 1<br />

quebra-gelos, 68, 77<br />

tipo ferry, 37, 38, 40, 68, 69, 74<br />

tipo RoRo, 68, 74<br />

tipo shuttle tanker, 74<br />

Normal Continuous Rating, 81<br />

PC-cluster, 10<br />

Pontal, 3<br />

Potência<br />

absorvida, 65<br />

<strong>de</strong> reboque, 13<br />

efectiva, 13, 62<br />

efectiva do motor, 65<br />

propulsiva, 63<br />

Power Take Off/In, 71<br />

Profundida<strong>de</strong> restrita, 23, 32<br />

Propulsão<br />

azimutal, 35, 38, 77<br />

cicloidal, 35, 39<br />

diesel-eléctrica, 74<br />

diesel-mecânica, 69<br />

por jacto <strong>de</strong> água, 35, 37<br />

por motor eléctrico, 74<br />

Provas<br />

<strong>de</strong> mar, 34<br />

<strong>de</strong> potência, 121, 133<br />

<strong>de</strong> velocida<strong>de</strong>, 121, 133<br />

Rendimento<br />

águas livres, 46<br />

da linha <strong>de</strong> veios, 65<br />

do casco, 64<br />

do hélice, 46<br />

rotativo relativo, 64<br />

Resistência, 13<br />

adicional, 31<br />

aerodinâmica, 19<br />

<strong>de</strong> atrito, 24<br />

<strong>de</strong> onda, 19<br />

<strong>de</strong>composição, 18<br />

dos apêndices, 32<br />

viscosa <strong>de</strong> pressão, 25<br />

Rugosida<strong>de</strong> do casco, 28, 30, 31<br />

Série sistemática<br />

60, 33<br />

<strong>de</strong> hélices, 47, 58<br />

<strong>de</strong> querenas, 32<br />

<strong>de</strong> Taylor, 33<br />

<strong>de</strong> Wageningen, 48<br />

Semelhança<br />

cinemática, 15<br />

dinâmica, 15<br />

geométrica, 14<br />

leis da, 14<br />

Service Continuous Rating, 81<br />

Sobrealimentadores, 70<br />

Tanque<br />

<strong>de</strong> cavitação, 56<br />

<strong>de</strong> Frou<strong>de</strong>, 7<br />

<strong>de</strong> reboque, 26<br />

Unifuel, 70<br />

Velocida<strong>de</strong><br />

da querena, 22<br />

<strong>de</strong> aproximação, 42<br />

<strong>de</strong> rotação do hélice, 59<br />

económica, 22<br />

Vibrações, 42, 53, 58–60, 77


86 ÍNDICE REMISSIVO


Apêndice<br />

A<br />

Procedimento Recomendado pela<br />

ITTC para a Previsão do<br />

Desempenho <strong>de</strong> Navios Baseada nos<br />

Ensaios <strong>de</strong> Propulsão em Mo<strong>de</strong>los<br />

87


88<br />

APÊNDICE A. PREVISÃO BASEADA NOS ENSAIOS DE PROPULSÃO


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 1 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

CONTENTS<br />

1. PURPOSE OF PROCEDURE<br />

2. DESCRIPTION OF PROCEDURE<br />

2.1.1 Introduction for the Original 1978 ITTC Performance Prediction Method<br />

for Single Screw Ships<br />

2.1.2 Introduction for the 1978 ITTC Performance Prediction Method as Modified<br />

in 1984 and 1987<br />

2.2 Mo<strong>de</strong>l Tests<br />

2.3 Analysis of the Mo<strong>de</strong>l Test Results<br />

2.4 Full Scale Predictions<br />

2.4.1 Total Resistance of Ship<br />

2.4.2 Scale Effect Corrections for Propeller Characteristics.<br />

2.4.3 Full Scale Wake and Operating Condition of Propeller<br />

2.4.4 Mo<strong>de</strong>l-Ship Correlation Factors<br />

2.5 Analysis of Speed Trial Results<br />

2.6 Input Data<br />

2.7 Output Data<br />

2.8 Test Example<br />

3. PARAMETERS<br />

3.1 Parameters to be Taken into Account<br />

3.2 Recommendations of ITTC for Parameters<br />

3.3 Input Data<br />

4. VALIDATION<br />

4.1 Uncertainty Analysis<br />

4.2 Comparison With Full Scale Results<br />

5. ITTC- 1978 PERFORMANCE PREDICTION METHOD (COMPUTER CODE)<br />

COMMENTS OF PROPULSION COMMITTE OF 22 nd ITTC<br />

In its original form the ITTC 1978 Performance Prediction Method offers a valuable and reasonably<br />

accurate prediction tool for reference purposes and conventional ships.<br />

Edited by 22 nd ITTC QS Group 1999<br />

15 th ITTC 1978 pp388 – 402<br />

17 th ITTC 1984 pp326 - 333<br />

18 th ITTC 1987 pp266 - 273<br />

Date<br />

Approved<br />

Date<br />

15 th ITTC 1978, 17 th ITTC 1984<br />

and 18 th ITTC 1987


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 2 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

1978 ITTC Performance Prediction Method<br />

1. PURPOSE OF PROCEDURE<br />

The method predicts rate of revolution and<br />

<strong>de</strong>livered power of a ship from mo<strong>de</strong>l results.<br />

2. DESCRIPTION OF PROCEDURE<br />

2.1.1 Introduction for the Original 1978<br />

ITTC Performance Prediction Method<br />

for Single Screw Ships<br />

The method predicts rate of revolution and<br />

<strong>de</strong>livered power of a ship from mo<strong>de</strong>l results.<br />

The procedure used can be <strong>de</strong>scribed as follows:<br />

The viscous and the residuary resistance of the<br />

ship are calculated from the mo<strong>de</strong>l resistance<br />

tests assuming the form factor to be in<strong>de</strong>pen<strong>de</strong>nt<br />

of scale and speed.<br />

The ITTC standard predictions of rate of revolutions<br />

and <strong>de</strong>livered power are obtained fromthe<br />

full scale propeller characteristics. These<br />

characteristics have been <strong>de</strong>termined by correcting<br />

the mo<strong>de</strong>l values for drag scale effects<br />

according to a simple formula. Individual<br />

corrections then give the final predictions.<br />

more convenient use of the program. These<br />

extensions are summarized as follows.<br />

(1) Inclusion of prediction of propeller revolutions<br />

on the basis of power i<strong>de</strong>ntity.<br />

(2) Temporary measure for w TS > w TM<br />

(3) Extension to twin screw ships<br />

(4) Addition of speed trial data<br />

(5) Extension for the case of a stock propeller<br />

in the self-propulsion test<br />

(6) Adaptation to the input of the nondimensional<br />

resistance coefficient and<br />

self-propulsion factors.<br />

In recent years, many member organizations<br />

have been asked by their customers for a general<br />

<strong>de</strong>scription of the method, viz., mo<strong>de</strong>l test<br />

and analysis of their results, calculation of fullscale<br />

power and rate of propeller revolutions,<br />

and the mo<strong>de</strong>l-ship correlation factors used.<br />

Consi<strong>de</strong>ring the above, it was <strong>de</strong>ci<strong>de</strong>d to prepare<br />

a user's manual of the 1978 ITTC method<br />

which inclu<strong>de</strong>s all of the extensions and modifications<br />

ma<strong>de</strong>.<br />

2.1.2 Introduction for the 1978 ITTC Performance<br />

Prediction Method as<br />

Modified in 1984 and 1987<br />

The 1978 ITTC Method <strong>de</strong>veloped to predict<br />

the rate of propeller revolutions and <strong>de</strong>livered<br />

power of a single screw ship from the<br />

mo<strong>de</strong>l test results has been exten<strong>de</strong>d during the<br />

last two terms of the ITTC for a better and<br />

2.2 Mo<strong>de</strong>l Tests<br />

Mo<strong>de</strong>l tests required for a full scale comprise<br />

the resistance test, the self-propulsion test<br />

and the propeller open-water test.<br />

In the resistance test the mo<strong>de</strong>l is towed at<br />

speeds giving the same Frou<strong>de</strong> numbers as for<br />

the full scale ship, and the total resistance of<br />

the mo<strong>de</strong>l R TM is measured. The computer pro-


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 3 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

gram accepts either R TM in Newton, or in a nondimensional<br />

form of residuary resistance coefficient<br />

C R assuming the form factor 1 + k. In<br />

the latter case, the friction formula used can<br />

then be either of the ITTC 1957, Hughes,<br />

Prandtl-Schlichting or Schönherr's formulae.<br />

The form factor 1 + k is usually <strong>de</strong>termined<br />

from the resistance tests at low speed range or<br />

by Prohaska’s plot of C FM against Fn 4<br />

The ship mo<strong>de</strong>l is not in general fitted with<br />

bilge keels. In this case the total wetted surface<br />

area of them is recor<strong>de</strong>d and their frictional<br />

resistance is ad<strong>de</strong>d in calculating the full-scale<br />

resistance of the ship.<br />

In the self-propulsion test the mo<strong>de</strong>l is<br />

towed at speeds giving the same Frou<strong>de</strong> numbers<br />

as for the full-scale ship. Generally a towing<br />

force F D is applied to compensate for the<br />

difference between the mo<strong>de</strong>l and the full-scale<br />

resistance coefficient.<br />

During the test, propeller thrust (T M ), torque<br />

(O M ) and rate of propeller rotation (n M ) are<br />

measured.<br />

In many cases, stock propellers are used<br />

which are selected in view of the similarity in<br />

diameter pitch and bla<strong>de</strong> area to the full-scale<br />

propeller. Then the diameter and the openwater<br />

characteristics of the stock propeller<br />

have to be given as input data in the program.<br />

In the open-water test, thrust, torque and rate of<br />

revolutions are measured, keeping the rate of<br />

revolutions constant whilst the speed of advance<br />

is varied so that a loading range of the<br />

propeller is examined.<br />

In the case when a stock propeller is used in<br />

the self-propulsion test, both the stock propeller<br />

and the mo<strong>de</strong>l similar to the full-scale propeller<br />

should be tested in open water.<br />

2.3 Analysis of the Mo<strong>de</strong>l Test Results<br />

Resistance R TM measured in the resistance<br />

tests is expressed in the non-dimensional form<br />

R<br />

TM<br />

CTM<br />

=<br />

1 SV 2<br />

ρ<br />

2<br />

This is reduced to residual resistance coefficient<br />

C R by use of form factor k,<br />

viz.,<br />

C R = C TM - C FM (1 + k)<br />

Thrust, T, and torque Q, measured in the<br />

self-propulsion tests are expressed in the nondimensional<br />

forms<br />

T<br />

K TM<br />

= and K 4 n 2<br />

QM<br />

=<br />

2<br />

ρD<br />

Q<br />

ρD 5 n<br />

With K TM as input data, J TM and K QTM are read<br />

off from the mo<strong>de</strong>l propeller characteristics,<br />

and the wake fraction<br />

w<br />

TM<br />

= 1 −<br />

J<br />

D<br />

V<br />

TM<br />

and the relative rotative efficiency<br />

KQTM<br />

η<br />

R<br />

=<br />

KQM<br />

are calculated. V is mo<strong>de</strong>l speed.<br />

The thrust <strong>de</strong>duction is obtained from<br />

T F<br />

t =<br />

+<br />

T<br />

D −<br />

R<br />

C<br />

M


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 4 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

with<br />

F<br />

D<br />

1<br />

= ρ<br />

2<br />

M<br />

S<br />

M<br />

V<br />

2<br />

M<br />

[ C − ( C + ∆C<br />

)]<br />

FM<br />

FS<br />

F<br />

∆C<br />

F<br />

⎡<br />

⎢ ⎛ k<br />

= 105<br />

⎢<br />

⎜<br />

⎢<br />

⎝ L<br />

⎣<br />

S<br />

WL<br />

⎞<br />

⎟<br />

⎠<br />

1<br />

3<br />

⎤<br />

− 0.64⎥10<br />

⎥<br />

⎥⎦<br />

−3<br />

where R C is the resistance corrected for differences<br />

in temperature between resistance and<br />

self-propulsion tests:<br />

R<br />

C<br />

=<br />

( 1 + k)<br />

.<br />

( 1 + k)<br />

.<br />

C<br />

C<br />

FMC<br />

FM<br />

+ C<br />

+ C<br />

where C FMC is the frictional resistance coefficient<br />

at the temperature of the self-propulsion<br />

test.<br />

2.4 Full Scale Predictions<br />

2.4.1 Total Resistance of Ship<br />

The total resistance coefficient of a ship<br />

without bilge keels is<br />

C TS =(1+k)C FS +C R + ∆ C F +C AA<br />

Where<br />

- k is the form factor <strong>de</strong>termined from the<br />

resistance test<br />

- C FS is the frictional coefficient of the ship<br />

according to the ITTC-1957 ship-mo<strong>de</strong>l<br />

correlation line<br />

- C R is the residual resistance calculated from<br />

the total and frictional coefficients of the<br />

mo<strong>de</strong>l in the resistance tests:<br />

C = C − 1 + k C<br />

R<br />

TM<br />

-. ∆ C<br />

F<br />

is the roughness allowance<br />

R<br />

R<br />

R<br />

TM<br />

( )<br />

FM<br />

where the roughness k S =150.10 -6 m and<br />

- C AA , is the air resistance<br />

AT<br />

C<br />

AA<br />

= 0.001.<br />

S<br />

If the ship is fitted with bilge keels the total<br />

resistance is as follows:<br />

S + S<br />

= 1<br />

S<br />

[( + k)<br />

C<br />

FS<br />

+ ∆C<br />

F<br />

] + C<br />

R<br />

C<br />

AA<br />

BK<br />

C<br />

TS<br />

+<br />

2.4.2 Scale Effect Corrections for Propeller<br />

Characteristics.<br />

The characteristics of the full scale propeller<br />

are calculated from the mo<strong>de</strong>l characteristics<br />

as follows<br />

K<br />

TS<br />

K<br />

where<br />

∆ K<br />

∆ K<br />

∆ C<br />

QS<br />

T<br />

Q<br />

= K<br />

= K<br />

TM<br />

QM<br />

= −∆C<br />

= −∆C<br />

− ∆K<br />

D<br />

D<br />

T<br />

− ∆K<br />

.0.3.<br />

Q<br />

P<br />

D<br />

c.<br />

Z<br />

D<br />

c.<br />

Z<br />

.0.25.<br />

D<br />

The difference in drag coefficient<br />

D<br />

where<br />

= C<br />

DM<br />

− C<br />

DS<br />

∆ C<br />

D<br />

is


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 5 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

DM<br />

and<br />

C<br />

DS<br />

⎡<br />

( ) ( )<br />

⎥ ⎥ ⎤<br />

⎞<br />

⎜<br />

⎛ t<br />

⎟⎢<br />

0.04 5<br />

= 2 1 + 2 −<br />

1<br />

2<br />

⎝ c ⎠⎢<br />

6<br />

3<br />

⎣ Rnco<br />

Rnco<br />

⎦<br />

⎛ t ⎞⎛<br />

⎞<br />

2 1 2 ⎜<br />

c<br />

⎜ + ⎟ 1.89 + 1.62.log ⎟<br />

⎝ c ⎠<br />

⎝<br />

k ⎠<br />

= p<br />

−2.5<br />

In the formulae listed above c is the chord<br />

length, t is the maximum thickness, P/D is the<br />

pitch ratio and R nco is the local Reynolds number<br />

at x=0.75. The bla<strong>de</strong> roughness k p is put<br />

k p =30.10 -6 m. R nco must not be lower than 2.10 5<br />

at the open-water test.<br />

2.4.3 Full Scale Wake and Operating Condition<br />

of Propeller<br />

The full scale wake is calculated from the<br />

mo<strong>de</strong>l wake, w TM , and the thrust <strong>de</strong>duction, t:<br />

w<br />

TS<br />

=<br />

( ) ( ) ( 1 + k ) C FS<br />

t + 0.04 + wTM<br />

− t − 0.04<br />

( 1 + k) C FM<br />

+ ∆C<br />

where 0.04 is to take account of rud<strong>de</strong>r effect.<br />

The load of the full scale propeller is obtained<br />

from<br />

K<br />

J<br />

=<br />

S<br />

.<br />

C<br />

T<br />

TS<br />

2 2D<br />

2<br />

1<br />

TS<br />

( 1 − t)( − w ) 2<br />

2<br />

With this K T<br />

/ J as input value the full<br />

scale advance coefficient J TS and the torque<br />

coefficient K QTS are read off from the full scale<br />

propeller characteristics and the following<br />

quantities are calculated<br />

- the rate of revolutions:<br />

F<br />

n<br />

S<br />

( − w )<br />

TS<br />

VS<br />

= 1 (r/s)<br />

J D<br />

TS<br />

- the <strong>de</strong>livered power:<br />

K<br />

5 3 QTS −3<br />

PDS<br />

= 2πρ D nS<br />

10 (kW)<br />

η<br />

- the thrust of the propeller:<br />

K<br />

T 2 4 2<br />

TS<br />

= . J . .<br />

2 TS<br />

ρ D nS<br />

(N)<br />

J<br />

- the torque of the propeller:<br />

KQTS<br />

5 2<br />

QS<br />

= ρD<br />

nS<br />

: (Nm)<br />

η<br />

R<br />

- the effective power:<br />

3 −3<br />

PE = CTS1/<br />

2ρ . VS<br />

. S.10<br />

(kW)<br />

- the total efficiency:<br />

PDS<br />

η<br />

D<br />

=<br />

P<br />

- the hull efficiency:<br />

1 − t<br />

η<br />

H<br />

= 1 − w<br />

E<br />

TS<br />

2.4.4 Mo<strong>de</strong>l-Ship Correlation Factors<br />

Trial prediction of rate of revolutions and <strong>de</strong>livered<br />

power with C P - C N corrections<br />

if CHOICE=0 the final trial predictions will be<br />

calculated from<br />

n T = C N .n S<br />

R<br />

(r/s)<br />

for the rate of revolutions and<br />

P DT = C P .P DS (kW)


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 6 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

for the <strong>de</strong>livered power.<br />

Trial prediction with ∆C FC - ∆w C corrections<br />

If CHOICE=1 the final trial predictions are<br />

calculated as follows:<br />

K<br />

J<br />

=<br />

S<br />

.<br />

C<br />

T<br />

TS<br />

2 2D<br />

2<br />

1<br />

+ ∆C<br />

( 1 − t)( − w + ∆w<br />

) 2<br />

With this K T /J² as input value, J TS and K QTS<br />

are read off from the full scale propeller characteristics<br />

and<br />

n<br />

P<br />

T<br />

DT<br />

( 1 − w + ∆w<br />

)<br />

TS<br />

FC<br />

TS C<br />

VS<br />

= (r/s)<br />

J . D<br />

= 2<br />

TS<br />

K<br />

5 3 QTS −3<br />

π . ρ.<br />

D . nT<br />

. .10 (kW)<br />

η<br />

RM<br />

Trial prediction with C NP correction<br />

If CHOICE = 2 the shaft rate of rotation is predicted<br />

on the basis of power i<strong>de</strong>ntity as follows.<br />

⎛ KQ<br />

⎞<br />

⎜<br />

J ³<br />

⎟<br />

⎝ ⎠<br />

T<br />

1000. C<br />

P<br />

. PDS<br />

=<br />

3<br />

2π<br />

. ρ.<br />

D²<br />

V ( 1 − w )³<br />

S<br />

TS<br />

C<br />

2.5 Analysis of Speed Trial Results<br />

The analysis of trials data is performed in a<br />

way consistent with performance prediction but<br />

starting P D and n backwards, i.e. from<br />

K<br />

Q<br />

PD<br />

=<br />

2π<br />

. ρ.<br />

D<br />

. n<br />

. η<br />

5 3 RM<br />

.10³<br />

J S is obtained from the full-scale open-water<br />

characteristics K Q ≈ J S then<br />

w<br />

= 1 − J<br />

. n.<br />

D<br />

T S<br />

/<br />

Further from K T ≈ J S characteristics<br />

T = K<br />

T<br />

. ρ.<br />

n²<br />

D<br />

( 1 − t)<br />

T.<br />

C T<br />

=<br />

1<br />

. ρ.<br />

V ². S<br />

2<br />

Then we obtain<br />

∆ C = C − C<br />

∆ w<br />

FC<br />

C<br />

= w<br />

2.6 Input Data<br />

T<br />

TS<br />

4<br />

− w<br />

Input data sheets are given in ENCL.1<br />

TS<br />

T<br />

V<br />

K<br />

Q0<br />

J ³<br />

⎛ K<br />

=<br />

⎜<br />

⎝ J<br />

Q<br />

⎞<br />

⎟<br />

⎠<br />

T<br />

.η<br />

RM<br />

( 1 − w )/<br />

J D<br />

nS = VS<br />

TS TS<br />

.<br />

n = C<br />

T<br />

NP<br />

n<br />

S<br />

2.7 Output Data<br />

- Output data I gives ITTC Standard Prediction<br />

with C P = C N = 1.0, together with<br />

mo<strong>de</strong>l and full scale propulsive coefficients<br />

(ENCL. 4).<br />

- Output data II gives the final ship prediction<br />

(ENCL. 5).


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 7 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

- Output data III gives the analysis of the<br />

speed trial results (ENCL. 6).<br />

2.8 Test Example<br />

To illustrate the program a prediction was<br />

ma<strong>de</strong> for a hypothetical ship with the following<br />

particulars:<br />

length between<br />

perpendiculars Lpp = 251.5m<br />

breadth B = 41.5m<br />

draft T = 16.5m<br />

propeller diameter D = 8.2m<br />

Calculations were carried out with the<br />

ITTC Trial Prediction Test Program with:<br />

C P = 1.01<br />

C N = 1.02<br />

The input data were taken as shown in<br />

ENCL. 1 and the printout of the input data and<br />

results are given in ENCL. 4 - 6.


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 8 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 9 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 10 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 11 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 12 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

3. PARAMETERS<br />

3.1 Parameters to be Taken into Account<br />

Frou<strong>de</strong> scaling law<br />

ship-mo<strong>de</strong>l correlation line ,friction line<br />

kinematic viscosity<br />

mass <strong>de</strong>nsity<br />

blockage<br />

form factor<br />

propeller loading<br />

hull roughness<br />

see also 3.3 Input Data<br />

3.2 Recommendations of ITTC for Parameters<br />

see 4.9-03-03-01.1 Propulsion Test<br />

1987 p.263 In using the 1978 ITTC Method<br />

it is recommen<strong>de</strong>d that the rud<strong>de</strong>r(s) be fitted<br />

in hull resistance experiments for barge type<br />

forms where inflow velocity is relatively<br />

large.<br />

3.3 Input Data<br />

All data are either non-dimensional or<br />

given in SI-units.<br />

Every data card <strong>de</strong>fines several parameters<br />

which are required by the program; each of<br />

these parameters must be input according to a<br />

specific format.<br />

"I" format means that the value is to be input<br />

without a <strong>de</strong>cimal point and packed to the<br />

right of the specified field.<br />

"F" format requires the data to be input with a<br />

<strong>de</strong>cimal point; the number can appear<br />

anywhere in the field indicated.<br />

"A" format indicates that alphanumeric characters<br />

must be entered in the appropriate<br />

card columns.<br />

The card or<strong>de</strong>r of the data <strong>de</strong>ck must follow<br />

the or<strong>de</strong>r in which they are <strong>de</strong>scribed<br />

below.<br />

Card No. 1 I<strong>de</strong>ntifications<br />

Card Form CC Definition<br />

column at Symbol<br />

1- 8 A - Project No.<br />

9-16 A - Ship mo<strong>de</strong>l No<br />

Propeller mo<strong>de</strong>l No.<br />

17-24 A -<br />

25-32 F SCALE Scale ratio<br />

Card No. 2 Ship particulars<br />

Card Format<br />

CC Definition<br />

column<br />

Symbol<br />

9-16 F LWL Length of waterline<br />

17-24 F TF Draft, forward<br />

25-32 F TA Draft, aft<br />

33-40 F B Breadth<br />

41-48 F S Wetted surface, without<br />

bilge keels<br />

49-56 F DISW Displacement<br />

157-64 F SBK Wetted surface of<br />

bilge keels<br />

65-72 F AT Transverse projected<br />

area of ship above<br />

waterline<br />

72-80 F C3 Form factor <strong>de</strong>termined<br />

at resistance<br />

tests


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 13 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

Card No. 3 Particulars of full scale<br />

Card Format<br />

CC Definition<br />

column<br />

Symbol<br />

8- 8 I NOPROP Number of propellers<br />

should be 1 since method<br />

is valid only for single<br />

screw ships<br />

15-16 I NPB Number of propeller<br />

bla<strong>de</strong>s<br />

17-24 F DP Diameter of propeller<br />

25-32 F PD075 Pitch ratio at x=0.75<br />

33-40 F CH075 Chord length of Propeller<br />

bla<strong>de</strong> at x=0.75<br />

41-48 F TMO75 Maximum bla<strong>de</strong> thickness<br />

of propeller at<br />

x=0.75<br />

49-56 F RNCHM Reynolds number at<br />

open-water test based on<br />

chord length and local<br />

velocity 2<br />

Card No. 4 General<br />

Card<br />

column<br />

Format<br />

CC Symbol<br />

at x-0.75.<br />

Definition<br />

V = V<br />

A<br />

⎛π<br />

.0.75 ⎞<br />

1 + ⎜ ⎟<br />

⎝ J ⎠<br />

2.- 4 I NOJ Number of J-values in the<br />

open-water characteristics<br />

(J ≤ NOJ ≤ 10)<br />

7- 8 I NOSP Number of speeds in the<br />

self- propulsion tests<br />

(NOSP max =10)<br />

9-16 F RHOM Density of tank water<br />

17-24 F RHOS Density of sea water<br />

25-30 F TEMM Temperature of resistance<br />

test<br />

31-36 F TEMP Temperature at selfpropulsion<br />

test -<br />

36-41 F TEMS Temperature of sea water<br />

48-48 I CHOICE CHOICE=0 C<br />

P<br />

− C<br />

N<br />

trial corr.<br />

CHOICE==1:<br />

∆ C − ∆ trial corr.<br />

FC<br />

w C<br />

49-56 F CP Trial correction for shaft<br />

power.<br />

57-64 F CN Trial correction for rpm<br />

65-72 F DELT<br />

CFC<br />

Trial correction for ∆ C<br />

72-80 F DELTWC Trial correction for ∆ w<br />

F<br />

Mean values of the trial correction figures,<br />

C p and C N can be obtained from the trial test<br />

material of the individual institutions by running<br />

the ITTC Trial Prediction Test Program.<br />

If an institution wishes to give predictions<br />

with a certain margin the input C P -C N -values<br />

must be somewhat higher than these mean<br />

values.<br />

Cards Nos. 5-14 Result of resistance and selfpropulsion<br />

tests and mo<strong>de</strong>l propeller characteristics.<br />

Card Format CC Definition<br />

column<br />

Symbol<br />

1- 8 F VS Ship speed in knots<br />

9-16 F RTM Resistance of ship<br />

mo<strong>de</strong>l<br />

17-24 F THM Thrust of propeller<br />

25-32 F QM Torque of propeller:Q<br />

M :100<br />

33-40 F NM Rate of revolution<br />

41-48 F FD Skin friction correction<br />

force<br />

49-56 F ADVC Advance coefficient,.<br />

open water<br />

57-64 F KT Thrust coefficient,<br />

open water<br />

65-72 F KQ Torque coefficient,<br />

open water<br />

The J-margin in the open-water characteristics<br />

must be large enough to cover the<br />

mo<strong>de</strong>l and full scale J-values with some margin.<br />

Input data sheets are given in ENCL. 1.


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 14 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

4. VALIDATION<br />

4.1 Uncertainty Analysis<br />

not yet available<br />

4.2 Comparison With Full Scale Results<br />

The data that led to t ITTC-78 method can<br />

be found in the following ITTC proceedings:<br />

1) Proposed Performance Prediction Factors<br />

for Single Screw Ocean Going Ships<br />

(13 th 1972 pp.155-180) Empirical Power<br />

Prediction Factor ( 1+X )<br />

2) Propeller Dynamics Comparative Tests<br />

(13 th 1972 pp.445-446 )<br />

3) Comparative Calculations with the ITTC<br />

Trial Prediction Test Programme<br />

(14 th 1975 Vol.3 pp.548-553)<br />

4) Factors Affecting Mo<strong>de</strong>l Ship Correlation<br />

(17 th 1984 Vol. 1, pp274-291)


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 15 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

5. ITTC- 1978 PERFORMANCE PREDICTION METHOD (COMPUTER CODE)<br />

C<br />

C ****************************************************************************************************<br />

C * *<br />

C * 1978 ITTC PERFORMANCE PREDICTION METHOD FOR SINGLE SCREW *<br />

C * SHIPS *<br />

C * (REVISED 1983 TO INCLUDE TRIAL ANALYSIS AND TWIN SCREW SHIPS* *<br />

C * *<br />

C ****************************************************************************************************<br />

C<br />

C DECLARATIONS<br />

C<br />

COMMON /A/ FILE(2),MODELS(2), MODELP(2), LPP,LWL,TF,TA,B,S,<br />

* SCALE,RNCHM,DISW,NOPROP,NPB,DP,PD075,CH075.<br />

* TM075,C3,SBK,AT,CP,CN,DELCF,DELWC,KSI,KPI,<br />

* RHOM,RHOS,TEMM,TEMP,TEMS,VS(10),RTM(10),THM(10),<br />

* QM(10),NM(10),ADVC(10),KT(10),KQ(10),THD(10),<br />

* FD(10),IC,NOJ,NOSP,PI<br />

C<br />

COMMON /B/ ETARM(10),ETAO(10),ETAH(10),ETAD(10),AWTM(10),<br />

* AWTS(10),ACFM(10),ACTM(10),AVS(10),AVM(10),<br />

* ATS(10),AQS(10),APDS(10),APE(10),APDT(10),<br />

* ANS(10),ANT(10),BPDT(10),BNT(10),KTSJ2(10),<br />

* KQS(10),KTS(10),ACTS(10)<br />

DIMENSION FILE1(2),MODLS1(2),MODLP1(2)<br />

C<br />

REAL LPP, LWL, KS1, KS, KP1, KP, NM1, NM, KT, KQ, KTM, KQ0, JTM,<br />

* KTSJ2, JTS, NS, KQTS, KTS, KQS, KQM<br />

DATA TRIAL /‘TRIA‘/<br />

500 FORMAT(6A4,F8.0)<br />

501 FORMAT(10F8.0)<br />

502 FORMAT(2I4,9F8.0)<br />

503 FORMAT(2I4,2F8.0,3F6.0,I6,4F8.0)<br />

504 FORMAT(9F8.0)<br />

600 FORMAT(/5X,’NUMBER OF ADV,KT AND KQ POINTS =’,15/<br />

* 5X,’NUMBER OF SPEEDS =’,15/<br />

* 5X,’NUMBER OF SPEEDS OR ADVC POINTS >10’/)


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 16 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

C<br />

C<br />

CONSTANTS<br />

G=9.81<br />

PI=3.14159<br />

KP1=30.0<br />

KS1=150.0<br />

KS=1.5E-4<br />

KP=0.3E-4<br />

C<br />

C READ INPUT DATA<br />

C<br />

1000 CONTINUE<br />

READ(5,500,END=999) FILE,MODELS,MODELP,SCALE<br />

READ(5,501) LPP,LWL,TF,TA,B,S,DISW,SBK,AT,C3<br />

READ(5,502) NOPROP,NPB,DP,PD075,CH075,TM075,RNCHM<br />

READ(5,503) NOJ,NOSP,RHOM,RHOS,TEMM,TEMP,TEMS<br />

* IC,CP,CN,DELCF,DELWC<br />

NMAX=MAX0(NOJ,NOSP)<br />

IF(FILE(1).EQ.TRIAL) GOTO 100<br />

READ(5,504)(VS(I),RTM(I),THM(I),QM(I),NM(I),FD(I),<br />

* ADVC(I),KT(I),KQ(I);I=1,NMAX)<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

WRITE INPUT DATA<br />

CALL OUTPUT(1)<br />

CHECK<br />

IF(NOJ.LE.10.AND.NOSP.LE.10) GOTO 2<br />

WRITE(6,600) NOJ.NOSP<br />

GOTO 1000<br />

2 CONTINUE


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 17 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

C RECALCULATION OF INPUT DATA<br />

C<br />

DO 3 I=1,NOJ<br />

KT(I)=KT(I)*0.1<br />

KQ(I)=KQ(I)*0.01<br />

....3 CONTINUE<br />

DELCF=DELCF*0.001<br />

RNCHM=RNCHM*100000.<br />

VISCP=((0.585E-3*(TEMP-12.0)-0.03361)*(TEMP-12.0)+<br />

* 1.2350)*1.0E-6<br />

VISCM=((0.585E-3*(TEMM-12.0)-0.0361)*(TEMM-12.0)+<br />

* 1.2350)*1.0E-6<br />

VISCS=((0.659E-3*(TEMS-1.0)-0.05076)*(TEMS-1.0)+<br />

* 1.7688)*1.0E-6<br />

C<br />

C CORRECTION OF PROPELLER CHARACTERISTICS<br />

C<br />

CDM=2.0*(1.0+2.0*TM075/CH075)*(0.044/RNCHM**0.16667-<br />

* 5.0/RNCHM**0.66667)<br />

CDS=2.0*(1.0+2.0*TM075/CH075)/(1.89+1.62*ALOG10(CH075<br />

* /KP))**2.5<br />

DCD=CDM-CDS<br />

DKT=-0.3*DCD*PD075*CH075*NPB/DP<br />

DKQ=0.25*DCD*CH075*NPB/DP<br />

DO 4 I=1,NOJ<br />

KTS(I)=KT(I)-DKT<br />

KQS(I)=KQ(I)-DKQ<br />

KTSJ2(I)=KTS(I)/ADVC(I)**2<br />

4 CONTINUE<br />

DO 5 I=1,NOSP<br />

VS1=VS(I)*0.15444<br />

VM1=VS1/SQRT(SCALE)<br />

NM1=NM(I)<br />

C<br />

C


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 18 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

CALCULATE ROUGHNESS ALLOWANCE AND SHIP TOTAL RESISTANCE<br />

RNLP=LWL*VM1/(VISCP*SCALE)<br />

RNLM=LWL*VM1/(VISCM*SCALE)<br />

RNLS=LWL*VS1/VISCS<br />

CFMC=0.075/(ALOG10(RNLP)-2)**2<br />

CFM=0.075/(ALOG10(RNLM)-2)**2<br />

CFS=0.075/(ALOG10(RNLS)-2)**2<br />

CTM=RTM(I)*SCALE**3/(0.5*RHOM*VS1**2*S)<br />

CR=CTM-(1.0+C3)*CFM<br />

RTMC=RTM(I)*(1.0+C3)*CFMC+CR)/((1.0+C3)*CFM+CR)<br />

THD(I)=(THM(I)+FD(I)-RTMC)/THM(I)<br />

DELCF=(105.0*(KS/LWL)**0.33333-0.64)*0.001<br />

CAA=0.001*AT/S<br />

CTS=((1.0+C3)*CFS*DELCF)*(S+SBK)/S+CR+CAA<br />

MODEL PROPULSIVE COEFFICIENTS<br />

FNOP=NPROP<br />

KTM=(THM(I)/FNOP)/(RHOM*(DP/SCALE)**4*NM1*NM1)<br />

KQM=(QM(I)*0.01/FNOP)/(RHOM*(DP/SCALE)**5*NM1*NM1)<br />

JTM=APOL(0,KT,ADVC,NOJ,KTM,IX)<br />

KQ0=APOL(0,ADVC,KQ,NOJ,JTM,IX)<br />

WTM=1.0-JTM*DP*NM1/(VM1*SCALE)<br />

FULL SCALE WAKE<br />

IF(JRUDER) 6,5,6<br />

5 WTS=(THD(I)+0.04)+(WTM-THD(I)-0.04)*((1.0+C3)*CFS+DELCF)/<br />

* ((1.0+C3)*CFM)<br />

GOTO 7<br />

6 WTS=(THD(I) )+(WTM-THD(I) )*((1.0+C3)*CFS+DELCF)/<br />

* ((1.0+C3)*CFM)<br />

GOTO 7<br />

7 IF(WTS.GT.WTM) WTS=WTM<br />

ETARM(I)=KQ0/KQM<br />

SAVE AREAS<br />

ACTM(I)=CTM<br />

ACFM(I)=CFM<br />

AWTM(I)=WTM<br />

AWTS(I)=WTS<br />

ACTS(I)=CTS<br />

AVS(I)=VS1<br />

AVM(I)=VM1<br />

8 CONTINUE<br />

ITTC STANDARD PREDICTION


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 19 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

C<br />

C<br />

C<br />

CALL IP<br />

RETURN FOR NEW INPUT<br />

DO 20 I=1,2<br />

FILE1(I)=FILE(I)<br />

MODLS1(I)=MODELS(I)<br />

20 MODELP1(I)=MODELP(I)<br />

SCALE1=SCALE<br />

GOTO 1000<br />

C<br />

100 CONTINUE<br />

DO 110 I=1,2<br />

FILE(I)=FILE1(I)<br />

MODELS(I)=MODLS1(I)<br />

110 MODELP(I)=MODLP1(I)<br />

SCALE=SCALE1<br />

C<br />

CALL ANLSYS<br />

C<br />

C<br />

C<br />

C<br />

RETURN FOR NEW INPUT<br />

GOTO 1000<br />

999 STOP<br />

END<br />

C


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 20 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

C<br />

*****************************************************************************************************<br />

***<br />

C<br />

C OUTPUT IS USED FOR PRINTING INPUT DATA AND RESULTS<br />

C<br />

C IOUT= 1 INPUT DATA IS PRINTED<br />

C 2 RESULT PAGE 1<br />

C 3 RESULT PAGE 2<br />

C<br />

C<br />

*****************************************************************************************************<br />

***<br />

C<br />

SUBROUTINE OUTPUT(IOUT)<br />

C<br />

C<br />

COMMON /A/ FILE(2),MODELS(2),MODELP(2),LPP,LWL,TF,TA,B,S<br />

* SCALE,RNCHM,DISW,NOPROP,NPB,DP,PD075,CH075,<br />

* TM075,C3,SBK,AT,CP,CN,DELCFC,DELWC,KSI,KPI,<br />

* RHOM,RHOS,TEMM,TEMP,TEMS,VS(10),RTM(10);THM(10),<br />

* QM(10),NM(10),ADVC(10),KT(10),KQ(10),THD(10),<br />

* FD(10),IC,NOJ,NOSP,PI<br />

COMMON /B/ ETARM(10),ETA0(10),ETAH(10),ETAD(10),AWTM(10),<br />

* AWTS(10),ACFM(10),ACTM(10),AVS(10),AVM(10),<br />

* ATS(10),AQS(10),APDS(10),APE(10),APDT(10),<br />

* ANS(10),ANT(10),BPDT(10),BNT(10),KTSJ2(10),<br />

* KQS(10),KTS(10),ACTS(10)<br />

REAL LPP,LWL,KS1,KS,KP1,KP,NM1,NM,KT,KQ,KTM,KQ0,JTM,<br />

KTSJ2,JTS,NS,KQTS,KTS,KQS<br />

DIMENSION TEXT (16)<br />

DATA TEXT /’INPU’,’T DA’,’TA ‘,’ ‘,<br />

* ‘OUTP’,’UT D’,’ATA ‘,’1 ‘,<br />

* ‘OUTP’,’UT D’,’ATA..’,’2 ‘;<br />

* `TRIA`,`L AN`,ÀLYS`,ÌS `/<br />

600 FORMAT(‘1’,19X,’1978 ITTC PERFORMANCE PREDICTION’,10X,<br />

* ‘ENCL:’/<br />

C?? * 20X,’METHOD ‘,8X,<br />

* ‘REPORT:’/20X,4A4/)


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 21 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

601 FORMAT(5X,’IDENTIFICATION :’,18X,’SHIP:’//<br />

* 5X,‘PROJECT :’,2A4,<br />

* 10X,’LENGTH PP :’,F8.2,’ (M)’/<br />

* 5X,’SHIP MODEL’ :’,2A4,<br />

* 10X,’LENGTH WL :’,F8.2,’ (M)’/<br />

* 5X,’PROPELLER MODEL :’,2A4,<br />

* 10X,’DRAFT FWD :’,F8.2,’ (M)’/<br />

* 5X,’SCALE FACTOR :’,F8.2,<br />

* 10X,’DRAFT AFT :’,F8.2,’ (M)’/<br />

* 43X,’BREADTH :’,F8.2,’ (M)’/<br />

* 5X,’PROPELLER:’,<br />

* 28X,’WETTED SURFACE :’,F8.0,’ (M**2)’/<br />

* 43X,’DISPLACEMENT :’,F8.0,’ (M**3)’)<br />

602 FORMAT(5X,’NUMBER OF PROPELLERS:’,I8/<br />

* 5X,’NUMBER OF BLADES :’,I8,<br />

* 6X,’FRICTION COEFFICIENT CF’/<br />

* 5X,’DIAMETER :’,F8.3,’ (M)’,<br />

* 2X,’CALCULATED ACCORDING TO ITTC-57’/<br />

* 5X,’PITCH RATIO 0.75R :’,F8.4,<br />

* 6X,’FORM FACTOR :’,F6.3,’ (BASED ON ITTC-57)’/)<br />

603 FORMAT(5X,’HULL ROUGHN.*10**6 :’,F6.1,’ (M)’,<br />

* 2x,’BILGE KEEL AREA :’,F6.1,’ (M**2)’,<br />

* 5X,’PROPELLER BLADE ROUGHN.*10**6:’,F6.1,’ (M)’,<br />

* 2X,’PROJ.AREA ABOVE WL. :’,F6.1,’ (M**2)’/)<br />

604 FORMAT(5X,’CHORD LENGTH OF PROP.BLADE AT X=0.75:’,<br />

* F7.4,’ (M)’/<br />

* 5X,’THICKNESS OF PROP.BLADE AT X=0.75:’,<br />

* F7.4’ (M)’/)<br />

605 FORMAT(5X,’DENSITY OF WATER (TANK ) :’F7.1,<br />

* ‘ (KG/M**3)’/<br />

* ’DENSITY OF WATER (SEA ) :’F7.1,<br />

* ‘ (KG/M**3)’/<br />

* 5X,’TEMP. OF WATER (RESISTANCE TEST) :’F7.2,<br />

* ‘ (CENTIGRADES)’/<br />

* 5X,’TEMP. OF WATER (SELF PROP. TEST) :’F7.2,<br />

* ‘ (CENTIGRADES)’/<br />

* 5X,’TEMP. OF WATER (SEA ) :’F7.2,<br />

* ‘ (CENTIGRADES)’//<br />

* 5X,’MODEL TEST RESULTS:’,<br />

* 30X,’OPEN WATER CHARACT.;’/<br />

* 54X,’RNC :’’F5.2,’*10**5’/)


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 22 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

606 FORMAT(5X,’SHIP RESIS- FRICT. THRUST TORQUE RATE OF ‘,<br />

* 2X,’ADVANCE THRUST TORQUE’/<br />

* 20X,’REVS. RATIO COEFF. COEFF.’/<br />

* 5X,’KNOTS N N N NM RPS ’,<br />

* 7X,’J 10*KT 100*KQ’/)<br />

607 FORMAT(1X)<br />

608 FORMAT(‘+’,3X,F5.1,1X,F7.1,1X,F7.2,2X,2F7.1,F9.2)<br />

609 FORMAT(‘+’,49X,F10.3,F7.3,F8.3)<br />

610 FORMAT(5X,’SHIP MODEL:’//<br />

* 8X,’SPEED RES. COEFF. FRICT. COEFF. THRUST DED.’,<br />

* 2X,’MEAN REL.ROT.’/<br />

* 6X,’VS VM TOTAL’,32X, ‘WAKE EFFIC.’/<br />

* 5X,’KNOTS M/S CTM*1000 CFM*1000’,8X,’TM’,<br />

* 7X,’WTM ETARM’/)<br />

611 FORMAT(4X,F5.1,F7.3,F8.3,6X,F7.3,7X,F7.3,3X,F7.3,F8.3)<br />

612 FORMAT(/5x,’ITTC STANDARD PREDICTION CP=CN=1.0 :’//<br />

* 5X,’SPEED EFF. POWER DELIV. POWER RSATE OF REVS’,<br />

* 2X,’ THRUST TORQUE’/<br />

* 6X,’VS’,7X,’PE’,10X,’PD’,12X,’N’,10X,’T’,8X,’Q’/<br />

* 5X,’KNOTS’,5X,’KW’,10X,’KW’,11X,’RPS’,9X,’KN’,<br />

* 6X,’KNM’/)<br />

613 FORMAT(4X,F5.1,F10.0,3X,F9.0,4X,F9.3,3X,F9.0,F8.0)<br />

614 (FORMAT(/5X,’SPEED TOT. EFF. PROP.EFF. HULL EFF. SHIP WAKE’,<br />

* 3X,’OPEN WATER CHAR. FULL SCALE:’/<br />

* 5X,’KNOTS ETAD ETA0 ETAH’,/X,’WTS’,<br />

* 9X,’J 10*KT 100*KQ’/)<br />

615 FORMAT(‘+’,3X,F5.1,F8.3,3(3X,F7.3))<br />

616 FORMAT(‘+’,50X,3F7.3)<br />

617 FORMAT(/5X,’SHIP DELIVERED POWER RATE OF REVS.’/<br />

* 5X, ‘SPEED --------------------------- ---------------------‘/<br />

* 5X,’KNOTS KW HP RPS RPM’/)<br />

618 FORMAT(4X,F5.1,2X,2F8.0,3X,F7.3,F8.2)<br />

619 FORMAT(/5X,’SHIP TRIALS PREDICTION CP=’,F7.3,’ CN=,F7.3)<br />

620 FORMAT(/5X,’SHIP TRIALS PREDICTION DELCFC*1000=’,<br />

* F6.3,’ DELCW=’,F6.3)<br />

ITEX=ICUT*4-4<br />

WRITE(6,600) (TEXT(ITEX+1),I=1,4)<br />

WRITE(6,601) FILE,LPP,MODELS,LWL,MODELP,TF,SCALE,TA,B,S,DISW<br />

WRITE(6,602) NOPROP,NPB,DP,PD075,C3<br />

C<br />

GOTO(10,20,30,40) , IOUT


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 23 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

C<br />

C<br />

INPUT DATA IS LISTED<br />

10 CONTINUE<br />

WRITE(6,603) KS1,SBK,KP1,AT<br />

WRITE(6,604) CH075,TM075<br />

WRITE(6,605) RHOM,RHOS,TEMM,TEMP,TEMS,RNCHM<br />

WRITE(6,606)<br />

NMAX=MAX0(NOJ,NOSP)<br />

DO 1 I=1,NMAX<br />

WRITE(6,607)<br />

IF(I. LE. NOSP) WRITE(6,608) VS(I);RTM(I);FD(I),THM(I),<br />

QM(I),NM(I)<br />

IF(I. LE.NOJ) WRITE(6,609) ADVC(I),KT(I),KQ(I)<br />

1 CONTINUE<br />

RETURN<br />

C<br />

C RESULTS PAGE 1<br />

C<br />

20 CONTINUE<br />

WRITE(6,610)<br />

DO 21 I=1,NOSP<br />

CFM=ACFM(I)*1000.0<br />

CTM=ACTM(I)*1000.0<br />

WRITE(6,611) VS(I),AVM(I),CTM,CFM,THD(I),AWTM(I),ETARM(I)<br />

21 CONTINUE<br />

WRITE(6,612)<br />

DO 22 i=1,NOSP<br />

WRITE(6,613) VS(I),APE(I),APDS(I),ANS(I),ATS(I),AQS(I)<br />

22 CONTINUE<br />

WRITE(6,614)<br />

DO 23 i=1,NMAX<br />

WRITE(6,607)<br />

IF(I.LE.NOSP) WRITE(6,615) VS(I),ETAD(I),ETA0(I),ETAH(I);<br />

XKTS=KTS(I)*10.0<br />

XKQS=KQS(I)*100.0<br />

IF(I.LE.NOSP) WRITE(6,616)<br />

23 CONTINUE<br />

RETURN<br />

AWTS(I)<br />

ADVC(I),XKTS,XKQS


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 24 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

C RESULTS PAGE 3<br />

C<br />

30 CONTINUE<br />

DCFC=DELCFC*1000.0<br />

IF(IC.EQ.1) WRITE(6,620) DCFC,DELWC<br />

IF(IC.NE.1) WRITE (6,619) CP,CN<br />

WRITE(6,617)<br />

DO 31 I=1,NOSP<br />

WRITE(6,618) VS(I),APDT(I),BPDT(I),ANT(I),BNT(I)<br />

31 CONTINUE<br />

....40 RETURN<br />

END<br />

C<br />

C<br />

*****************************************************************************************************<br />

***<br />

C<br />

C IRAT= 0 INTERPOLATION WITH A 2:ND DEGREE POLYNOMIAL<br />

C = 1 INTERPOLATION WITH A RATIONAL FUNCTION OF 2:ND DEGREE<br />

C X = ARGUMENT ARRAY<br />

C Y = VALUE ARRAY<br />

C N = NUMBER OF ARGUMENTS<br />

C EX = ARGUMENT<br />

C IFEL = ERROR RETURN CODE<br />

C<br />

C<br />

*****************************************************************************************************<br />

***<br />

C<br />

REAL FUNCTION APOL(IRAT,X,Y,N,EX,IFEL)<br />

DIMENSION X(1),Y(1)<br />

C<br />

C CHECK NUMBER OF POINTS > 2<br />

C<br />

IFEL=0<br />

IF(X(1).GT.X(N)) GOTO 2<br />

IF(X(1).GT.EX.OR.X(N).LT.EX) GOTO 7<br />

DO 1 I=1,N<br />

L=1<br />

IF(EX-X(I)) 4,4,1<br />

1 CONTINUE<br />

GOTO 4<br />

2 CONTINUE<br />

IF(X(1).LT.EX.OR.X(N).GT.EX) GOTO 7<br />

DO 3 I=1,N<br />

L=I<br />

IF(EX-X(I)) 3,4,4


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 25 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

3 CONTINUE<br />

4 CONTINUE<br />

M=2<br />

IF(L.EQ.1) M=1<br />

IF(L.EQ.3) M=3<br />

LM=L-M<br />

X1=X(LM+1)<br />

X2=X(LM+2)<br />

X3=X(LM+3)<br />

Y1=Y(LM+1)<br />

Y2=Y(LM+2)<br />

Y3=Y(LM+3)<br />

INTERPOL. 2:ND DEGREE POLYNOMIAL<br />

X21=X2-X1<br />

X31=X3-X1<br />

X32=X3-X2<br />

IF(IRAT.EQ.1) GOTO 6<br />

C1=Y1<br />

C2=(Y2-C1)/X21<br />

C3=(Y3-C1-C2*X31)/(X31*X32)<br />

APOL=C1+(EX-X1)*(C2+C3*(EX-X2))<br />

RETURN<br />

6 CONTINUE<br />

INTERPOL. RAT. FUNCTION<br />

Y21=Y2*X2*X2-Y1*X1*X1<br />

Y32=Y3*X3*X3-Y2*X2*X2<br />

A0=(Y32-X32*Y21/X21)/(X32*X31)<br />

B0=(Y21/X21-A0*(X1+X2)<br />

C0=((Y1-A0)*X1-B0)*X1<br />

APOL=(C0/EX+B0)/EX+A0<br />

RETURN<br />

7 CONTINUE<br />

WRITE(6,8)<br />

8 FORMAT(/5X,’INCREASE THE J-RANGE’)<br />

STOP<br />

END


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 26 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

C ********************************************************************<br />

C<br />

C ITTC PREDICTIONS<br />

C<br />

C ********************************************************************<br />

C<br />

SUBROUTINE IP<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

COMMON /A/ FILE(2),MODELS(2),MODELP(2),LPP,LWL,TF,TA,B,S,<br />

* SCALE,RNCHM,DISW,NOPROP,NPB,DP,PD075,CH075,<br />

* TM075,C3,SBK,AT,CP,CN,DELCFC,DELWC,KSI,KPI,<br />

* RHOM,RHOS,TEMM,TEMP,TEMS,VS(10),RTM(10),THM(10),<br />

* QM(10),NM(10),ADVC(10),KT(10),KQ(10),THD(10),<br />

* FD(10),IC,NOJ,NOSP,PI<br />

COMMON /B/ ETARM(10),ETA0(10),ETAR(10),ETAD(10),AWTM(10),<br />

* AWTS(10),ACFM(10),ACTM(10),AVS(10),AVM(10),<br />

* ATS(10),AQS(10),APDS(10),APE(10),APDT(10),<br />

* ANS(10),ANT(10),BPDT(10),BNT(10),KTSJ2(10),<br />

* KQS(10),KTS(10),ACTS(10)<br />

REAL LPP,LWL,KS1,KS,KPI,KP,NM1,NM,KT,KQ,KTM,KQD,JTM,<br />

* KTSJ2,JTS,NS,KQTS,KTJT2,KQOS,KQS,KTS<br />

DO 3 I=1,NOSP<br />

VS1=AVS(I)<br />

CTS=ACTS(I)<br />

WTS=AWTS(I)<br />

CALCULATE THE FULL SCALE LOAD ADVANCE COEFF: AND<br />

TORQUE COEFF.<br />

FNOP=NOPROP<br />

KTJT2=S*CTS*0.5/((DP*(1.0-WTS))**2*(1.0-THD(I))) /FNOP<br />

JTS=APOL(1,KTSJ2,ADVC,NOJ,KT,KTJT2,IX)<br />

KQOS=APOL(0,ADVC,KQS,NOJ,JTS,IX)<br />

THE RATE OF REV. AND THE DELIVERED POWER<br />

NS=(1.0-WTS)*VS1/(JTS*DP)<br />

APDS(I)=2.0*PI*RHOS*DP**5*NS**3*KQOS/ETARM(I)*0.001<br />

ANS(I)=NS


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 27 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

THE THRUST AND TORQUE OF THE PROPELLER<br />

ATS(I)=KTJT2*JTS**2*RHOS*DP**4*NS*NS*0.001<br />

AQS(I)=KQOS*RHOS*DP**5*NS*NS/ETARM(I)*0.001<br />

THE EFFECTIVE POWER, TOTAL AND HULL EFFICIENCY<br />

APE(I)=CTS*0.5*RHOS*VS1**3*S*0.001<br />

ETAD(I)=APE(I)/APDS(I)<br />

ETAH(I)=(1.0-THD(I))/(1.0-WTS)<br />

IF(IC.EQ.1) GOTO 1<br />

IC1=IC-1<br />

IF(IC1)10,11,12<br />

TRIAL PREDICTION WITH CP-CN CORRECTIONS (ITTC1978 ORIGINAL)<br />

10 ANT(I)=CN*NS<br />

BNT(I)=ANT(I)*60.0<br />

APDT(I)=CP*APDS(I)<br />

BPDT(I)=1.36*APDT(I)<br />

GOTO 100<br />

TRIAL PREDICTION WITH CP-CN CORRECTIONS<br />

CN BASED ON POWER IDENTITY<br />

12 APDT(I)=CP*APDS(I)<br />

BPDT(I)=1.36*APDT(I)<br />

KQJ3T=1000.0*APDT(I)/(2.0*PI*RHOS*DP**2) /FNOP<br />

KQJ3T=KQJ3T/(VS1**3*(1.0-WTS)**3)<br />

KQ0J3=KQJ3T*ETARM(I)<br />

JTS=APOL(1,KQSJ3,ADVC,NOJ,KQ0J3,IX)<br />

NS=(1.0-WTS)*VS1/(JTS*DP)<br />

ANT(I)=CN*NS<br />

BNT(I)=ANT(I)*60.0<br />

GOTO 100<br />

11 CONTINUE


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 28 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

C TRIAL PREDICTION WITH DELCF-DELWC CORRECTIONS<br />

C<br />

KTJT2=S*(CTS+DELCFC)/(2.0*(1.0-THD(I))*(DP*<br />

* (1.0-(WTS-DELWC)))**2)<br />

JTS=APOL(1,KTSJ2,ADVC,NOJ,KTJT2,IX)<br />

KQOS=APOL(0,ADVC,KQS,NOJ,JTS,IX)<br />

ANT(I)=(1.0-WTS+DELWC)*VS1/(JTS*DP)<br />

BNT(I)=ANT(I)*60.0<br />

APDT(I)=2.0*PI*RHOS*DP**5*ANT(I)**3*KQOS/ETARM(I)*0.001<br />

BPDT(I)=1.36*APDT(I)<br />

2 CONTINUE<br />

ETAD(I)=KTJT2*JTS**3/(2.0*PI*KQOS)<br />

3 CONTINUE<br />

C<br />

C WRITE OUTPUT<br />

C<br />

CALL OUTPUT(2)<br />

CALL OUTPUT(3)<br />

RETURN<br />

SUBROUTINE ANLSYS<br />

C<br />

C***********************************************************************************************************<br />

****<br />

C * *<br />

C * ANALYSIS ACCORD1NG TO 1978 ITTC PREDICTION METHOD *<br />

C * *<br />

C***********************************************************************************************************<br />

****<br />

C<br />

C<br />

DIMENSION VST(10),XNT(10),XPD(10),<br />

* THDT(10),WTMT(10),WTST(10),ETART(10),CRWT(10),<br />

* YNT(10),YPD(10),CPT(10),CNT(10),CNPT(10),ZNT(10)<br />

* DCFT(10),WTSS(10),DWT(10),DCFM(10),DWM(I0),<br />

* KQJ3(10)<br />

C<br />

COMMON /A/ FILE(2),MODELS(2),MODELP(2),LPP,LWL,TF,TA,B,S,<br />

* SCALE,RNCHM,DISW,NOPROP,NPB,DP,PD075,CH075,<br />

* TM075,C3,SBK,AT,CP,CN,DELCFC,DELWC,KS1,KP1,<br />

* RHOM, RHOS,TEMM,TEMP,TEMS,VS(10),RTM(10),THM(10),<br />

* QM(10),NM(10),ADVC(10),KT(10),KQ(10),THD(10),<br />

* RA(10),IC,NOJ,NOSP,PI


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 29 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

COMMON /B/ ETARM(10), ETA0(10),ETAH(10),ETAD(10),AWTM(10),<br />

* AWTS(10),ACFM(10),ACTM(10),AVS(10),AVM(10),<br />

* ATS(10),AQS(10),APDS(10),APE(10),APDT(10),<br />

* ANS(10),ANT(10),BPDT(10),BNT(10),KTSJ2(10),<br />

* KQS(10),KTS(10),ACTS(10)<br />

C<br />

C<br />

C<br />

REAL LPP,LWL,KS1,KS,KP1,KP,NM1,NM,KT,KQ,KTM,KQ0,JTM,<br />

* KTSJ2,JTS,NS,KQTS,KTJT2,KQOS,KTS,KQS,KQM,<br />

* KQJ3,KQJ3T<br />

DO 5 I = 1,NOJ<br />

5 KQJ3(I) = KQS(I) /ADVC(I)**3<br />

C<br />

NOST=10<br />

READ(5,510) (VST(I), I=1,NOST)<br />

READ(5,510) (XNT(I), I=1,NOST)<br />

READ(5,510) (XPD(I), .I=1,NOST)<br />

510 FORMAT (10F8.0)<br />

C<br />

C<br />

COUNT NO. OF TRIAL RUNS<br />

NOST = 0<br />

DO 8 I = 1, 10<br />

IF (VST(I).GT.0. ) NOST=NOST+1<br />

8 CONTINUE<br />

IF(XNT(1).GT.20.) GOTO 20<br />

DO 10 I=1, NOST<br />

XNT(I) = XNT(I)*60.0<br />

10 XPD(I) = XPD(I)*1.36<br />

20 CONTINUE<br />

DO 50 I=1, NOST<br />

VST1=VST(I)*1852.0/3600.0<br />

CTST = APOL(0,AVS, ACTS, NOSP,VST1, IX)<br />

THDT(I)= APOL(0,AVS, THD, NOSP,VST1, IX)<br />

WTMT(I)= APOL(0,AVS, AWTM, NOSP,VST1, IX)<br />

WTST(I)= APOL(0,AVS, AWTS, NOSP,VST1, IX)<br />

ETART(I)= APOL(0,AVS, ETARM,NOSP,VST1, IX)<br />

CF =APOL(0,AVS, ACFM, NOSP,VST1, IX)<br />

CT =APOL(0,AVS, ACTM, NOSP,VST1, X)


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 30 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

C<br />

C<br />

CRWT(I)= CT - (1.0+C3)*CF<br />

FNOP =NOPROP<br />

KTJT2 =S*(CTST/FNOP )*0.5 / ((DP*(1.0-WTST(I)))**2*(1.0-THDT(I)))<br />

JTS =APOL(1, KTSJ2, ADVC, NOJ, KTJT2, IX)<br />

KQOS=APOL (0, ADVC, KQS, NOJ, JTS, IX)<br />

NS=(1.0-WTST(I))*VST1/(JTS*DP)<br />

PDS = 2.0*PI*RHOS*DP**5*NS**3*KQ0S/ETART(I)*0.001*FNOP<br />

YNT(I)= NS*60.0<br />

YPD(I) = PDS*1.36<br />

CPT(I)= XPD(I)/YPD(I)<br />

CNT(l)=XNT(I)/YNT(I)<br />

PDT1 = XPD(I) /1.36<br />

XNT1 = XNT(I) / 60.0<br />

FKQ = PDT1*START(I)*1000.0 / (2.0*PI*RHOS*DP**5*XNT1**3) / FNOP<br />

FJT = APOL(0,KQS,ADVC,NOJ,FKQ,IX)<br />

FKT = APOL(0,ADVC, KTS,NOJ,FJT,IX)<br />

KQJ3T=FKQ * (DP*XNT1)**3 / ((1-WTST(I))*VST1)**3<br />

FJQ= APOL( 1,KQJ3,ADVC,NOJ,KQJ3T,IX)<br />

ZNT(I)=(1.0 -WTST(I)) * VST1 / (FJQ*DP) * 60.0<br />

CNPT(I)=XNT(I) / ZNT(I)<br />

THS= FKT * RHOS * DP**4*XNT1**2<br />

CTS=THS*(1.0 - THDT(I)) / (0.5*RHOS*VST1**2*S) * FNOP<br />

DCFT(I)=(CTS - CTST)*1000.0<br />

WTSS(I)= 1.0 - FJT*DP*XNT1/VST1<br />

DWT(I) = WTST(I) - WTSS(I)<br />

DWM(I) = WTMT(I) - WTSS(I)<br />

CALCULATION OF FRICTIONAL RESISTANCE ~COEFF. OF SHIP<br />

T = TEMS<br />

FNU = ((0.659E-3*(T-l.0)-0.05076)*(T-1)+1.7688)*1.0E-6<br />

RNLS= ALOG10(LWL*VST1/FNU)<br />

CFS = 0.075 / (RNLS-2.0)**2<br />

C<br />

DCFM(I) = CTS - (l.0+C3)*CFS - ( CRWT(I)+0.001*AT / S )*S / (S+SBK)<br />

DCFM(I) = DCFM(I) * 1000.0<br />

CRWT(I) = CRWT(I) * 1000.0<br />

50 CONTINUE<br />

C<br />

CALL OUTPUT(4)<br />

WRITE(6,600)


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 31 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

600 FORMAT(' ',19X,'TRIAL ANALYSIS ACCORDING TO ITTC 1978 METHOD',///)<br />

WRITE(6,610) ( VST(I), I=1, NOST)<br />

610 FORMAT(5X.. ' SHIP SPEED - TRTAL',7(F10.2, 2X) /)<br />

WRITE(6,620) ( XNT(I), I=1, NOST)<br />

620 FORMAT(5X, ‘ PROP, RPM –TRTAL ',7(F10.2, 2X) /)<br />

WRITE(6,630) ( XPD(I), I=1, NOST)<br />

630 FORMAT(4X, 'DELIV.POWER-TRIAL ',7(F11.0,1X) //)<br />

WRITE(6,640) ( YNT(I), I=1, NOST)<br />

640 FORMAT(/5X, ‘ PROP. RPM -CN=1 ',7(F10.2,2X) /)<br />

WRITE~(6,650) ( ~YPD(I), I=1,NOST)<br />

650 FORMAT(4X, ' DELIV. POWER -CP =1',7(F11.0,1X) /)<br />

WRITE(6,660) ( ZNT(I), I=1, NOST)<br />

660 FORMAT(5X, ‘ PROP. RPM -CNP=1 ',7(F10.2,2X), //)<br />

WRITE(6,670) ( CPT(I), I=1, NOST)<br />

670 FORMAT(/5X, ‘ CP ‘,7(F10.3,2X) /)<br />

WRITE(6,680) (CNT(I), I=1, NOST)<br />

680 FORMAT(5X, ‘CN ‘,7(F10.3,2X) /)<br />

WRITE(6,690) (CNPT(I), I=1,NOST)<br />

690 FORMAT(5X, ‘CNP ',7(F10.3,2X) //)<br />

WRITE(6,700) (DCFT(I), I=1,NOST)<br />

700 FORMAT(/5X, ‘DCFC*1000 -CP=CN=1’,7(F10.3,2x) /)<br />

WRITE(6,710) ( DWT(I), I=1, NOST)<br />

710 FORMAT(5X, ' DWC CP=CN=1’,7(F10.3,2X) //)<br />

WRITE(6,715) ( DCFM(I), I=1, NOST)<br />

715 FORMAT(/5X, 'DCF *1000 ITTC-57’,7(F10.3,2x) /)<br />

WRITE(6,717) ( DWM(I), I=1,NOST)<br />

717 FORMAT(5X, ‘DW = WM-WTRIAL ',7(F10.3,2X) //)<br />

WRITE(6,720) ( CRWT(I) ,I=1, NOST)<br />

720 FORMAT(/5X, ‘ CR*1000 ‘,7(F10.3,2X) /)<br />

WRITE (6,730) ( THDT(I), I=1, NOST)<br />

730 FORMAT(5X, ‘ THDM ',7(F10.3,2X) /)<br />

WRITE(6,740) ( WTMT(I), I=1, NOST)<br />

740 FORMAT(5X, ’ WTM ',7(F10.3,2X) /)<br />

WRITE(6,750) ( WTST(I), I=1, NOST)<br />

750 FORMAT(5X, ‘ WTS CP=CN=1 ’,7(F10.3,2x) /)<br />

WRITE(6,760) ( WTSS(I), I=1, NOST)<br />

760 FORMAT(5X, ’ WTS TRIAL ’,7(F10.3,2X) /)<br />

WRITE(6,770) ( ETART(I), I=1, NOST)<br />

770 FORMAT(5X, ‘ ETARM ‘ ,7(F10.3,2X) /)<br />

RETURN<br />

END


120<br />

APÊNDICE A. PREVISÃO BASEADA NOS ENSAIOS DE PROPULSÃO


Apêndice<br />

B<br />

Procedimentos Recomendados pela<br />

ITTC para a Preparação e<br />

Realização das Provas <strong>de</strong> Velocida<strong>de</strong><br />

e Potência<br />

121


122<br />

APÊNDICE B. PROVAS DE VELOCIDADE E POTÊNCIA


ITTC – Recommen<strong>de</strong>d<br />

7.5-04<br />

-01-01.1<br />

Procedures and Gui<strong>de</strong>lines Page 1 of 10<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Preparation and Conduct of<br />

Speed/Power Trials<br />

Effective Date<br />

2005<br />

Revision<br />

03<br />

Table of Contents<br />

1. PURPOSE ..............................................2<br />

2. DEFINITIONS.......................................2<br />

3. RESPONSIBILITIES............................3<br />

3.1 Shipbuil<strong>de</strong>rs Responsibilities............3<br />

3.2 The Trial Team ..................................4<br />

4. PROCEDURES......................................4<br />

4.1 Trial Preparation...............................4<br />

4.1.1 Shipbuil<strong>de</strong>r’s Support Requirement:4<br />

4.1.2 Space Requirements ........................4<br />

4.2 Ship Inspection...................................5<br />

4.2.1 Preparation for the trials ..................5<br />

4.2.2 Ship Inspection ................................5<br />

4.2.3 Reporting of Results and<br />

Distribution of Information .............5<br />

4.3 Hull- and Propulsor Survey..............5<br />

4.4 Instrumentation Installation and<br />

Calibration .........................................5<br />

4.4.1 Instrumentation Installation.............5<br />

4.4.2 Instrumentation Calibration Check .6<br />

4.5 Trial Conditions.................................6<br />

4.5.1 Wind:...............................................8<br />

4.5.2 Sea State: .........................................8<br />

4.5.3 Current:............................................8<br />

4.6 Trial Conduct: ...................................8<br />

5. REFERENCES ....................................10<br />

Updated / Edited by<br />

Approved<br />

Specialist Committee on Powering Performance<br />

of 24 th ITTC<br />

Date 2005 Date 2005<br />

24 th ITTC 2005


ITTC – Recommen<strong>de</strong>d<br />

7.5-04<br />

-01-01.1<br />

Procedures and Gui<strong>de</strong>lines Page 2 of 10<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Preparation and Conduct of<br />

Speed/Power Trials<br />

Effective Date<br />

2005<br />

Revision<br />

03<br />

Preparation and Conduct of Speed/Power Trials<br />

1. PURPOSE<br />

The general purpose of this procedure is to<br />

<strong>de</strong>fine basic requirements for the preparation<br />

and conduct of speed trials.<br />

The primary purpose of speed trials is to<br />

<strong>de</strong>termine ship performance in terms of speed,<br />

power and propeller revolutions un<strong>de</strong>r prescribed<br />

ship conditions, and thereby verify the<br />

satisfactory attainment of the contractually<br />

stipulated ship speed.<br />

The applicability of this procedure is limited<br />

to commercial ships of the displacement<br />

type.<br />

The procedure is<br />

• to provi<strong>de</strong> gui<strong>de</strong>lines to document the<br />

trial preparation prior to the conduct of<br />

a full scale Speed/Power trial,<br />

• to <strong>de</strong>fine the responsibility sharing<br />

among the parties who take part in the<br />

sea trial for the smooth preparation and<br />

execution of the speed trial<br />

• to establish a gui<strong>de</strong>line for conducting<br />

inspections for the purpose of installing<br />

instrumentation prior to the conduct of<br />

a full scale Speed/Power trial,<br />

• to establish a baseline of the ship hull<br />

and propulsor condition prior to the<br />

conduct of a full-scale Speed/Power<br />

trial;(hull and propulsor surveys are<br />

recommen<strong>de</strong>d to allow an evaluation of<br />

the trial results for scientific purposes),<br />

• to install and calibrate trial instrumentation<br />

for full scale Speed/Power trials,<br />

• to <strong>de</strong>fine acceptable limits for trial conditions<br />

nee<strong>de</strong>d to validate hydrodynamic<br />

<strong>de</strong>sign and/or satisfy contractual<br />

requirements,<br />

for acceptable conduct of each speed trial.<br />

2. DEFINITIONS<br />

• Ship Speed is that realized un<strong>de</strong>r the contractually<br />

stipulated conditions. I<strong>de</strong>al conditions<br />

to which the speed would be corrected<br />

would be<br />

• no wind (or maximum wind speed according<br />

to Beaufort 2)<br />

• no waves (or waves with maximum<br />

wave heights and wave periods according<br />

to Beaufort 1)<br />

• no current<br />

• <strong>de</strong>ep water<br />

• smooth hull and propeller surfaces<br />

• Docking Report: Report that documents<br />

the condition of the ship hull and propulsors<br />

(available from the most recent dry -<br />

docking).<br />

• Trial Agenda: Document outlining the<br />

scope of a particular Speed/Power trial.<br />

This document contains the procedures on


ITTC – Recommen<strong>de</strong>d<br />

7.5-04<br />

-01-01.1<br />

Procedures and Gui<strong>de</strong>lines Page 3 of 10<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Preparation and Conduct of<br />

Speed/Power Trials<br />

Effective Date<br />

2005<br />

Revision<br />

03<br />

how to conduct the trial and table(s) portraying<br />

the runs to be conducted.<br />

• Trial Log: For each run, the log contains<br />

the run number, type of maneuver, approach<br />

speed by log, approach shaft speed,<br />

times when the maneuvers start and stop,<br />

and any comments about the run.<br />

• Propeller Pitch: the <strong>de</strong>sign pitch also for<br />

controllable pitch propellers.<br />

• Running Pitch: the operating pitch of a<br />

CPP<br />

• Brake Power: Power <strong>de</strong>livered by the output<br />

coupling of the propulsion machinery<br />

before passing through any speed reducing<br />

and transmission <strong>de</strong>vices and with all continuously<br />

operating engine auxiliaries in<br />

use.<br />

• Shaft Power: Net power supplied by the<br />

propulsion machinery to the propulsion<br />

shafting after passing through all speedreducing<br />

and other transmission <strong>de</strong>vices<br />

and after power for all attached auxiliaries<br />

has been taken off.<br />

3. RESPONSIBILITIES<br />

3.1 Shipbuil<strong>de</strong>rs Responsibilities<br />

• The Shipbuil<strong>de</strong>r has the responsibility for<br />

planning, conducting and evaluating the trials.<br />

• Speed – Power - Trials may be conducted<br />

by institutions acknowledged as competent<br />

to perform those trials, as agreed between<br />

the Shipbuil<strong>de</strong>r and the Ship owner<br />

• The Shipbuil<strong>de</strong>r has to provi<strong>de</strong> all permits<br />

and certificates nee<strong>de</strong>d to go to sea.<br />

• The Shipbuil<strong>de</strong>r is responsible to ensure<br />

that all qualified personnel, nee<strong>de</strong>d for operating<br />

the ship and all engines, systems<br />

and equipment during the trials have been<br />

or<strong>de</strong>red.<br />

• The Shipbuil<strong>de</strong>r is responsible to ensure<br />

that all regulatory bodies, Classification<br />

Society, Ship Owner, ship agents, suppliers,<br />

subcontractors, harbor facilities, <strong>de</strong>livering<br />

<strong>de</strong>partments of provisions, fuel, water, towing,<br />

etc., nee<strong>de</strong>d for conducting the sea trials,<br />

have been informed and are available<br />

and on board, if required.<br />

• It is the Shipbuil<strong>de</strong>r’s responsibility that all<br />

safety measures have been checked and all<br />

fixed, portable and individual material (for<br />

crew, trial personnel and guests) is on<br />

board and operative.<br />

• It is the Shipbuil<strong>de</strong>r’s responsibility that<br />

dock trials of all systems have been executed<br />

as well as all alarms, warning and<br />

safety systems.<br />

• It is the Shipbuil<strong>de</strong>r’s responsibility that an<br />

inclining test has been performed and/or at<br />

least a preliminary stability booklet has<br />

been approved, covering the sea trial condition,<br />

in accordance with the 1974 SOLAS<br />

Convention.<br />

• The Shipbuil<strong>de</strong>r is responsible for the overall<br />

trial coordination between the ship's<br />

crew, trial personnel, and the owner representative.<br />

A pre-trial meeting between the<br />

trial team, owner and the ship’s crew will<br />

be held to discuss the various trial events<br />

and to resolve any outstanding issues.


ITTC – Recommen<strong>de</strong>d<br />

7.5-04<br />

-01-01.1<br />

Procedures and Gui<strong>de</strong>lines Page 4 of 10<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Preparation and Conduct of<br />

Speed/Power Trials<br />

Effective Date<br />

2005<br />

Revision<br />

03<br />

• The Shipbuil<strong>de</strong>r has, if necessary, to arrange<br />

for divers to inspect the ship’s hull<br />

and propellers.<br />

• The Trial Lea<strong>de</strong>r is the duly authorized<br />

(shipbuil<strong>de</strong>r’s representative) person responsible<br />

for the execution of all phases of<br />

the Speed/Power trials including the pretrial<br />

preparation.<br />

3.2 The Trial Team<br />

The trial team is responsible for correct<br />

measurements and analysis of the measured<br />

data according to the state of the art.<br />

The trial team is responsible for the following:<br />

a. Conduct ship inspection, if possible or<br />

necessary.<br />

b. Provi<strong>de</strong>, install and operate all required<br />

trial instrumentation and temporary cabling.<br />

c. If previously arranged, provi<strong>de</strong> the ship<br />

master and owner’s representative with<br />

a preliminary data package before <strong>de</strong>barking.<br />

The contents of the data package<br />

will be <strong>de</strong>termined in consultation<br />

with the owner’s representative at the<br />

initial pre-trial briefing.<br />

d. Provi<strong>de</strong> a final report after completion<br />

of the trials in accordance with any<br />

agreement between the shipbuil<strong>de</strong>r and<br />

the ship owner.<br />

4. PROCEDURES<br />

4.1 Trial Preparation<br />

4.1.1 Shipbuil<strong>de</strong>r’s Support Requirement:<br />

Prior to the trials the required instrumentation<br />

has to be installed. The assistance of the<br />

ship’s or shipbuil<strong>de</strong>r’s crew will be required<br />

when making electrical connections to the<br />

ship's systems and circuits such as heading,<br />

wind speed, wind direction, and rud<strong>de</strong>r angle<br />

synchronous repeaters. The following support<br />

is requested from the Shipbuil<strong>de</strong>r to properly<br />

prepare for the trials:<br />

a. Provi<strong>de</strong> access to the ship for trial instrumentation.<br />

b. Assistance is required for the following<br />

electrical connections:<br />

• Gyrocompass<br />

• Wind meter<br />

• Rud<strong>de</strong>r angle indicator<br />

• Log Speed<br />

• Propeller Pitch<br />

c. Vary the output level of each of the<br />

above measurement sources to ensure<br />

the proper operation and alignment of<br />

the test instrumentation<br />

4.1.2 Space Requirements<br />

Spaces and an electric supply a<strong>de</strong>quate for<br />

the trial equipment will be required for the trial<br />

instrumentation and computers.


ITTC – Recommen<strong>de</strong>d<br />

7.5-04<br />

-01-01.1<br />

Procedures and Gui<strong>de</strong>lines Page 5 of 10<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Preparation and Conduct of<br />

Speed/Power Trials<br />

Effective Date<br />

2005<br />

Revision<br />

03<br />

4.2 Ship Inspection<br />

There are three stages of a ship inspection:<br />

in-house preparation, the actual inspection, and<br />

the reporting of results and distribution of information<br />

to the various parties involved in the<br />

trial.<br />

4.2.1 Preparation for the trials<br />

• Review shafting dimensions, propulsion<br />

plant specifications, etc.<br />

• Review trials agenda, if available.<br />

4.2.2 Ship Inspection<br />

• Inspect hull- and propeller surface condition,<br />

if possible.<br />

• Inspect ship’s instrumentation for accessibility.<br />

• Determine routes for cable runs/data<br />

transfer conduits between trial room<br />

and bridge or control area.<br />

• Contact the Engineer on duty to discuss<br />

trial instrumentation requirements. Inspect<br />

machinery spaces as applicable.<br />

4.2.3 Reporting of Results and Distribution<br />

of Information<br />

Document all pertinent information related<br />

to the ship inspection<br />

a) Last date of cleaning.<br />

b) Means of cleaning.<br />

c) Propeller roughness measurement, if<br />

available, which should inclu<strong>de</strong> average,<br />

standard <strong>de</strong>viation, distribution<br />

along the bla<strong>de</strong>s, and existing physical<br />

damage.<br />

d) For a clean hull; documentation indicating<br />

manufacturer and kind of paint<br />

used, paint layer thickness and, if available,<br />

roughness measurements (average,<br />

standard <strong>de</strong>viation, and distribution<br />

along the hull) should be provi<strong>de</strong>d. The<br />

majority of this information may be<br />

contained in the docking report.<br />

e) For a dirty hull, documentation indicating<br />

visual observations of any fouling<br />

and date of last dry-docking should<br />

be provi<strong>de</strong>d.<br />

4.3 Hull- and Propulsor Survey<br />

A roughness survey is recommen<strong>de</strong>d to<br />

document the conditions of the ship hull, appendages,<br />

and propulsor(s) prior to the start of<br />

the full-scale speed/ power trial. Cleaning may<br />

be required if fouling is found to be such that it<br />

would bias the trial data.<br />

I<strong>de</strong>ally, roughness surveys should be conducted<br />

prior to the trials. The average hull<br />

roughness should not exceed 250 µm (µ =<br />

1x10 -6 m) (6.35 mils) and the average propulsor<br />

roughness level should not be greater than<br />

150 µm (3.81 mils).<br />

4.4 Instrumentation Installation and Calibration<br />

4.4.1 Instrumentation Installation<br />

The installation of instrumentation should<br />

be scheduled at a time of minimal conflict with<br />

ship operations.


ITTC – Recommen<strong>de</strong>d<br />

7.5-04<br />

-01-01.1<br />

Procedures and Gui<strong>de</strong>lines Page 6 of 10<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Preparation and Conduct of<br />

Speed/Power Trials<br />

Effective Date<br />

2005<br />

Revision<br />

03<br />

The bias limits of the instrumentation used<br />

for the measurements should be known and assessed.<br />

The instrumentation used for the on-boardmeasurements<br />

must be calibrated before application<br />

on board. If this is not possible, for some<br />

reason, the consequences of this should be<br />

highlighted in the final trial report. Electrical<br />

calibration is recommen<strong>de</strong>d for the torque<br />

measurement <strong>de</strong>vice and, in case of use during<br />

the sea trials, for the thrust measurement <strong>de</strong>vice.<br />

Further a calibration should be done for the<br />

pick ups and the respective amplifiers used for<br />

the measurement of the rate of revolutions. A<br />

“calibration” of a (differential) GPS-System is<br />

not possible without excessive measures, but at<br />

least the function of the <strong>de</strong>vice should be<br />

checked before use on board.<br />

If portable radar tracking or (differential)<br />

GPS is utilized, a Receiver/Transmitter (R/T)<br />

unit or GPS antenna is to be installed. In case<br />

the soft ware program used for the evaluation<br />

of the data received does not allow for varying<br />

positions on the uppermost <strong>de</strong>ck of the ship the<br />

antenna should be placed in a location along<br />

the ship’s centerline as close to the ship’s CG<br />

as possible. This location will i<strong>de</strong>ally be located<br />

on a mast or site that is clear of obstructions,<br />

such as the ship’s superstructure.<br />

4.4.2 Instrumentation Calibration Check<br />

All shipboard signals to be recor<strong>de</strong>d during<br />

the trials must be adjusted to zero or should<br />

have their zero value checked (e.g. for a (D)<br />

GPS-<strong>de</strong>vice) after the instrumentation installation<br />

is completed and prior to the trials. The<br />

zero values of the torsiometers, the thrust<br />

measurement <strong>de</strong>vices and the <strong>de</strong>vices for the<br />

measurement of the rates of revolutions must<br />

be checked before the trial runs start and after<br />

they have been finished.<br />

As part of the pre-trial calibration, the torsion<br />

meters zero torque readings must be <strong>de</strong>termined<br />

since there is a residual torque in the<br />

shaft, which is resting on the line shaft bearings.<br />

This might be done in different ways; one possible<br />

way is to use the jacking motors. The<br />

shaft is jacked both ahead and astern and the<br />

average of the readings noted. The zeroes are<br />

set at the midpoint of the torque required to<br />

jack each shaft ahead and the torque required to<br />

jack each shaft astern. An allowance is normally<br />

ma<strong>de</strong> for frictional losses in the stern<br />

tube bearings.<br />

As part of the pre-trial calibration for a ship<br />

equipped with controllable pitch propellers,<br />

maximum ahead pitch, the <strong>de</strong>sign pitch and the<br />

maximum astern pitch should be <strong>de</strong>termined<br />

and then the ship indicators should be adjusted<br />

to reflect the measurement.<br />

4.5 Trial Conditions<br />

Speed/Power trials require accurate position<br />

data. The use of (D) GPS provi<strong>de</strong>s great latitu<strong>de</strong><br />

in choosing a trial site. Regardless of the<br />

instrumentation utilized for obtaining positional<br />

data, the operational area should be free<br />

from substantial small boat traffic.<br />

The tracking range should be agreed between<br />

the Trial Director and the ship’s master.<br />

Draft, trim and displacement of the ship on<br />

trials should be obtained by averaging the ship<br />

draft mark readings. The ship should be<br />

brought into a condition that is as close as possible<br />

to the contract condition and/or the condi-


ITTC – Recommen<strong>de</strong>d<br />

7.5-04<br />

-01-01.1<br />

Procedures and Gui<strong>de</strong>lines Page 7 of 10<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Preparation and Conduct of<br />

Speed/Power Trials<br />

Effective Date<br />

2005<br />

Revision<br />

03<br />

tion on which mo<strong>de</strong>l tests have been carried out.<br />

This will allow for the correction of the displacement<br />

and trim with respect to the trials<br />

that were conducted and will be applicable to<br />

the suggestions outlined in the ITTC Procedure<br />

for the Analysis of Speed/Power Trial Data.<br />

Draft, trim and displacement should be obtained<br />

at the beginning and at the end of the<br />

trial. This may be accomplished using a loading<br />

computer or by taking a second draft reading.<br />

The accuracy of the draft readings and the<br />

method used to establish draft and displacement<br />

un<strong>de</strong>rway will be compared in port by direct<br />

draft readings both port and starboard in<br />

conjunction with a liquid load calculation.<br />

Displacement should be <strong>de</strong>rived from the<br />

hydrostatic curves by utilizing the draft data<br />

and the <strong>de</strong>nsity of the water.<br />

Environmental factors may significantly influence<br />

the data obtained during sea trials; consequently,<br />

these factors should be monitored<br />

and documented to the greatest extent possible:<br />

• High wind and sea states can force the<br />

use of excessive rud<strong>de</strong>r to maintain<br />

heading, and thus cause excessive fluctuations<br />

in shaft torque, shaft speed and<br />

ship speed.<br />

• Sea states of 3 or less and a true wind<br />

speed below Beaufort 6 (20 Kn) are the<br />

<strong>de</strong>sired conditions for sea trials. When<br />

working un<strong>de</strong>r the time constraints of a<br />

contract, corrections to the trials data<br />

can be ma<strong>de</strong> in accordance with the recommendations<br />

provi<strong>de</strong>d in the ITTC<br />

Procedure for the Analysis of<br />

Speed/Power Trial Data for sea states<br />

less than or equal to 5. For sea states<br />

greater than 5, corrections to the trials<br />

data can be applied but are not consi<strong>de</strong>red<br />

reliable from a scientific standpoint.<br />

• The local seawater temperature and specific<br />

gravity at the trial site are recor<strong>de</strong>d<br />

to enable the calculation of ship's displacement.<br />

• An acceptable minimum water <strong>de</strong>pth<br />

for the trials where the data do not need<br />

to be corrected for shallow water can be<br />

calculated using:<br />

h > 6.0(A m ) 0.5 and h > 0.5 V 2 (1)<br />

with<br />

A m = midship section area, [m 2 ]<br />

V= ship speed, [m/s]<br />

The larger of the 2 values obtained<br />

from the two equations should be used.<br />

• Current speed and direction should be<br />

<strong>de</strong>termined in the test area by prognostic<br />

analysis. When current speed and direction<br />

is unknown, the ship’s global<br />

drift (also including wind effect) in<br />

some cases might be <strong>de</strong>termined by a<br />

360° turning test conducted at low<br />

ahead speed to magnify any environmental<br />

effect.<br />

• The runs should be conducted into and<br />

against the waves; i.e., head and following<br />

seas, respectively. To ensure that<br />

tests are performed in comparable conditions,<br />

the data between reciprocal<br />

runs should be reviewed for consistency<br />

and/or anomalies. Individual speed runs<br />

conducted in the same conditions<br />

should be averaged with their reciprocal<br />

runs to take into account global drift.


ITTC – Recommen<strong>de</strong>d<br />

7.5-04<br />

-01-01.1<br />

Procedures and Gui<strong>de</strong>lines Page 8 of 10<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Preparation and Conduct of<br />

Speed/Power Trials<br />

Effective Date<br />

2005<br />

Revision<br />

03<br />

In accordance with ISO 15016 the following,<br />

general recommendations can be given:<br />

4.5.1 Wind:<br />

Wind speed and direction shall be measured<br />

as relative wind; continuous recording of relative<br />

wind during each run is recommen<strong>de</strong>d.<br />

Care has to be taken whether the data <strong>de</strong>rived<br />

from the wind indicator are reliable; checks,<br />

such as parallel measurements with a portable<br />

instrument, comparison of the data received<br />

from the wind indicator with wind speeds and<br />

directions received from local weather stations<br />

sufficiently close to the actual position of the<br />

ship or, if possible, calibration of the wind indicator<br />

(taking into consi<strong>de</strong>ration the effects of<br />

boundary layers of the superstructure on the<br />

measured values) in a wind tunnel are recommen<strong>de</strong>d.<br />

It is suggested that wind force during the<br />

trial runs un<strong>de</strong>r no conditions should be higher<br />

than<br />

• Beaufort 6 for ships with lengths equal<br />

or exceeding 100m and<br />

• Beaufort 5 for ships shorter than 100m.<br />

4.5.2 Sea State:<br />

If possible, instruments such as buoys or instruments<br />

onboard ships (e.g. seaway analysis<br />

radar) should be used to <strong>de</strong>termine the wave<br />

height, wave period and direction of seas and<br />

swell. Consi<strong>de</strong>ring usual practice the wave<br />

heights may be <strong>de</strong>termined from observations<br />

by multiple, experienced observers, including<br />

the nautical staff on board.<br />

During the trial runs the total wave height<br />

(double amplitu<strong>de</strong>), which allows for the wave<br />

heights of seas and swell (see ISO 15016),<br />

should not exceed<br />

• 3m for ships of 100m length and more<br />

and<br />

• 1,5m for ships with lengths smaller than<br />

100m<br />

4.5.3 Current:<br />

Current speed and direction shall be obtained<br />

either as part of the evaluation of run<br />

and counter-run of each double run, by direct<br />

measurement with a current gauge buoy or by<br />

use of nautical charts of the respective trial area.<br />

It is recommen<strong>de</strong>d to compare measured data<br />

with those inclu<strong>de</strong>d on the nautical charts.<br />

4.6 Trial Conduct:<br />

All speed trials shall be carried out using<br />

double runs, i.e. each run is followed by a return<br />

run in the opposite direction, performed<br />

with the same engine settings.<br />

The number of such double runs should not<br />

be less than three. This three runs should be at<br />

different engine settings.<br />

The time necessary for a speed run <strong>de</strong>pends<br />

on the ship’s speed, size and power. Steady<br />

state conditions should be achieved before the<br />

speed runs start. It is recommen<strong>de</strong>d that the<br />

time of one run should be as long as possible<br />

but should at least be 10 min.<br />

The i<strong>de</strong>al path of a ship in a typical<br />

speed/power maneuver is shown in Figure 1:


ITTC – Recommen<strong>de</strong>d<br />

7.5-04<br />

-01-01.1<br />

Procedures and Gui<strong>de</strong>lines Page 9 of 10<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Preparation and Conduct of<br />

Speed/Power Trials<br />

Effective Date<br />

2005<br />

Revision<br />

03<br />

Min. 10 min<br />

Steady Approach<br />

Steady Approach<br />

Min 10 min<br />

Figure 1<br />

Prior to the trial, the data specified below<br />

shall be recor<strong>de</strong>d, based on measurements<br />

where relevant:<br />

• Date<br />

• Trial area<br />

• Weather conditions<br />

• Air temperature<br />

• Mean water <strong>de</strong>pth in the trial area<br />

• Water temperature and <strong>de</strong>nsity<br />

• Draughts<br />

• Corresponding displacement<br />

• Propeller pitch in the case of a CPP<br />

It is recommen<strong>de</strong>d to retain a record of the<br />

following factors, which should prove useful<br />

for verifying the condition of the ship at the<br />

time of the speed trial:<br />

• Time elapsed since last hull and propeller<br />

cleaning<br />

• Surface condition of hull and propeller.<br />

The following data should be monitored<br />

and recor<strong>de</strong>d on each run:<br />

Clock time at commencement<br />

• Time elapsed over the measured distance<br />

• Ship heading<br />

• Ship’s speed over ground<br />

• Propeller rate of revolutions<br />

• Propeller shaft torque and/or brake<br />

power<br />

• Water <strong>de</strong>pth<br />

• Relative wind velocity and direction<br />

• Air temperature<br />

• Observed wave height (or: wave height<br />

corresponding to observed and/or<br />

agreed wind conditions)<br />

• Rud<strong>de</strong>r angle<br />

• Ship position and track


ITTC – Recommen<strong>de</strong>d<br />

7.5-04<br />

-01-01.1<br />

Procedures and Gui<strong>de</strong>lines Page 10 of 10<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Preparation and Conduct of<br />

Speed/Power Trials<br />

Effective Date<br />

2005<br />

Revision<br />

03<br />

Data such as ship’s speed, rate of revolutions<br />

of the propeller, torque, rud<strong>de</strong>r angle and<br />

drift angle to be used for the analyses shall be<br />

the average values <strong>de</strong>rived on the measured<br />

distance.<br />

5. REFERENCES<br />

(1) ISO 15016, Ships and marine technology –<br />

Gui<strong>de</strong>lines for the assessment of speed and<br />

power performance by analysis of speed<br />

trial data<br />

(2) ITTC Procedure for the Analysis of<br />

Speed/Power Trial Data<br />

(3) ISO 19019


Apêndice<br />

C<br />

Condições <strong>de</strong> Realização das Provas<br />

<strong>de</strong> Velocida<strong>de</strong> e Potência<br />

Recomendadas pela ITTC<br />

133


134<br />

APÊNDICE C. CONDIÇÕES DAS PROVAS DE VELOCIDADE E POTÊNCIA


ITTC –Recommen<strong>de</strong>d<br />

Procedures<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Trial Conditions<br />

7.5 – 0.4<br />

01 – 01.5<br />

Page 1 of 6<br />

Effective Date<br />

2002<br />

Revision<br />

01<br />

CONTENTS<br />

1. PURPOSE<br />

2. SCOPE<br />

3. RESPONSIBILITIES<br />

4. DEFINITIONS<br />

5. PROCEDURE<br />

6. REFERENCES<br />

7. RECORDS<br />

8. ATTACHMENTS<br />

Updated by<br />

Approved<br />

Specialist Committee of 23 rd ITTC on<br />

Speed and Powering<br />

Date Date 2002<br />

23 rd ITTC 2002


ITTC –Recommen<strong>de</strong>d<br />

Procedures<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Trial Conditions<br />

7.5 – 0.4<br />

01 – 01.5<br />

Page 2 of 6<br />

Effective Date<br />

2002<br />

Revision<br />

01<br />

Trial Conditions<br />

1. PURPOSE<br />

The purpose of this procedure is to establish<br />

gui<strong>de</strong>lines for the <strong>de</strong>finition of acceptable<br />

limits for trial conditions nee<strong>de</strong>d to validate<br />

hydrodynamic <strong>de</strong>sign and/or satisfy contractual<br />

requirements.<br />

b. Collect and record seawater temperature<br />

and specific gravity during trial,<br />

daily.<br />

4. DEFINITIONS<br />

None<br />

2. SCOPE<br />

This procedure applies to the documentation<br />

of trial conditions (environmental and<br />

ship) in which the full-scale Speed/Power trial<br />

are performed.<br />

3. RESPONSIBILITIES<br />

• The Trial Director is the duly authorized<br />

shipbuil<strong>de</strong>r’s representative responsible for<br />

the execution of all phases of the<br />

Speed/Power trials. When unforeseen problems,<br />

such as weather or technical difficulties<br />

require that the trial schedule or trial<br />

logistics be modified, the Trial Director<br />

shall make the final <strong>de</strong>cision, subject to the<br />

concurrence of the ship’s master and the<br />

owner’s representative.<br />

• The shipbuil<strong>de</strong>r is responsible for the overall<br />

trial coordination between the ship's<br />

crew, trial personnel, and the owner representative.<br />

A pre-trial meeting between the<br />

trial team, owner and the ship’s crew will<br />

be held to discuss the various trial events<br />

and to resolve any outstanding issues.<br />

• The trial team is responsible for the following:<br />

a. Operate and maintain all required trial<br />

instrumentation and temporary cabling.<br />

5. PROCEDURE<br />

1. Speed/Power trials require accurate position<br />

data and therefore will i<strong>de</strong>ally be conducted<br />

at an instrumented tracking range<br />

located in a sheltered body of water. Lacking<br />

availability of an instrumented tracking<br />

range, the use of DGPS provi<strong>de</strong>s great latitu<strong>de</strong><br />

in choosing a trial site. Regardless of<br />

the instrumentation utilized for obtaining<br />

positional data, the operational area should<br />

be free from substantial small boat traffic.<br />

2. If an instrumented tracking range is utilized,<br />

the ship’s master will receive a formal<br />

briefing on tracking range procedures by<br />

the Trial Director prior to the conduct of<br />

the trials. During the briefing, specific trial<br />

runs will be reviewed. The trial team will<br />

provi<strong>de</strong> an on-shore observer to monitor<br />

data collection by the tracking range facility.<br />

If DGPS is utilized, the Trial Director<br />

will brief the ship’s master on specific trial<br />

runs and procedures.<br />

3. Ship characteristics and environmental factors<br />

are carefully monitored and documented<br />

throughout the trials (see Table 1).<br />

Accurate quantification of these conditions<br />

is necessary because a ship's speed and<br />

powering characteristics are extremely sensitive<br />

to conditions such as ship and propeller<br />

condition, ship displacement, shallow<br />

water effects, sea state and wind velocity.


ITTC –Recommen<strong>de</strong>d<br />

Procedures<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Trial Conditions<br />

7.5 – 0.4<br />

01 – 01.5<br />

Page 3 of 6<br />

Effective Date<br />

2002<br />

Revision<br />

01<br />

4. Speed/Power Trials are normally scheduled<br />

within 30 days of undocking to minimize<br />

the adverse effects of hull and propulsor<br />

fouling and provi<strong>de</strong> a more "standard" condition<br />

for testing. In situations where the<br />

ship has become fouled after undocking, a<br />

hull cleaning, propeller polishing and hull<br />

and propeller roughness survey should be<br />

performed within 30 days of the<br />

Speed/Power trial date. Guidance may be<br />

found in Hull and Propulsor Survey Procedure<br />

7.5-04-01-01.3. At a minimum, the<br />

ship’s latest docking report and diver inspection<br />

should be provi<strong>de</strong>d to fulfill this<br />

requirement. Guidance may be found in<br />

Speed/Power Trial Ship Inspection Procedure<br />

7.5-04-01-01.2.<br />

5. Draft, trim and displacement of the trials<br />

must be obtained by averaging the ship<br />

draft mark readings. The ship should be<br />

brought into a condition that is as close as<br />

possible to the contract condition and/or the<br />

condition by which mo<strong>de</strong>l tests have been<br />

carried out. This will allow for the correction<br />

of the displacement and trim with respect<br />

to the trials that were conducted and<br />

will be applicable to the suggestions outlined<br />

in the 23rd ITTC Speed and Powering<br />

Trials Specialist Committee final report.<br />

a. Draft, trim and displacement must be<br />

obtained at the beginning and at the end<br />

of the trial. This may be accomplished<br />

using a loading computer or by taking a<br />

second draft reading. The accuracy of<br />

the ship's draft marks and the method<br />

used to calculate draft and displacement<br />

un<strong>de</strong>rway will be compared in port by<br />

direct draft readings both port and starboard<br />

in conjunction with a liquid load<br />

calculation. The trial team will verify<br />

and document the results prior to the<br />

Speed/Power trials.<br />

b. Displacement must be <strong>de</strong>rived from the<br />

hydrostatic curves by utilizing the draft<br />

data and the <strong>de</strong>nsity of the water. When<br />

<strong>de</strong>aling with Frou<strong>de</strong> numbers higher<br />

than 0.5 (e.g. a Fast Ferry with 100 m<br />

length and speed over 30 kn) intermediate<br />

ship loading conditions must be<br />

documented. This is better accomplished<br />

through tank soundings.<br />

6. Environmental factors can significantly influence<br />

the data obtained during sea trials.<br />

Consequently, these factors must be monitored<br />

and documented to the greatest extent<br />

possible.<br />

a. High wind and sea states can force the<br />

use of excessive rud<strong>de</strong>r to maintain<br />

heading, and thus cause excessive fluctuations<br />

in shaft torque, shaft speed and<br />

ship speed.<br />

b. Sea states of 3 or less and a true wind<br />

speed below Beaufort 6 (20 kn) are the<br />

<strong>de</strong>sired conditions for sea trials. When<br />

working un<strong>de</strong>r the time constraints of a<br />

contract, corrections to the trials data<br />

can be ma<strong>de</strong> in accordance with the recommendations<br />

provi<strong>de</strong>d in the 23rd<br />

ITTC Speed and Powering Trials Specialist<br />

Committee final report for sea<br />

states less than or equal to 5. For sea<br />

states greater than 5, corrections to the<br />

trials data can be applied but are not<br />

consi<strong>de</strong>red reliable from a scientific<br />

standpoint.<br />

c. The local seawater temperature and specific<br />

gravity at the trial site are recor<strong>de</strong>d<br />

to enable the calculation of ship's displacement.<br />

d. Air temperature and atmospheric pressure<br />

should be measured at the trial location<br />

using a calibrated thermometer<br />

and barometer.<br />

e. An acceptable minimum water <strong>de</strong>pth for the<br />

trials where the data do not need to be cor-


ITTC –Recommen<strong>de</strong>d<br />

Procedures<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Trial Conditions<br />

7.5 – 0.4<br />

01 – 01.5<br />

Page 4 of 6<br />

Effective Date<br />

2002<br />

Revision<br />

01<br />

rected for shallow water can be calculated<br />

using:<br />

h > 6.0(A m ) 0.5 and h > 0.5 V 2 (1)<br />

Use the larger of the 2 values obtained from<br />

the two equations.<br />

Other accepted formulae are:<br />

1. SNAME 1973/21st ITTC Powering<br />

Performance<br />

Committee<br />

d ≥ 10TV/(L) 0.5 (2)<br />

d = water <strong>de</strong>pth, ft<br />

T =´trial draft, ft<br />

V = speed, kn<br />

L = length between perpendiculars,<br />

ft<br />

2. SNAME 1989 from Det Norske<br />

Veritas<br />

Nautical Safety- Additional Classes<br />

NAUT-A, NAUT-B AND NAUT-<br />

C, July 1986<br />

h > 5.0(A m ) 0.5 and h > 0.4 V 2 (3)<br />

Use the larger of the 2 values obtained<br />

from the two equations.<br />

h = water <strong>de</strong>pth, m<br />

A m = midship section area, m 2<br />

V = ship speed, m/s<br />

or<br />

h > 5 (T) (4)<br />

T =<br />

Mean draft, m<br />

3. 22nd ITTC Trials & Monitoring<br />

Specialist Committee/12th ITTC<br />

based on ship section and Frou<strong>de</strong><br />

Number.<br />

h > 3.0(BT) 0.5 and h > 2.75 V 2 /g<br />

(5)<br />

Use the larger of the 2 values obtained<br />

from the two equations.<br />

h = <strong>de</strong>pth in appropriate length<br />

units<br />

B = beam in appropriate length<br />

units<br />

T = draft in appropriate length<br />

units<br />

V = speed in system of units consistent<br />

with the above dimension<br />

g = acceleration due to gravity in<br />

units consistent with the above dimension<br />

4. ISO/FDIS 15016:(E) based on Lackenby’s<br />

Formula<br />

∆V<br />

V = 0.1242 ⎛ A m<br />

− 0.05<br />

⎞ ⎛<br />

+1 − tanh(gh<br />

⎝ h 2 ⎠ V ) ⎞<br />

⎝<br />

2 ⎠<br />

for h ≤ (A m /0.05) 0.5 (6)<br />

∆V<br />

V ≤ 0.02<br />

h = water <strong>de</strong>pth, m<br />

A m = midship section area un<strong>de</strong>r<br />

water, m 2<br />

V = ship speed, m/s<br />

∆V = speed loss due to shallow water<br />

effect, m/s<br />

g = acceleration due to gravity,<br />

m/s 2<br />

0.5


ITTC –Recommen<strong>de</strong>d<br />

Procedures<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Trial Conditions<br />

7.5 – 0.4<br />

01 – 01.5<br />

Page 5 of 6<br />

Effective Date<br />

2002<br />

Revision<br />

01<br />

f. Current speed and direction should be<br />

<strong>de</strong>termined in the test area by prognostic<br />

analysis. When current speed is suspected<br />

to be varying and direction is<br />

unknown, the ship’s global drift (also<br />

including wind effect) should be <strong>de</strong>termined<br />

by a 360° turning test conducted<br />

at low ahead speed to magnify any environmental<br />

effect. Test runs should be<br />

conducted against and with global drift.<br />

It should be noted that this method of<br />

<strong>de</strong>termining the direction of the trial<br />

runs is extremely important in the case<br />

of small ships whose performance is<br />

strongly effected by environmental conditions.<br />

For large ships, such as ULCCs,<br />

performance is not impacted as greatly<br />

by environmental conditions. If time is<br />

a critical factor, then the runs can be<br />

conducted into and against the waves;<br />

i.e., head and following seas, respectively.<br />

To ensure that tests are performed<br />

in comparable conditions, the<br />

data between reciprocal runs should be<br />

reviewed for consistency and/or anomalies.<br />

Individual speed runs conducted in<br />

the same conditions should be averaged<br />

with their reciprocal runs to take into<br />

account global drift.<br />

2. 22nd ITTC Trials & Monitoring Specialist<br />

Committee Final Report<br />

3. Ships and marine technology – Gui<strong>de</strong>lines<br />

for the assessment of speed and power performance<br />

analysis of speed trial data, Final<br />

Draft International Standard ISO/FDIS<br />

15016: (E), ISO/TC 8/SC 9/WG 2 of 2001<br />

4. 23rd ITTC Speed and Powering Trials Specialist<br />

Committee Final Report<br />

5. Speed/Power Trial Ship Inspection Procedure<br />

7.5-04-01-01.2<br />

6. Hull and Propulsor Survey Procedure 7.5-<br />

04-01-01.3<br />

7. RECORDS<br />

1. Ship conditions – displacement, draft, propulsor<br />

and hull roughness<br />

2. Environmental conditions – water <strong>de</strong>pth,<br />

water temperature, wind direction and<br />

speed, sea state, specific gravity, air temperature,<br />

atmospheric pressure, current<br />

speed and direction<br />

8. ATTACHMENTS<br />

1. Table 1. Documented Ship and Trial Conditions<br />

Reported<br />

6. REFERENCES<br />

1. SNAME 1973/21st ITTC Powering Performance<br />

Committee Final Report


ITTC –Recommen<strong>de</strong>d<br />

Procedures<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Trial Conditions<br />

7.5 – 0.4<br />

01 – 01.5<br />

Page 6 of 6<br />

Effective Date<br />

2002<br />

Revision<br />

01<br />

Table 1. Documented Ship and Trial Conditions Reported<br />

Ship Hull<br />

Draft<br />

Trim<br />

Displacement and Load<br />

Description<br />

Hull Condition<br />

Roughness of shell and bottom paint<br />

Height of welding beads<br />

Waviness of hull<br />

Size, number and position of zinc ano<strong>de</strong>s<br />

Size, number and position of openings of sea water inlets and outlets<br />

Paint system<br />

Hull Appendages and Rud<strong>de</strong>r<br />

Geometry, <strong>de</strong>viations, roughness<br />

Type<br />

Rate of movement<br />

Propeller(s)<br />

Geometry, <strong>de</strong>viations, roughness<br />

Pitch<br />

Direction of rotation<br />

Number of bla<strong>de</strong>s<br />

Propeller Shaft(s)<br />

Geometry<br />

Material<br />

Trial Site<br />

Water <strong>de</strong>pth<br />

Water temperature<br />

Air temperature<br />

Sea State<br />

Specific gravity of water<br />

Environmental Conditions<br />

Wind<br />

Waves<br />

Current<br />

Atmospheric pressure


Apêndice<br />

D<br />

Utilização dos Diagramas na<br />

Selecção <strong>de</strong> Motores Propulsores<br />

141


142<br />

APÊNDICE D. SELECÇÃO DE MOTORES PROPULSORES


Basic Principles of Ship Propulsion<br />

Contents:<br />

Page<br />

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

Scope of this Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

Chapter 1<br />

Ship Definitions and Hull Resistance . . . . . . . . . . . . . . . . . . 4<br />

• Ship types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

• A ship’s load lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

• Indication of a ship’s size . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

• Description of hull forms . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

• Ship’s resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

Chapter 2<br />

Propeller Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . 10<br />

• Propeller types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10<br />

• Flow conditions around the propeller . . . . . . . . . . . . . . . . . . 11<br />

• Efficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . · · · · 11<br />

• Propeller dimensions . . . . . . . . . . . . . . . . . . . . . . · · · · 13<br />

• Operating conditions of a propeller . . . . . . . . . . . . . . . . . . . 15<br />

Chapter 3<br />

Engine Layout and Load Diagrams . . . . . . . . . . . . . . . . . . 20<br />

• Power functions and logarithmic scales . . . . . . . . . . . . . . . . . 20<br />

• Propulsion and engine running points . . . . . . . . . . . . . . . . . . 20<br />

• Engine layout diagram . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

• Load diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

• Use of layout and load diagrams – examples . . . . . . . . . . . . . . 25<br />

• Influence on engine running of different types<br />

of ship resistance – plant with FP-propeller . . . . . . . . . . . . . . . 27<br />

• Influence of ship resistance<br />

on combinator curves – plant with CP-propeller . . . . . . . . . . . . 29<br />

Closing Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30<br />

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30


Basic Principles of Ship Propulsion<br />

Introduction<br />

For the purpose of this paper, the term<br />

“ship” is used to <strong>de</strong>note a vehicle employed<br />

to transport goods and persons<br />

from one point to another over water.<br />

Ship propulsion normally occurs with<br />

the help of a propeller, which is the<br />

term most wi<strong>de</strong>ly used in English, although<br />

the word “screw” is sometimes<br />

seen, inter alia in combinations such as<br />

a “twin-screw” propulsion plant.<br />

Today, the primary source of propeller<br />

power is the diesel engine, and the power<br />

requirement and rate of revolution very<br />

much <strong>de</strong>pend on the ship’s hull form<br />

and the propeller <strong>de</strong>sign. Therefore, in<br />

or<strong>de</strong>r to arrive at a solution that is as<br />

optimal as possible, some general<br />

knowledge is essential as to the principal<br />

ship and diesel engine parameters<br />

that influence the propulsion system.<br />

This paper will, in particular, attempt to<br />

explain some of the most elementary<br />

terms used regarding ship types,<br />

ship’s dimensions and hull forms and<br />

clarify some of the parameters pertaining<br />

to hull resistance, propeller conditions<br />

and the diesel engine’s load<br />

diagram.<br />

On the other hand, it is consi<strong>de</strong>red beyond<br />

the scope of this publication to<br />

give an explanation of how propulsion<br />

calculations as such are carried out, as<br />

the calculation procedure is extremely<br />

complex. The rea<strong>de</strong>r is referred to the<br />

specialised literature on this subject, for<br />

example as stated in “References”.<br />

Scope of this Paper<br />

This paper is divi<strong>de</strong>d into three chapters<br />

which, in principle, may be consi<strong>de</strong>red as<br />

three separate papers but which also,<br />

with advantage, may be read in close<br />

connection to each other. Therefore,<br />

some important information mentioned in<br />

one chapter may well appear in another<br />

chapter, too.<br />

Chapter 1, <strong>de</strong>scribes the most elementary<br />

terms used to <strong>de</strong>fine ship sizes<br />

and hull forms such as, for example,<br />

the ship’s displacement, <strong>de</strong>adweight,<br />

<strong>de</strong>sign draught, length between perpendiculars,<br />

block coefficient, etc.<br />

Other ship terms <strong>de</strong>scribed inclu<strong>de</strong> the<br />

effective towing resistance, consisting<br />

of frictional, residual and air resistance,<br />

and the influence of these resistances<br />

in service.<br />

Chapter 2, <strong>de</strong>als with ship propulsion<br />

and the flow conditions around the propeller(s).<br />

In this connection, the wake<br />

fraction coefficient and thrust <strong>de</strong>duction<br />

coefficient, etc. are mentioned.<br />

The total power nee<strong>de</strong>d for the propeller<br />

is found based on the above effective<br />

towing resistance and various<br />

propeller and hull <strong>de</strong>pen<strong>de</strong>nt efficiencies<br />

which are also <strong>de</strong>scribed. A summary<br />

of the propulsion theory is shown<br />

in Fig. 6.<br />

The operating conditions of a propeller<br />

according to the propeller law valid for<br />

a propeller with fixed pitch are <strong>de</strong>scribed<br />

for free sailing in calm weather, and<br />

followed up by the relative heavy/light<br />

running conditions which apply when<br />

the ship is sailing and subject to different<br />

types of extra resistance, like fouling,<br />

heavy sea against, etc.<br />

Chapter 3, elucidates the importance<br />

of choosing the correct specified MCR<br />

and optimising point of the main engine,<br />

and thereby the engine’s load diagram<br />

in consi<strong>de</strong>ration to the propeller’s <strong>de</strong>sign<br />

point. The construction of the relevant<br />

load diagram lines is <strong>de</strong>scribed in <strong>de</strong>tail<br />

by means of several examples. Fig. 24<br />

shows, for a ship with fixed pitch propeller,<br />

by means of a load diagram, the<br />

important influence of different types of<br />

ship resistance on the engine’s continuous<br />

service rating.<br />

3


Category Class Type<br />

Ship Definitions and Hull<br />

Resistance<br />

Ship types<br />

Tanker<br />

Oil tanker<br />

Cru<strong>de</strong> (oil) Carrier<br />

Very Large Cru<strong>de</strong> Carrier<br />

Ultra Large Cru<strong>de</strong> Carrier<br />

Product Tanker<br />

CC<br />

VLCC<br />

ULCC<br />

Depending on the nature of their cargo,<br />

and sometimes also the way the cargo<br />

is loa<strong>de</strong>d/unloa<strong>de</strong>d, ships can be divi<strong>de</strong>d<br />

into different categories, classes, and<br />

types, some of which are mentioned in<br />

Table 1.<br />

The three largest categories of ships<br />

are container ships, bulk carriers (for<br />

bulk goods such as grain, coal, ores,<br />

etc.) and tankers, which again can be<br />

divi<strong>de</strong>d into more precisely <strong>de</strong>fined<br />

classes and types. Thus, tankers can<br />

be divi<strong>de</strong>d into oil tankers, gas tankers<br />

and chemical tankers, but there are<br />

also combinations, e.g. oil/chemical<br />

tankers.<br />

Bulk carrier<br />

Container ship<br />

Gas tanker<br />

Chemical tanker<br />

OBO<br />

Bulk carrier<br />

Container ship<br />

Liquefied Natural Gas carrier<br />

Liquefied Petroleum Gas carrier<br />

Oil/Bulk/Ore carrier<br />

Container carrier<br />

Roll On-Roll Off<br />

General cargo ship<br />

General cargo<br />

Coaster<br />

Reefer Reefer Refrigerated cargo vessel<br />

Passenger ship<br />

Ferry<br />

Cruise vessel<br />

Table 1: Examples of ship types<br />

LNG<br />

LPG<br />

OBO<br />

Ro-Ro<br />

Table 1 provi<strong>de</strong>s only a rough outline.<br />

In reality there are many other combinations,<br />

such as “Multi-purpose bulk<br />

container carriers”, to mention just one<br />

example.<br />

the risk of bad weather whereas, on the<br />

other hand, the freeboard draught for<br />

tropical seas is somewhat higher than<br />

the summer freeboard draught.<br />

A ship’s load lines<br />

Painted halfway along the ship’s si<strong>de</strong><br />

is the “Plimsoll Mark”, see Fig. 1. The<br />

lines and letters of the Plimsoll Mark,<br />

which conform to the freeboard rules<br />

laid down by the IMO (International<br />

Maritime Organisation) and local authorities,<br />

indicate the <strong>de</strong>pth to which<br />

the vessel may be safely loa<strong>de</strong>d (the<br />

<strong>de</strong>pth varies according to the season<br />

and the salinity of the water).<br />

Freeboard <strong>de</strong>ck<br />

D<br />

D: Freeboard draught<br />

There are, e.g. load lines for sailing in<br />

freshwater and seawater, respectively,<br />

with further divisions for tropical conditions<br />

and summer and winter sailing.<br />

According to the international freeboard<br />

rules, the summer freeboard draught<br />

for seawater is equal to the “Scantling<br />

draught”, which is the term applied to<br />

the ship’s draught when dimensioning<br />

the hull.<br />

TF<br />

D<br />

L<br />

F<br />

Danish load mark<br />

Freshwater<br />

T Tropical<br />

S Summer<br />

W Winter<br />

WNA Winter - the North Atlantic<br />

Seawater<br />

The winter freeboard draught is less<br />

than that valid for summer because of<br />

Fig. 1: Load lines – freeboard draught<br />

4


Indication of a ship’s size<br />

Displacement and <strong>de</strong>adweight<br />

When a ship in loa<strong>de</strong>d condition floats at<br />

an arbitrary water line, its displacement is<br />

equal to the relevant mass of water displaced<br />

by the ship. Displacement is thus<br />

equal to the total weight, all told, of the<br />

relevant loa<strong>de</strong>d ship, normally in seawater<br />

with a mass <strong>de</strong>nsity of 1.025 t/m 3 .<br />

A M<br />

D<br />

Displacement comprises the ship’s<br />

light weight and its <strong>de</strong>adweight, where<br />

the <strong>de</strong>adweight is equal to the ship’s<br />

loa<strong>de</strong>d capacity, including bunkers and<br />

other supplies necessary for the ship’s<br />

propulsion. The <strong>de</strong>adweight at any time<br />

thus represents the difference between<br />

the actual displacement and the ship’s<br />

light weight, all given in tons:<br />

<strong>de</strong>adweight = displacement – light weight.<br />

Inci<strong>de</strong>ntally, the word “ton” does not<br />

always express the same amount of<br />

weight. Besi<strong>de</strong>s the metric ton (1,000<br />

kg), there is the English ton (1,016 kg),<br />

which is also called the “long ton”. A<br />

“short ton” is approx. 907 kg.<br />

The light weight of a ship is not normally<br />

used to indicate the size of a ship,<br />

whereas the <strong>de</strong>adweight tonnage<br />

(dwt), based on the ship’s loading capacity,<br />

including fuel and lube oils etc.<br />

for operation of the ship, measured in<br />

tons at scantling draught, often is.<br />

Sometimes, the <strong>de</strong>adweight tonnage<br />

may also refer to the <strong>de</strong>sign draught of<br />

the ship but, if so, this will be mentioned.<br />

Table 2 indicates the rule-of-thumb relationship<br />

between the ship’s displacement,<br />

<strong>de</strong>adweight tonnage (summer freeboard/<br />

scantling draught) and light weight.<br />

A ship’s displacement can also be expressed<br />

as the volume of displaced<br />

water ∇, i.e. in m 3 .<br />

Gross register tons<br />

Without going into <strong>de</strong>tail, it should be<br />

mentioned that there are also such<br />

measurements as Gross Register Tons<br />

(GRT), and Net Register Tons (NRT)<br />

where 1 register ton = 100 English cubic<br />

feet, or 2.83 m 3 .<br />

D A<br />

B WL<br />

D F<br />

Fig. 2: Hull dimensions<br />

Ship type<br />

Tanker and<br />

Bulk carrier<br />

Length between perpendiculars: LPP<br />

Length on waterline:<br />

LWL<br />

Length o verall: LOA<br />

Breadth on waterline:<br />

BWL<br />

Draught: D = 1/2 (D F+D A)<br />

Midship section area:<br />

A<br />

dwt/light<br />

weight ratio<br />

These measurements express the size<br />

of the internal volume of the ship in accordance<br />

with the given rules for such<br />

measurements, and are extensively<br />

used for calculating harbour and canal<br />

dues/charges.<br />

Description of hull forms<br />

Displ./dwt<br />

ratio<br />

6 1.17<br />

Container ship 2.5-3.0 1.33-1.4<br />

Table 2: Examples of relationship between displacement,<br />

<strong>de</strong>adweight tonnage and light weight<br />

It is evi<strong>de</strong>nt that the part of the ship<br />

which is of significance for its propulsion<br />

L<br />

L<br />

L<br />

PP<br />

WL<br />

OA<br />

m<br />

is the part of the ship’s hull which is<br />

un<strong>de</strong>r the water line. The dimensions<br />

below <strong>de</strong>scribing the hull form refer<br />

to the <strong>de</strong>sign draught, which is less<br />

than, or equal to, the scantling<br />

draught. The choice of the <strong>de</strong>sign<br />

draught <strong>de</strong>pends on the <strong>de</strong>gree of<br />

load, i.e. whether, in service, the ship<br />

will be lightly or heavily loa<strong>de</strong>d. Generally,<br />

the most frequently occurring<br />

draught between the fully-loa<strong>de</strong>d and<br />

the ballast draught is used.<br />

Ship’s lengths L OA<br />

, L WL<br />

, and L PP<br />

The overall length of the ship L OA<br />

is<br />

normally of no consequence when<br />

calculating the hull’s water resistance.<br />

The factors used are the length of the<br />

waterline L WL<br />

and the so-called length<br />

between perpendiculars L PP<br />

. The dimensions<br />

referred to are shown in<br />

Fig. 2.<br />

5


The length between perpendiculars is<br />

the length between the foremost perpendicular,<br />

i.e. usually a vertical line<br />

through the stem’s intersection with<br />

the waterline, and the aftmost perpendicular<br />

which, normally, coinci<strong>de</strong>s with<br />

the rud<strong>de</strong>r axis. Generally, this length is<br />

slightly less than the waterline length,<br />

and is often expressed as:<br />

Waterline plane<br />

A WL<br />

A M<br />

LPP<br />

D<br />

B WL<br />

L PP<br />

= 0.97 × L WL<br />

L WL<br />

Draught D<br />

The ship’s draught D (often T is used in<br />

literature) is <strong>de</strong>fined as the vertical distance<br />

from the waterline to that point of<br />

the hull which is <strong>de</strong>epest in the water,<br />

see Figs. 2 and 3. The foremost draught<br />

D F<br />

and aftmost draught D A<br />

are normally<br />

the same when the ship is in the loa<strong>de</strong>d<br />

condition.<br />

Breadth on waterline B WL<br />

Another important factor is the hull’s<br />

largest breadth on the waterline B WL<br />

,<br />

see Figs. 2 and 3.<br />

Volume of displacement<br />

Waterline area<br />

Block coefficient,<br />

L based<br />

Midship section coefficient<br />

Longitudinal prismatic coefficient<br />

Waterplane area coefficient<br />

WL<br />

:<br />

: A<br />

WL<br />

: C =<br />

B<br />

: C =<br />

M<br />

: C =<br />

P<br />

: C =<br />

WL<br />

L<br />

WL x<br />

B<br />

B<br />

WL<br />

WL<br />

x D<br />

x D<br />

AM<br />

x LWL<br />

L<br />

WL<br />

A M<br />

A WL<br />

x B<br />

WL<br />

Block coefficient C B<br />

Various form coefficients are used to<br />

express the shape of the hull. The most<br />

important of these coefficients is the<br />

block coefficient C B<br />

, which is <strong>de</strong>fined<br />

as the ratio between the displacement<br />

volume ∇ and the volume of a box with<br />

dimensions L WL<br />

× B WL<br />

× D, see Fig. 3, i.e.:<br />

C<br />

B<br />

∇<br />

=<br />

L × B × D<br />

WL<br />

In the case cited above, the block coefficient<br />

refers to the length on waterline<br />

L WL<br />

. However, shipbuil<strong>de</strong>rs often use<br />

block coefficient C B, PP<br />

based on the<br />

length between perpendiculars, L PP<br />

,in<br />

which case the block coefficient will, as a<br />

rule, be slightly larger because, as previously<br />

mentioned, L PP<br />

is normally slightly<br />

less than L WL.<br />

∇<br />

C<br />

B, PP<br />

=<br />

L × B × D<br />

PP<br />

A small block coefficient means less resistance<br />

and, consequently, the possibility<br />

of attaining higher speeds.<br />

Table 3 shows some examples of block<br />

coefficient sizes, and the pertaining<br />

WL<br />

WL<br />

Fig. 3: Hull coefficients of a ship<br />

service speeds, on different types of<br />

ships. It shows that large block coefficients<br />

correspond to low speeds and<br />

vice versa.<br />

Ship type<br />

Block<br />

coefficient<br />

C B<br />

Approximate<br />

ship<br />

speed V<br />

in knots<br />

Lighter 0.90 5 – 10<br />

Bulk carrier 0.80 – 0.85 12 – 17<br />

Tanker 0.80 – 0.85 12 –16<br />

General cargo 0.55 – 0.75 13 – 22<br />

Container ship 0.50 – 0.70 14 – 26<br />

Ferry boat 0.50 – 0.70 15 – 26<br />

Table 3: Examples of block coefficients<br />

Water plane area coefficient C WL<br />

The water plane area coefficient C WL<br />

expresses the ratio between the vessel’s<br />

waterline area A WL<br />

and the product<br />

of the length L WL<br />

and the breadth B WL<br />

of<br />

the ship on the waterline, see Fig. 3, i.e.:<br />

C<br />

WL<br />

=<br />

L<br />

WL<br />

AWL<br />

× B<br />

Generally, the waterplane area coefficient<br />

is some 0.10 higher than the block<br />

coefficient, i.e.:<br />

WL<br />

C WL<br />

≅ C B<br />

+ 0.10.<br />

This difference will be slightly larger on<br />

fast vessels with small block coefficients<br />

where the stern is also partly immersed<br />

in the water and thus becomes part of<br />

the ”waterplane” area.<br />

Midship section coefficient C M<br />

A further <strong>de</strong>scription of the hull form is<br />

provi<strong>de</strong>d by the midship section coefficient<br />

C M<br />

, which expresses the ratio between<br />

the immersed midship section<br />

area A M<br />

(midway between the foremost<br />

and the aftmost perpendiculars) and the<br />

product of the ship’s breadth B WL<br />

and<br />

draught D, see Fig. 3, i.e.:<br />

C<br />

M<br />

AM<br />

=<br />

B × D<br />

WL<br />

6


For bulkers and tankers, this coefficient<br />

is in the or<strong>de</strong>r of 0.98-0.99, and for<br />

container ships in the or<strong>de</strong>r of 0.97-0.98.<br />

Longitudinal prismatic coefficient C P<br />

The longitudinal prismatic coefficient<br />

C P<br />

expresses the ratio between displacement<br />

volume ∇ and the product<br />

of the midship frame section area A M<br />

and the length of the waterline L WL<br />

,<br />

see also Fig. 3, i.e.:<br />

C<br />

p<br />

∇<br />

∇<br />

= =<br />

A × L C × B × D×<br />

L<br />

M WL M WL WL<br />

C<br />

=<br />

C<br />

As can be seen, C P<br />

is not an in<strong>de</strong>pen<strong>de</strong>nt<br />

form coefficient, but is entirely <strong>de</strong>pen<strong>de</strong>nt<br />

on the block coefficient C B<br />

and the midship section coefficient C M<br />

.<br />

Longitudinal Centre of Buoyancy LCB<br />

The Longitudinal Centre of Buoyancy<br />

(LCB) expresses the position of the<br />

centre of buoyancy and is <strong>de</strong>fined as<br />

the distance between the centre of<br />

buoyancy and the mid-point between<br />

the ship’s foremost and aftmost perpendiculars.<br />

The distance is normally stated<br />

as a percentage of the length between<br />

the perpendiculars, and is positive if<br />

the centre of buoyancy is located to<br />

the fore of the mid-point between the<br />

perpendiculars, and negative if located<br />

to the aft of the mid-point. For a ship<br />

<strong>de</strong>signed for high speeds, e.g. container<br />

ships, the LCB will, normally, be negative,<br />

whereas for slow-speed ships,<br />

such as tankers and bulk carriers, it will<br />

normally be positive. The LCB is generally<br />

between -3% and +3%.<br />

Fineness ratio C LD<br />

The length/displacement ratio or fineness<br />

ratio, C LD<br />

, is <strong>de</strong>fined as the ratio<br />

between the ship’s waterline length L WL<br />

,<br />

and the length of a cube with a volume<br />

equal to the displacement volume, i.e.:<br />

C<br />

LD<br />

Ship’s resistance<br />

LWL<br />

=<br />

3<br />

∇<br />

To move a ship, it is first necessary to<br />

overcome resistance, i.e. the force working<br />

against its propulsion. The calculation<br />

of this resistance R plays a significant role<br />

B<br />

M<br />

in the selection of the correct propeller and<br />

in the subsequent choice of main engine.<br />

General<br />

A ship’s resistance is particularly influenced<br />

by its speed, displacement, and<br />

hull form. The total resistance R T<br />

, consists<br />

of many source-resistances R<br />

which can be divi<strong>de</strong>d into three main<br />

groups, viz.:<br />

1) Frictional resistance<br />

2) Residual resistance<br />

3) Air resistance<br />

The influence of frictional and residual<br />

resistances <strong>de</strong>pends on how much of<br />

the hull is below the waterline, while the<br />

influence of air resistance <strong>de</strong>pends on<br />

how much of the ship is above the waterline.<br />

In view of this, air resistance will<br />

have a certain effect on container ships<br />

which carry a large number of containers<br />

on the <strong>de</strong>ck.<br />

Water with a speed of V and a <strong>de</strong>nsity<br />

of has a dynamic pressure of:<br />

½ × × V 2 (Bernoulli’s law)<br />

Thus, if water is being completely<br />

stopped by a body, the water will react<br />

on the surface of the body with the dynamic<br />

pressure, resulting in a dynamic<br />

force on the body.<br />

This relationship is used as a basis<br />

when calculating or measuring the<br />

source-resistances R of a ship’s hull,<br />

by means of dimensionless resistance<br />

coefficients C. Thus, C is related to the<br />

reference force K, <strong>de</strong>fined as the force<br />

which the dynamic pressure of water<br />

with the ship’s speed V exerts on a<br />

surface which is equal to the hull’s wetted<br />

area A S<br />

. The rud<strong>de</strong>r’s surface is<br />

also inclu<strong>de</strong>d in the wetted area. The<br />

general data for resistance calculations<br />

is thus:<br />

Reference force: K = ½ × × V 2 × A S<br />

and source resistances: R = C × K<br />

On the basis of many experimental<br />

tank tests, and with the help of pertaining<br />

dimensionless hull parameters,<br />

some of which have already been discussed,<br />

methods have been established<br />

for calculating all the necessary<br />

resistance coefficients C and, thus, the<br />

pertaining source-resistances R. In<br />

practice, the calculation of a particular<br />

ship’s resistance can be verified by<br />

testing a mo<strong>de</strong>l of the relevant ship in<br />

a towing tank.<br />

Frictional resistance R F<br />

The frictional resistance R F<br />

of the hull<br />

<strong>de</strong>pends on the size of the hull’s wetted<br />

area A S<br />

, and on the specific frictional<br />

resistance coefficient C F<br />

. The<br />

friction increases with fouling of the<br />

hull, i.e. by the growth of, i.a. algae,<br />

sea grass and barnacles.<br />

An attempt to avoid fouling is ma<strong>de</strong> by<br />

the use of anti-fouling hull paints to<br />

prevent the hull from becoming<br />

“long-haired”, i.e. these paints reduce<br />

the possibility of the hull becoming<br />

fouled by living organisms. The paints<br />

containing TBT (tributyl tin) as their<br />

principal bioci<strong>de</strong>, which is very toxic,<br />

have dominated the market for <strong>de</strong>ca<strong>de</strong>s,<br />

but the IMO ban of TBT for new applications<br />

from 1 January, 2003, and a<br />

full ban from 1 January, 2008, may involve<br />

the use of new (and maybe not<br />

as effective) alternatives, probably copper-based<br />

anti-fouling paints.<br />

When the ship is propelled through the<br />

water, the frictional resistance increases<br />

at a rate that is virtually equal to the<br />

square of the vessel’s speed.<br />

Frictional resistance represents a consi<strong>de</strong>rable<br />

part of the ship’s resistance,<br />

often some 70-90% of the ship’s total<br />

resistance for low-speed ships (bulk<br />

carriers and tankers), and sometimes<br />

less than 40% for high-speed ships<br />

(cruise liners and passenger ships) [1]. The<br />

frictional resistance is found as follows:<br />

R F<br />

= C F<br />

× K<br />

Residual resistance R R<br />

Residual resistance R R<br />

comprises wave<br />

resistance and eddy resistance. Wave<br />

resistance refers to the energy loss<br />

caused by waves created by the vessel<br />

during its propulsion through the water,<br />

while eddy resistance refers to the loss<br />

caused by flow separation which creates<br />

eddies, particularly at the aft end<br />

of the ship.<br />

7


Wave resistance at low speeds is proportional<br />

to the square of the speed,<br />

but increases much faster at higher<br />

speeds. In principle, this means that a<br />

speed barrier is imposed, so that a further<br />

increase of the ship’s propulsion<br />

power will not result in a higher speed<br />

as all the power will be converted into<br />

wave energy. The residual resistance<br />

normally represents 8-25% of the total<br />

resistance for low-speed ships, and up<br />

to 40-60% for high-speed ships [1].<br />

Inci<strong>de</strong>ntally, shallow waters can also<br />

have great influence on the residual<br />

resistance, as the displaced water un<strong>de</strong>r<br />

the ship will have greater difficulty<br />

in moving aftwards.<br />

The procedure for calculating the specific<br />

residual resistance coefficient C R<br />

is<br />

<strong>de</strong>scribed in specialised literature [2]<br />

and the residual resistance is found as<br />

follows:<br />

R R<br />

= C R<br />

× K<br />

Air resistance R A<br />

In calm weather, air resistance is, in principle,<br />

proportional to the square of the<br />

ship’s speed, and proportional to the<br />

cross-sectional area of the ship above the<br />

waterline. Air resistance normally represents<br />

about 2% of the total resistance.<br />

through the water, i.e. to tow the ship<br />

at the speed V, is then:<br />

P E<br />

= V × R T<br />

The power <strong>de</strong>livered to the propeller,<br />

P D<br />

, in or<strong>de</strong>r to move the ship at speed<br />

V is, however, somewhat larger. This is<br />

due, in particular, to the flow conditions<br />

around the propeller and the propeller<br />

efficiency itself, the influences of which<br />

are discussed in the next chapter<br />

which <strong>de</strong>als with Propeller Propulsion.<br />

Total ship resistance in general<br />

When dividing the residual resistance<br />

into wave and eddy resistance, as earlier<br />

<strong>de</strong>scribed, the distribution of the total ship<br />

towing resistance R T<br />

could also, as a<br />

gui<strong>de</strong>line, be stated as shown in Fig. 4.<br />

The right column is valid for low-speed<br />

ships like bulk carriers and tankers, and<br />

the left column is valid for very high-speed<br />

ships like cruise liners and ferries. Container<br />

ships may be placed in between<br />

the two columns.<br />

The main reason for the difference<br />

between the two columns is, as earlier<br />

mentioned, the wave resistance. Thus,<br />

in general all the resistances are proportional<br />

to the square of the speed,<br />

but for higher speeds the wave resistance<br />

increases much faster, involving<br />

a higher part of the total resistance.<br />

This ten<strong>de</strong>ncy is also shown in Fig. 5<br />

for a 600 teu container ship, originally<br />

<strong>de</strong>signed for the ship speed of 15 knots.<br />

Without any change to the hull <strong>de</strong>sign,<br />

Type of resistance<br />

R F<br />

R W<br />

R E<br />

R A<br />

= Friction<br />

= Wave<br />

= Eddy<br />

= Air<br />

% of R T<br />

High<br />

speed<br />

ship<br />

45 - 90<br />

40 - 5<br />

5 - 3<br />

10 - 2<br />

Low<br />

speed<br />

ship<br />

For container ships in head wind, the<br />

air resistance can be as much as 10%.<br />

The air resistance can, similar to the<br />

foregoing resistances, be expressed as<br />

R A<br />

= C A<br />

× K, but is sometimes based<br />

on 90% of the dynamic pressure of air<br />

with a speed of V, i.e.:<br />

R A<br />

V<br />

R A<br />

= 0.90 × ½ × air<br />

× V 2 × A air<br />

where air<br />

is the <strong>de</strong>nsity of the air, and<br />

A air<br />

is the cross-sectional area of the<br />

vessel above the water [1].<br />

Ship speed V<br />

R W<br />

Towing resistance R T<br />

and effective (towing) power P E<br />

The ship’s total towing resistance R T<br />

is<br />

thus found as:<br />

R E<br />

R F<br />

V<br />

R T<br />

= R F<br />

+ R R<br />

+ R A<br />

The corresponding effective (towing)<br />

power, P E<br />

, necessary to move the ship<br />

Fig. 4: Total ship towing resistance R T<br />

= R F<br />

+ R W<br />

+ R E<br />

+ R A<br />

8


kW<br />

8,000<br />

Propulsion power<br />

"Wave wall"<br />

Estimates of average increase in<br />

resistance for ships navigating the<br />

main routes:<br />

6,000<br />

New service point<br />

North Atlantic route,<br />

navigation westward 25-35%<br />

North Atlantic route,<br />

navigation eastward 20-25%<br />

4,000<br />

Europe-Australia 20-25%<br />

2,000<br />

Normal service point<br />

Europe-East Asia 20-25%<br />

The Pacific routes 20-30%<br />

Table 4: Main routes of ships<br />

0<br />

Power and speed relationship for a 600 TEU container ship<br />

Fig. 5: The “wave wall” ship speed barrier<br />

the ship speed for a sister ship was requested<br />

to be increased to about 17.6<br />

knots. However, this would lead to a<br />

relatively high wave resistance, requiring<br />

a doubling of the necessary propulsion<br />

power.<br />

A further increase of the propulsion<br />

power may only result in a minor ship<br />

speed increase, as most of the extra<br />

power will be converted into wave energy,<br />

i.e. a ship speed barrier valid for<br />

the given hull <strong>de</strong>sign is imposed by<br />

what we could call a “wave wall”, see<br />

Fig. 5. A modification of the hull lines,<br />

suiting the higher ship speed, is necessary.<br />

Increase of ship resistance in service,<br />

Ref. [3], page 244<br />

During the operation of the ship, the<br />

paint film on the hull will break down.<br />

Erosion will start, and marine plants<br />

and barnacles, etc. will grow on the<br />

surface of the hull. Bad weather, perhaps<br />

in connection with an inappropriate<br />

distribution of the cargo, can be a<br />

reason for buckled bottom plates. The<br />

hull has been fouled and will no longer<br />

have a “technically smooth” surface,<br />

10 15<br />

20 knots<br />

Ship speed<br />

which means that the frictional resistance<br />

will be greater. It must also be<br />

consi<strong>de</strong>red that the propeller surface<br />

can become rough and fouled. The total<br />

resistance, caused by fouling, may<br />

increase by 25-50% throughout the<br />

lifetime of a ship.<br />

Experience [4] shows that hull fouling<br />

with barnacles and tube worms may<br />

cause an increase in drag (ship resistance)<br />

of up to 40%, with a drastical<br />

reduction of the ship speed as the consequence.<br />

Furthermore, in general [4] for every 25<br />

µm (25/1000 mm) increase of the average<br />

hull roughness, the result will be a<br />

power increase of 2-3%, or a ship<br />

speed reduction of about 1%.<br />

Resistance will also increase because<br />

of sea, wind and current, as shown in<br />

Table 4 for different main routes of<br />

ships. The resistance when navigating<br />

in head-on sea could, in general, increase<br />

by as much as 50-100% of the<br />

total ship resistance in calm weather.<br />

On the North Atlantic routes, the first<br />

percentage corresponds to summer<br />

navigation and the second percentage<br />

to winter navigation.<br />

However, analysis of trading conditions<br />

for a typical 140,000 dwt bulk carrier<br />

shows that on some routes, especially<br />

Japan-Canada when loa<strong>de</strong>d, the increased<br />

resistance (sea margin) can<br />

reach extreme values up to 220%, with<br />

an average of about 100%.<br />

Unfortunately, no data have been published<br />

on increased resistance as a fun<br />

ction of type and size of vessel. The<br />

larger the ship, the less the relative increase<br />

of resistance due to the sea.<br />

On the other hand, the frictional resistance<br />

of the large, full-bodied ships will<br />

very easily be changed in the course of<br />

time because of fouling.<br />

In practice, the increase of resistance<br />

caused by heavy weather <strong>de</strong>pends on<br />

the current, the wind, as well as the<br />

wave size, where the latter factor may<br />

have great influence. Thus, if the wave<br />

size is relatively high, the ship speed<br />

will be somewhat reduced even when<br />

sailing in fair seas.<br />

In principle, the increased resistance<br />

caused by heavy weather could be<br />

related to:<br />

a) wind and current against, and<br />

b) heavy waves,<br />

but in practice it will be difficult to distinguish<br />

between these factors.<br />

9


Chapter 2<br />

Propeller Propulsion<br />

The traditional agent employed to<br />

move a ship is a propeller, sometimes<br />

two and, in very rare cases, more than<br />

two. The necessary propeller thrust T<br />

required to move the ship at speed V<br />

is normally greater than the pertaining<br />

towing resistance R T<br />

, and the flow-related<br />

reasons are, amongst other reasons,<br />

explained in this chapter. See also Fig. 6,<br />

where all relevant velocity, force, power<br />

and efficiency parameters are shown.<br />

Propeller types<br />

Propellers may be divi<strong>de</strong>d into the following<br />

two main groups, see also Fig. 7:<br />

Velocities<br />

Ship’s speed<br />

: V<br />

Arriving water velocity to propeller : VA<br />

(Speed of advance of propeller)<br />

Effective wake velocity<br />

: V = V _ W<br />

VA<br />

V _ V<br />

Wake fraction coefficient : w =<br />

V<br />

Forces<br />

Towing resistance<br />

: RT<br />

Thrust force<br />

: T<br />

Thrust <strong>de</strong>duction fraction : F = T _ RT<br />

Thrust <strong>de</strong>duction coefficient : t = T _ RT<br />

T<br />

V A<br />

V<br />

A<br />

Power<br />

Effective (Towing) power : P<br />

E<br />

= RT<br />

x V<br />

Thrust power <strong>de</strong>livered<br />

by the propeller to water : P<br />

T<br />

= P<br />

E<br />

/<br />

Power <strong>de</strong>livered to propeller : P<br />

D<br />

= P<br />

T<br />

/<br />

Brake power of main engine : P = P /<br />

Efficiencies<br />

1<br />

_<br />

t<br />

Hull efficiency : H =<br />

1<br />

_<br />

w<br />

Relative rotative efficiency : R<br />

Propeller efficiency - open water : 0<br />

Propeller efficiency - behind hull : B = 0 x R<br />

Propulsive efficiency : D = H x B<br />

Shaft efficiency : S<br />

Total efficiency : T<br />

T<br />

P P P P<br />

= = = =<br />

P P P P<br />

E E T D<br />

---- ---- x ---- x ---- H x B x S H x 0 x R x S<br />

B T D B<br />

B<br />

D<br />

H<br />

B<br />

S<br />

V W<br />

P D<br />

P E<br />

• Fixed pitch propeller (FP-propeller)<br />

• Controllable pitch propeller<br />

(CP-propeller)<br />

Propellers of the FP-type are cast in<br />

one block and normally ma<strong>de</strong> of a copper<br />

alloy. The position of the bla<strong>de</strong>s, and<br />

thereby the propeller pitch, is once and<br />

for all fixed, with a given pitch that cannot<br />

be changed in operation. This<br />

means that when operating in, for example,<br />

heavy weather conditions, the<br />

propeller performance curves, i.e. the<br />

combination of power and speed<br />

(r/min) points, will change according to<br />

the physical laws, and the actual propeller<br />

curve cannot be changed by the<br />

crew. Most ships which do not need a<br />

particularly good manoeuvrability are<br />

equipped with an FP-propeller.<br />

F<br />

T<br />

P T P B<br />

V<br />

Fig. 6: The propulsion of a ship – theory<br />

Fixed pitch propeller (FP-Propeller) Controllable pitch propeller (CP-Propeller)<br />

R T<br />

Propellers of the CP-type have a relatively<br />

larger hub compared with the<br />

FP-propellers because the hub has to<br />

have space for a hydraulically activated<br />

mechanism for control of the pitch (angle)<br />

of the bla<strong>de</strong>s. The CP-propeller is<br />

relatively expensive, maybe up to 3-4<br />

times as expensive as a corresponding<br />

FP-propeller. Furthermore, because of<br />

the relatively larger hub, the propeller<br />

efficiency is slightly lower.<br />

CP-propellers are mostly used for<br />

Ro-Ro ships, shuttle tankers and similar<br />

ships that require a high <strong>de</strong>gree of<br />

Monobloc with fixed<br />

propeller bla<strong>de</strong>s<br />

(copper alloy)<br />

Fig. 7: Propeller types<br />

Hub with a mechanism<br />

for control of the pitch<br />

of the bla<strong>de</strong>s<br />

(hydraulically activated)<br />

10


manoeuvrability. For ordinary ships like<br />

container ships, bulk carriers and cru<strong>de</strong><br />

oil tankers sailing for a long time in normal<br />

sea service at a given ship speed,<br />

it will, in general, be a waste of money<br />

to install an expensive CP-propeller instead<br />

of an FP-propeller. Furthermore, a<br />

CP-propeller is more complicated, involving<br />

a higher risk of problems in service.<br />

Flow conditions around the propeller<br />

Wake fraction coefficient w<br />

When the ship is moving, the friction of<br />

the hull will create a so-called friction<br />

belt or boundary layer of water around<br />

the hull. In this friction belt the velocity<br />

of the water on the surface of the hull is<br />

equal to that of the ship, but is reduced<br />

with its distance from the surface of the<br />

hull. At a certain distance from the hull<br />

and, per <strong>de</strong>finition, equal to the outer<br />

“surface” of the friction belt, the water<br />

velocity is equal to zero.<br />

The thickness of the friction belt increases<br />

with its distance from the fore end of<br />

the hull. The friction belt is therefore<br />

thickest at the aft end of the hull and<br />

this thickness is nearly proportional to<br />

the length of the ship, Ref. [5]. This<br />

means that there will be a certain wake<br />

velocity caused by the friction along the<br />

si<strong>de</strong>s of the hull. Additionally, the ship’s<br />

displacement of water will also cause<br />

wake waves both fore and aft. All this<br />

involves that the propeller behind the<br />

hull will be working in a wake field.<br />

Therefore, and mainly originating from<br />

the friction wake, the water at the propeller<br />

will have an effective wake velocity<br />

V w<br />

which has the same direction as<br />

the ship’s speed V, see Fig. 6. This<br />

means that the velocity of arriving water<br />

V A<br />

at the propeller, (equal to the speed<br />

of advance of the propeller) given as<br />

the average velocity over the propeller’s<br />

disk area is V w<br />

lower than the ship’s<br />

speed V.<br />

The effective wake velocity at the propeller<br />

is therefore equal to V w<br />

= V – V A<br />

and may be expressed in dimensionless<br />

form by means of the wake fraction<br />

coefficient w. The normally used wake<br />

fraction coefficient w given by Taylor is<br />

<strong>de</strong>fined as:<br />

w<br />

V V − V<br />

W<br />

A<br />

= =<br />

V V<br />

VA<br />

( you get = 1 − w)<br />

V<br />

The value of the wake fraction coefficient<br />

<strong>de</strong>pends largely on the shape of the<br />

hull, but also on the propeller’s location<br />

and size, and has great influence on<br />

the propeller’s efficiency.<br />

The propeller diameter or, even better,<br />

the ratio between the propeller diameter<br />

d and the ship’s length L WL<br />

has some<br />

influence on the wake fraction coefficient,<br />

as d/L WL<br />

gives a rough indication<br />

of the <strong>de</strong>gree to which the propeller<br />

works in the hull’s wake field. Thus, the<br />

larger the ratio d/L WL<br />

, the lower w will<br />

be. The wake fraction coefficient w increases<br />

when the hull is fouled.<br />

For ships with one propeller, the wake<br />

fraction coefficient w is normally in the<br />

region of 0.20 to 0.45, corresponding<br />

to a flow velocity to the propeller V A<br />

of<br />

0.80 to 0.55 of the ship’s speed V. The<br />

larger the block coefficient, the larger is<br />

the wake fraction coefficient. On ships<br />

with two propellers and a conventional<br />

aftbody form of the hull, the propellers<br />

will normally be positioned outsi<strong>de</strong> the<br />

friction belt, for which reason the wake<br />

fraction coefficient w will, in this case,<br />

be a great <strong>de</strong>al lower. However, for a<br />

twin-skeg ship with two propellers, the<br />

coefficient w will be almost unchanged<br />

(or maybe slightly lower) compared<br />

with the single-propeller case.<br />

Inci<strong>de</strong>ntally, a large wake fraction coefficient<br />

increases the risk of propeller<br />

cavitation, as the distribution of the<br />

water velocity around the propeller is<br />

generally very inhomogeneous un<strong>de</strong>r<br />

such conditions.<br />

A more homogeneous wake field for<br />

the propeller, also involving a higher<br />

speed of advance V A<br />

of the propeller,<br />

may sometimes be nee<strong>de</strong>d and can be<br />

obtained in several ways, e.g. by having<br />

the propellers arranged in nozzles,<br />

below shields, etc. Obviously, the best<br />

method is to ensure, already at the <strong>de</strong>sign<br />

stage, that the aft end of the hull is<br />

shaped in such a way that the optimum<br />

wake field is obtained.<br />

Thrust <strong>de</strong>duction coefficient t<br />

The rotation of the propeller causes the<br />

water in front of it to be “sucked” back<br />

towards the propeller. This results in an<br />

extra resistance on the hull normally<br />

called “augment of resistance” or, if related<br />

to the total required thrust force T<br />

on the propeller, “thrust <strong>de</strong>duction fraction”<br />

F, see Fig. 6. This means that the<br />

thrust force T on the propeller has to<br />

overcome both the ship’s resistance R T<br />

and this “loss of thrust” F.<br />

The thrust <strong>de</strong>duction fraction F may be<br />

expressed in dimensionless form by<br />

means of the thrust <strong>de</strong>duction coefficient<br />

t, which is <strong>de</strong>fined as:<br />

F T RT<br />

t = = − T T<br />

R<br />

T<br />

( you get = 1 − t)<br />

T<br />

The thrust <strong>de</strong>duction coefficient t can<br />

be calculated by using calculation<br />

mo<strong>de</strong>ls set up on the basis of research<br />

carried out on different mo<strong>de</strong>ls.<br />

In general, the size of the thrust <strong>de</strong>duction<br />

coefficient t increases when the<br />

wake fraction coefficient w increases.<br />

The shape of the hull may have a significant<br />

influence, e.g. a bulbous stem<br />

can, un<strong>de</strong>r certain circumstances (low<br />

ship speeds), reduce t.<br />

The size of the thrust <strong>de</strong>duction coefficient<br />

t for a ship with one propeller is,<br />

normally, in the range of 0.12 to 0.30,<br />

as a ship with a large block coefficient<br />

has a large thrust <strong>de</strong>duction coefficient.<br />

For ships with two propellers and a<br />

conventional aftbody form of the hull,<br />

the thrust <strong>de</strong>duction coefficient t will be<br />

much less as the propellers’ “sucking”<br />

occurs further away from the hull.<br />

However, for a twin-skeg ship with two<br />

propellers, the coefficient t will be almost<br />

unchanged (or maybe slightly lower)<br />

compared with the single-propeller case.<br />

Efficiencies<br />

Hull efficiency H<br />

The hull efficiency H<br />

is <strong>de</strong>fined as the<br />

ratio between the effective (towing)<br />

power P E<br />

= R T<br />

× V, and the thrust power<br />

11


which the propeller <strong>de</strong>livers to the water<br />

P T<br />

= T × V A<br />

, i.e.:<br />

P R × V<br />

E T RT<br />

/ T 1−<br />

t<br />

H<br />

= = = =<br />

P T × V V V<br />

T<br />

A A<br />

/<br />

1−<br />

w<br />

Propeller<br />

efficiency<br />

0.7<br />

o<br />

Large tankers<br />

>150,000 DWT<br />

Small tankers<br />

20,000 DWT<br />

Reefers<br />

Container ships<br />

For a ship with one propeller, the hull<br />

efficiency η H<br />

is usually in the range of<br />

1.1 to 1.4, with the high value for ships<br />

with high block coefficients. For ships<br />

with two propellers and a conventional<br />

aftbody form of the hull, the hull efficiency<br />

η H<br />

is approx. 0.95 to 1.05, again<br />

with the high value for a high block coefficient.<br />

However, for a twin-skeg ship<br />

with two propellers, the hull coefficient<br />

η H<br />

will be almost unchanged compared<br />

with the single-propeller case.<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

n ( revs./s )<br />

1.66<br />

2.00<br />

Open water propeller efficiency η O<br />

Propeller efficiency η O<br />

is related to<br />

working in open water, i.e. the propeller<br />

works in a homogeneous wake field<br />

with no hull in front of it.<br />

0.2<br />

0.1<br />

The propeller efficiency <strong>de</strong>pends, especially,<br />

on the speed of advance V A<br />

,<br />

thrust force T, rate of revolution n, diameter<br />

d and, moreover, i.a. on the <strong>de</strong>sign<br />

of the propeller, i.e. the number of<br />

bla<strong>de</strong>s, disk area ratio, and pitch/diameter<br />

ratio – which will be discussed<br />

later in this chapter. The propeller efficiency<br />

η O<br />

can vary between approx.<br />

0.35 and 0.75, with the high value being<br />

valid for propellers with a high<br />

speed of advance V A<br />

, Ref. [3].<br />

Fig. 8 shows the obtainable propeller<br />

efficiency η O<br />

shown as a function of the<br />

speed of advance V A<br />

, which is given in<br />

dimensionless form as:<br />

J =<br />

VA<br />

n×<br />

d<br />

where J is the advance number of the<br />

propeller.<br />

Relative rotative efficiency η R<br />

The actual velocity of the water flowing<br />

to the propeller behind the hull is neither<br />

constant nor at right angles to the<br />

propeller’s disk area, but has a kind of<br />

rotational flow. Therefore, compared<br />

with when the propeller is working in<br />

open water, the propeller’s efficiency is<br />

0<br />

0 0.1<br />

0.2 0.3<br />

affected by the η R<br />

factor – called the<br />

propeller’s relative rotative efficiency.<br />

On ships with a single propeller the<br />

rotative efficiency η R<br />

is, normally, around<br />

1.0 to 1.07, in other words, the rotation<br />

of the water has a beneficial effect. The<br />

rotative efficiency η R<br />

on a ship with a<br />

conventional hull shape and with two<br />

propellers will normally be less, approx.<br />

0.98, whereas for a twin-skeg ship with<br />

two propellers, the rotative efficiency η R<br />

will be almost unchanged.<br />

In combination with w and t, η R<br />

is probably<br />

often being used to adjust the results<br />

of mo<strong>de</strong>l tank tests to the theory.<br />

0.4 0.5 0.6 0.7<br />

Advance number J =<br />

Fig. 8: Obtainable propeller efficiency – open water, Ref. [3], page 213<br />

Propeller efficiency η B<br />

working behind<br />

the ship<br />

The ratio between the thrust power P T<br />

,<br />

which the propeller <strong>de</strong>livers to the water,<br />

and the power P D<br />

, which is <strong>de</strong>livered<br />

to the propeller, i.e. the propeller<br />

efficiency η B<br />

for a propeller working<br />

behind the ship, is <strong>de</strong>fined as:<br />

PT<br />

<br />

B<br />

= =<br />

o<br />

×<br />

P<br />

D<br />

Propulsive efficiency η D<br />

The propulsive efficiency η D<br />

, which<br />

must not be confused with the open<br />

water propeller efficiency η O<br />

, is equal to<br />

the ratio between the effective (towing)<br />

power P E<br />

and the necessary power<br />

<strong>de</strong>livered to the propeller P D<br />

, i.e.:<br />

<br />

D<br />

P<br />

P<br />

E E<br />

= = ×<br />

PD<br />

PT<br />

PT<br />

P<br />

= η H<br />

× η B<br />

= η H<br />

× η O<br />

× η R<br />

D<br />

VA<br />

n x d<br />

R<br />

12


As can be seen, the propulsive efficiency<br />

η D<br />

is equal to the product of the hull<br />

efficiency η H<br />

, the open water propeller<br />

efficiency η O<br />

, and the relative rotative<br />

efficiency η R<br />

, although the latter has<br />

less significance.<br />

Propeller diameter d<br />

With a view to obtaining the highest<br />

possible propulsive efficiency η D<br />

, the<br />

largest possible propeller diameter d<br />

will, normally, be preferred. There are,<br />

however, special conditions to be consi<strong>de</strong>red.<br />

For one thing, the aftbody form<br />

of the hull can vary greatly <strong>de</strong>pending on<br />

type of ship and ship <strong>de</strong>sign, for another,<br />

the necessary clearance between the<br />

tip of the propeller and the hull will <strong>de</strong>pend<br />

on the type of propeller.<br />

Propeller dimensions<br />

In this connection, one can be led to<br />

believe that a hull form giving a high<br />

wake fraction coefficient w, and hence<br />

a high hull efficiency η H<br />

, will also provi<strong>de</strong><br />

the best propulsive efficiency η D<br />

.<br />

However, as the open water propeller<br />

efficiency η O<br />

is also greatly <strong>de</strong>pen<strong>de</strong>nt<br />

on the speed of advance V A<br />

, cf. Fig. 8,<br />

that is <strong>de</strong>creasing with increased w,<br />

the propulsive efficiency η D<br />

will not,<br />

generally, improve with increasing w,<br />

quite often the opposite effect is obtained.<br />

Generally, the best propulsive efficiency<br />

is achieved when the propeller works in<br />

a homogeneous wake field.<br />

Shaft efficiency η S<br />

The shaft efficiency η S<br />

<strong>de</strong>pends, i.a. on<br />

the alignment and lubrication of the<br />

shaft bearings, and on the reduction<br />

gear, if installed.<br />

Shaft efficiency is equal to the ratio between<br />

the power P D<br />

<strong>de</strong>livered to the Bulk carrier and tanker:<br />

propeller and the brake power P B<br />

<strong>de</strong>livered<br />

by the main engine, i.e.<br />

P<br />

Container ship:<br />

D<br />

<br />

S<br />

<br />

PB<br />

The shaft efficiency is normally around<br />

0.985, but can vary between 0.96 and<br />

0.995.<br />

Total efficiency η T<br />

The total efficiency η T<br />

, which is equal to<br />

the ratio between the effective (towing)<br />

power P E<br />

, and the necessary brake<br />

power P B<br />

<strong>de</strong>livered by the main engine,<br />

can be expressed thus:<br />

P P P<br />

E E D<br />

= = ×<br />

T<br />

PB<br />

PD<br />

PB<br />

= η D<br />

×η S<br />

= η H<br />

×η O<br />

×η R<br />

×η S<br />

For bulkers and tankers, which are often<br />

sailing in ballast condition, there are<br />

frequent <strong>de</strong>mands that the propeller<br />

shall be fully immersed also in this condition,<br />

giving some limitation to the propeller<br />

size. This propeller size limitation<br />

is not particularly valid for container<br />

ships as they rarely sail in ballast condition.<br />

All the above factors mean that an<br />

exact propeller diameter/<strong>de</strong>sign draught<br />

ratio d/D cannot be given here but, as<br />

a rule-of-thumb, the below mentioned<br />

approximations of the diameter/<strong>de</strong>sign<br />

draught ratio d/D can be presented,<br />

and a large diameter d will, normally,<br />

result in a low rate of revolution n.<br />

d/D < approximately 0.65<br />

d/D < approximately 0.74<br />

For strength and production reasons,<br />

the propeller diameter will generally not<br />

exceed 10.0 metres and a power output<br />

of about 90,000 kW. The largestdiameter<br />

propeller manufactured so far<br />

is of 11.0 metres and has four propeller<br />

bla<strong>de</strong>s.<br />

Number of propeller bla<strong>de</strong>s<br />

Propellers can be manufactured with 2,<br />

3, 4, 5 or 6 bla<strong>de</strong>s. The fewer the number<br />

of bla<strong>de</strong>s, the higher the propeller<br />

efficiency will be. However, for reasons<br />

of strength, propellers which are to be<br />

subjected to heavy loads cannot be<br />

manufactured with only two or three<br />

bla<strong>de</strong>s.<br />

Two-bla<strong>de</strong>d propellers are used on<br />

small ships, and 4, 5 and 6-bla<strong>de</strong>d<br />

propellers are used on large ships.<br />

Ships using the MAN B&W two-stroke<br />

engines are normally large-type vessels<br />

which use 4-bla<strong>de</strong>d propellers. Ships<br />

with a relatively large power requirement<br />

and heavily loa<strong>de</strong>d propellers, e.g. container<br />

ships, may need 5 or 6-bla<strong>de</strong>d<br />

propellers. For vibrational reasons, propellers<br />

with certain numbers of bla<strong>de</strong>s<br />

may be avoi<strong>de</strong>d in individual cases in<br />

or<strong>de</strong>r not to give rise to the excitation<br />

of natural frequencies in the ship’s hull<br />

or superstructure, Ref. [5].<br />

Disk area coefficient<br />

The disk area coefficient – referred to in<br />

ol<strong>de</strong>r literature as expan<strong>de</strong>d bla<strong>de</strong> area<br />

ratio – <strong>de</strong>fines the <strong>de</strong>veloped surface<br />

area of the propeller in relation to its<br />

disk area. A factor of 0.55 is consi<strong>de</strong>red<br />

as being good. The disk area coefficient<br />

of traditional 4-bla<strong>de</strong>d propellers is of<br />

little significance, as a higher value will<br />

only lead to extra resistance on the<br />

propeller itself and, thus, have little effect<br />

on the final result.<br />

For ships with particularly heavy-loa<strong>de</strong>d<br />

propellers, often 5 and 6-bla<strong>de</strong>d propellers,<br />

the coefficient may have a<br />

higher value. On warships it can be as<br />

high as 1.2.<br />

Pitch diameter ratio p/d<br />

The pitch diameter ratio p/d, expresses<br />

the ratio between the propeller’s pitch<br />

p and its diameter d, see Fig. 10. The<br />

pitch p is the distance the propeller<br />

“screws” itself forward through the water<br />

per revolution, providing that there<br />

is no slip – see also the next section<br />

and Fig. 10. As the pitch can vary<br />

along the bla<strong>de</strong>’s radius, the ratio is<br />

normally related to the pitch at 0.7 × r,<br />

where r = d/2 is the propeller’s radius.<br />

To achieve the best propulsive efficiency<br />

for a given propeller diameter, an optimum<br />

pitch/diameter ratio is to be found,<br />

which again corresponds to a particular<br />

<strong>de</strong>sign rate of revolution. If, for<br />

instance, a lower <strong>de</strong>sign rate of revolution<br />

is <strong>de</strong>sired, the pitch/diameter ratio has<br />

to be increased, and vice versa, at the<br />

cost of efficiency. On the other hand, if<br />

a lower <strong>de</strong>sign rate of revolution is <strong>de</strong>sired,<br />

and the ship’s draught permits,<br />

the choice of a larger propeller diame-<br />

13


ter may permit such a lower <strong>de</strong>sign rate<br />

of revolution and even, at the same time,<br />

increase the propulsive efficiency.<br />

Propeller coefficients J, K T<br />

and K Q<br />

Propeller theory is based on mo<strong>de</strong>ls,<br />

but to facilitate the general use of this<br />

theory, certain dimensionless propeller<br />

coefficients have been introduced in relation<br />

to the diameter d, the rate of revolution<br />

n, and the water’s mass <strong>de</strong>nsity<br />

. The three most important of these<br />

coefficients are mentioned below.<br />

The advance number of the propeller J<br />

is, as earlier mentioned, a dimensionless<br />

expression of the propeller’s speed of<br />

advance V A<br />

.<br />

VA<br />

J =<br />

n × d<br />

The thrust force T, is expressed<br />

dimensionless, with the help of the<br />

thrust coefficient K T<br />

, as<br />

T<br />

K = T × n × d<br />

and the propeller torque<br />

2 4<br />

Class<br />

S<br />

I<br />

II<br />

III<br />

ISO 484/1 – 1981 (CE)<br />

Manufacturing<br />

accuracy<br />

Very high accuracy<br />

High accuracy<br />

Medium accuracy<br />

Wi<strong>de</strong> tolerances<br />

Mean pitch<br />

for propeller<br />

+/– 0.5 %<br />

+/– 0.75 %<br />

+/– 1.00 %<br />

+/– 3.00 %<br />

Table 5: Manufacturing accuracy classes<br />

of a propeller<br />

Manufacturing accuracy of the propeller<br />

Before the manufacturing of the propeller,<br />

the <strong>de</strong>sired accuracy class standard of<br />

the propeller must be chosen by the<br />

customer. Such a standard is, for example,<br />

ISO 484/1 – 1981 (CE), which<br />

has four different “Accuracy classes”,<br />

see Table 5.<br />

Each of the classes, among other <strong>de</strong>tails,<br />

specifies the maximum allowable<br />

tolerance on the mean <strong>de</strong>sign pitch of<br />

the manufactured propeller, and<br />

thereby the tolerance on the corresponding<br />

propeller speed (rate of revolution).<br />

The price of the propeller, of course,<br />

<strong>de</strong>pends on the selected accuracy<br />

class, with the lowest price for class III.<br />

However, it is not recommen<strong>de</strong>d to<br />

use class III, as this class has a too<br />

high tolerance. This again means that<br />

the mean pitch tolerance should normally<br />

be less than +/– 1.0 %.<br />

The manufacturing accuracy tolerance<br />

corresponds to a propeller speed tolerance<br />

of max. +/– 1.0 %. When also incorporating<br />

the influence of the tolerance<br />

on the wake field of the hull, the total<br />

propeller tolerance on the rate of revolution<br />

can be up to +/– 2.0 %. This tolerance<br />

has also to be borne in mind<br />

when consi<strong>de</strong>ring the operating conditions<br />

of the propeller in heavy weather.<br />

Influence of propeller diameter and<br />

pitch/diameter ratio on propulsive<br />

efficiency D<br />

.<br />

As already mentioned, the highest possible<br />

propulsive efficiency required to<br />

provi<strong>de</strong> a given ship speed is obtained<br />

with the largest possible propeller diameter<br />

d, in combination with the corresponding,<br />

optimum pitch/diameter ratio<br />

p/d.<br />

PD<br />

Q =<br />

2 × n<br />

is expressed dimensionless with the<br />

help of the torque coefficient K Q<br />

, as<br />

Q<br />

K = Q × n × d<br />

2 5<br />

The propeller efficiency O<br />

can be calculated<br />

with the help of the above-mentioned<br />

coefficients, because, as previously<br />

mentioned, the propeller efficiency O<br />

is<br />

<strong>de</strong>fined as:<br />

= P<br />

= T × V<br />

<br />

P × × = K<br />

T<br />

A<br />

T<br />

Q n K<br />

× J<br />

2 2<br />

D<br />

With the help of special and very complicated<br />

propeller diagrams, which<br />

contain, i.a. J, K T<br />

and K Q<br />

curves, it is<br />

possible to find/calculate the propeller’s<br />

dimensions, efficiency, thrust, power, etc.<br />

Q<br />

Shaft power<br />

kW<br />

9,500<br />

9,400<br />

9,300<br />

9,200<br />

9,100<br />

9,000<br />

8,900<br />

8,800<br />

8,700<br />

8,600<br />

8,500<br />

70<br />

p/d<br />

1.00<br />

0.95<br />

80 90<br />

80,000 dwt cru<strong>de</strong> oil tanker<br />

Design draught = 12.2 m<br />

Ship speed = 14.5 kn<br />

d =Propeller diameter<br />

p/d = Pitch/diameter ratio<br />

0.90<br />

7.0 m<br />

0.69<br />

0.85<br />

0.80 7.2 m<br />

0.75 0.70 0.65<br />

d<br />

7.4 m<br />

p/d<br />

0.71<br />

Fig. 9: Propeller <strong>de</strong>sign – influence of diameter and pitch<br />

6.8 m<br />

d<br />

6.6 m p/d<br />

0.67<br />

0.68<br />

0.60<br />

0.55<br />

p/d<br />

0.50<br />

Power and speed curve<br />

for the given propeller<br />

diameter d = 7.2 m with<br />

different p/d<br />

Power and speed curve<br />

for various propeller<br />

diameters d with<br />

optimum p/d<br />

Propeller speed<br />

100 110 120 130 r/min<br />

14


As an example for an 80,000 dwt cru<strong>de</strong><br />

oil tanker, with a service ship speed of<br />

14.5 knots and a maximum possible<br />

propeller diameter of 7.2 m, this influence<br />

is shown in Fig. 9.<br />

Pitch p<br />

Slip<br />

According to the blue curve, the maximum<br />

possible propeller diameter of 7.2<br />

m may have the optimum pitch/diameter<br />

ratio of 0.70, and the lowest possible<br />

shaft power of 8,820 kW at 100<br />

r/min. If the pitch for this diameter is<br />

changed, the propulsive efficiency will<br />

be reduced, i.e. the necessary shaft<br />

power will increase, see the red curve.<br />

d<br />

0.7 x r<br />

r<br />

n<br />

The blue curve shows that if a bigger<br />

propeller diameter of 7.4 m is possible,<br />

the necessary shaft power will be reduced<br />

to 8,690 kW at 94 r/min, i.e. the<br />

bigger the propeller, the lower the optimum<br />

propeller speed.<br />

The red curve also shows that propulsion-wise<br />

it will always be an advantage<br />

to choose the largest possible<br />

propeller diameter, even though the<br />

optimum pitch/diameter ratio would<br />

involve a too low propeller speed (in relation<br />

to the required main engine speed).<br />

Thus, when using a somewhat lower<br />

pitch/diameter ratio, compared with the<br />

optimum ratio, the propeller/ engine<br />

speed may be increased and will only<br />

cause a minor extra power increase.<br />

The apparent slip ratio S A<br />

, which is<br />

dimensionless, is <strong>de</strong>fined as:<br />

p n V<br />

S = × − V<br />

= 1−<br />

A<br />

p×<br />

n p×<br />

n<br />

V or V A<br />

p x n<br />

p x n _ V<br />

The apparent slip ratio : S<br />

A<br />

= = 1 _<br />

p x n<br />

p x n<br />

The real slip ratio : S<br />

R<br />

= _ VA<br />

= 1 _<br />

p x n<br />

Fig. 10: Movement of a ship´s propeller, with pitch p and slip ratio S<br />

S x p x n<br />

V<br />

p x n<br />

VA<br />

p x n<br />

The apparent slip ratio S A<br />

, which is calculated<br />

by the crew, provi<strong>de</strong>s useful<br />

knowledge as it gives an impression of<br />

the loads applied to the propeller un<strong>de</strong>r<br />

different operating conditions. The apparent<br />

slip ratio increases when the<br />

Operating conditions of a propeller<br />

Slip ratio S<br />

If the propeller had no slip, i.e. if the<br />

water which the propeller “screws”<br />

itself through did not yield (i.e. if the<br />

water did not accelerate aft), the propeller<br />

would move forward at a speed<br />

of V = p × n, where n is the propeller’s<br />

rate of revolution, see Fig. 10.<br />

Velocity of corkscrew: V = p x n<br />

Pitch p<br />

V<br />

The similar situation is shown in Fig. 11<br />

for a cork screw, and because the cork<br />

is a solid material, the slip is zero and,<br />

therefore, the cork screw always moves<br />

forward at a speed of V = p × n. However,<br />

as the water is a fluid and does<br />

yield (i.e. accelerate aft), the propeller’s<br />

apparent speed forward <strong>de</strong>creases<br />

with its slip and becomes equal to the<br />

ship’s speed V, and its apparent slip<br />

can thus be expressed as p × n – V.<br />

Corkscrew<br />

Cork<br />

Fig. 11: Movement of a corkscrew, without slip<br />

Wine bottle<br />

n<br />

15


vessel sails against the wind or waves,<br />

in shallow waters, when the hull is<br />

fouled, and when the ship accelerates.<br />

Un<strong>de</strong>r increased resistance, this involves<br />

that the propeller speed (rate of<br />

revolution) has to be increased in or<strong>de</strong>r<br />

to maintain the required ship speed.<br />

The real slip ratio will be greater than<br />

the apparent slip ratio because the real<br />

speed of advance V A<br />

of the propeller is,<br />

as previously mentioned, less than the<br />

ship’s speed V.<br />

The real slip ratio S R<br />

, which gives a truer<br />

picture of the propeller’s function, is:<br />

S<br />

R<br />

VA<br />

V w<br />

= −<br />

p× n<br />

= − × ( 1−<br />

)<br />

1 1<br />

p×<br />

n<br />

At quay trials where the ship’s speed is<br />

V = 0, both slip ratios are 1.0. Inci<strong>de</strong>ntally,<br />

slip ratios are often given in percentages.<br />

Propeller law in general<br />

As discussed in Chapter 1, the resistance<br />

R for lower ship speeds is proportional<br />

to the square of the ship’s<br />

speed V, i.e.:<br />

R=c × V 2<br />

where c is a constant. The necessary<br />

power requirement P is thus proportional<br />

to the speed V to the power of<br />

three, thus:<br />

P = R × V = c × V 3<br />

For a ship equipped with a fixed pitch<br />

propeller, i.e. a propeller with unchangeable<br />

pitch, the ship speed V will be proportional<br />

to the rate of revolution n, thus:<br />

P = c × n 3<br />

which precisely expresses the propeller<br />

law, which states that “the necessary<br />

power <strong>de</strong>livered to the propeller is proportional<br />

to the rate of revolution to the<br />

power of three”.<br />

Actual measurements show that the<br />

power and engine speed relationship<br />

for a given weather condition is fairly<br />

reasonable, whereas the power and<br />

ship speed relationship is often seen<br />

with a higher power than three. A reasonable<br />

relationship to be used for estimations<br />

in the normal ship speed range<br />

could be as follows:<br />

• For large high-speed ships like container<br />

vessels: P = c × V 4.5<br />

• For medium-sized, medium-speed<br />

ships like fee<strong>de</strong>r container ships,<br />

reefers, RoRo ships, etc.: P = c × V 4.0<br />

• For low-speed ships like tankers and<br />

bulk carriers, and small fee<strong>de</strong>r container<br />

ships, etc.: P = c × V 3.5<br />

Propeller law for heavy running propeller<br />

The propeller law, of course, can only<br />

be applied to i<strong>de</strong>ntical ship running<br />

conditions. When, for example, the<br />

ship’s hull after some time in service<br />

has become fouled and thus become<br />

more rough, the wake field will be different<br />

from that of the smooth ship (clean hull)<br />

valid at trial trip conditions.<br />

A ship with a fouled hull will, consequently,<br />

be subject to extra resistance<br />

which will give rise to a “heavy propeller<br />

condition”, i.e. at the same propeller<br />

power, the rate of revolution will be lower.<br />

The propeller law now applies to another<br />

and “heavier” propeller curve<br />

than that applying to the clean hull,<br />

propeller curve, Ref. [3], page 243.<br />

The same relative consi<strong>de</strong>rations apply<br />

when the ship is sailing in a heavy sea<br />

against the current, a strong wind, and<br />

heavy waves, where also the heavy<br />

waves in tail wind may give rise to a<br />

heavier propeller running than when<br />

running in calm weather. On the other<br />

hand, if the ship is sailing in ballast<br />

condition, i.e. with a lower displacement,<br />

the propeller law now applies to<br />

a “lighter” propeller curve, i.e. at the<br />

same propeller power, the propeller<br />

rate of revolution will be higher.<br />

As mentioned previously, for ships with<br />

a fixed pitch propeller, the propeller law<br />

is extensively used at part load running.<br />

It is therefore also used in MAN B&W<br />

Diesel’s engine layout and load diagrams<br />

to specify the engine’s operational<br />

curves for light running conditions (i.e.<br />

clean hull and calm weather) and heavy<br />

running conditions (i.e. for fouled hull<br />

and heavy weather). These diagrams using<br />

logarithmic scales and straight lines<br />

are <strong>de</strong>scribed in <strong>de</strong>tail in Chapter 3.<br />

Propeller performance in general at<br />

increased ship resistance<br />

The difference between the above-mentioned<br />

light and heavy running propeller<br />

curves may be explained by an example,<br />

see Fig. 12, for a ship using, as reference,<br />

15 knots and 100% propulsion<br />

power when running with a clean hull in<br />

calm weather conditions. With 15% more<br />

power, the corresponding ship speed<br />

may increase from 15.0 to 15.6 knots.<br />

As <strong>de</strong>scribed in Chapter 3, and compared<br />

with the calm weather conditions,<br />

it is normal to incorporate an extra<br />

power margin, the so-called sea margin,<br />

which is often chosen to be 15%.<br />

This power margin corresponds to extra<br />

resistance on the ship caused by<br />

the weather conditions. However, for<br />

very rough weather conditions the influence<br />

may be much greater, as <strong>de</strong>scribed<br />

in Chapter 1.<br />

In Fig. 12a, the propulsion power is<br />

shown as a function of the ship speed.<br />

When the resistance increases to a<br />

level which requires 15% extra power<br />

to maintain a ship speed of 15 knots,<br />

the operating point A will move towards<br />

point B.<br />

In Fig. 12b the propulsion power is<br />

now shown as a function of the propeller<br />

speed. As a first guess it will often be assumed<br />

that point A will move towards B’<br />

because an unchanged propeller speed<br />

implies that, with unchanged pitch, the<br />

propeller will move through the water<br />

at an unchanged speed.<br />

If the propeller was a corkscrew moving<br />

through cork, this assumption would<br />

be correct. However, water is not solid<br />

as cork but will yield, and the propeller<br />

will have a slip that will increase with increased<br />

thrust caused by increased<br />

hull resistance. Therefore, point A will<br />

move towards B which, in fact, is very<br />

close to the propeller curve through A.<br />

Point B will now be positioned on a<br />

propeller curve which is slightly heavy<br />

running compared with the clean hull<br />

and calm weather propeller curve.<br />

16


15.0 knots<br />

115% power<br />

B<br />

Power<br />

B´<br />

15.0 knots<br />

115% power<br />

Slip<br />

Power<br />

B<br />

12.3 knots<br />

100% power<br />

15.0 knots<br />

100% power<br />

Slip<br />

D´ D A<br />

Power<br />

15%<br />

Sea<br />

margin<br />

15.6 knots<br />

115% power<br />

Propeller curve for clean<br />

hull and calm weather<br />

15%<br />

Sea<br />

margin<br />

15.6 knots<br />

115% power<br />

Propeller curve for clean<br />

hull and calm weather<br />

Propeller<br />

curve for<br />

fouled hull<br />

and heavy<br />

seas<br />

10.0 knots<br />

50% power<br />

Propeller curve<br />

for clean hull and<br />

calm weather<br />

A<br />

(Logarithmic scales)<br />

15.0 knots<br />

100% power<br />

Ship speed<br />

A<br />

(Logarithmic scales)<br />

15.0 knots<br />

100% power<br />

Propeller speed<br />

C<br />

HR<br />

LR<br />

(Logarithmic scales)<br />

12.3 knots<br />

50% power<br />

HR = Heavy running<br />

LR = Light running<br />

Propeller speed<br />

Fig. 12a: Ship speed performance at 15%<br />

sea margin<br />

Fig. 12b: Propeller speed performance at<br />

15% sea margin<br />

Fig. 12c: Propeller speed performance at<br />

large extra ship resistance<br />

Sometimes, for instance when the hull<br />

is fouled and the ship is sailing in heavy<br />

seas in a head wind, the increase in<br />

resistance may be much greater, corresponding<br />

to an extra power <strong>de</strong>mand<br />

of the magnitu<strong>de</strong> of 100% or even higher.<br />

An example is shown in Fig. 12c.<br />

a ducted propeller, the opposite effect<br />

is obtained.<br />

Heavy waves and sea and wind against<br />

When sailing in heavy sea against, with<br />

heavy wave resistance, the propeller<br />

can be up to 7-8% heavier running<br />

than in calm weather, i.e. at the same<br />

propeller power, the rate of revolution<br />

may be 7-8% lower. An example valid<br />

for a smaller container ship is shown in<br />

Fig. 13. The service data is measured<br />

In this example, where 100% power<br />

will give a ship speed of 15.0 knots,<br />

point A, a ship speed of, for instance,<br />

12.3 knots at clean hull and in calm<br />

weather conditions, point C, will require<br />

about 50% propulsion power but, at<br />

the above-mentioned heavy running<br />

conditions, it might only be possible to<br />

obtain the 12.3 knots by 100% propulsion<br />

power, i.e. for 100% power going from<br />

point A to D. Running point D may now<br />

be placed relatively far to the left of point<br />

A, i.e. very heavy running. Such a situation<br />

must be consi<strong>de</strong>red when layingout<br />

the main engine in relation to the<br />

layout of the propeller, as <strong>de</strong>scribed in<br />

Chapter 3.<br />

A scewed propeller (with bent bla<strong>de</strong><br />

tips) is more sensitive to heavy running<br />

than a normal propeller, because the<br />

propeller is able to absorb a higher<br />

torque in heavy running conditions. For<br />

C<br />

B<br />

A<br />

Extremely bad weather 6%<br />

Average weather 3%<br />

Extremely good weather 0%<br />

Clean hull and draught D<br />

D MEAN = 6.50 m<br />

D F = 5.25 m<br />

D A = 7.75 m<br />

Source: Lloyd's Register<br />

BHP<br />

21,000<br />

Heavy<br />

running<br />

18,000<br />

15,000<br />

12,000<br />

9,000 13<br />

6,000<br />

Shaft power<br />

C<br />

B<br />

16 A<br />

19<br />

Ship speed<br />

knots<br />

10%<br />

Apparent slip<br />

6%<br />

2%<br />

-2%<br />

22<br />

76 80 84 88 92 96 100<br />

r/min<br />

Propeller speed<br />

Fig. 13: Service data over a period of a year returned from a single screw container ship<br />

17


Shaft power<br />

% SMCR<br />

105<br />

100<br />

95<br />

90<br />

85<br />

80<br />

4<br />

Engine "propeller curve"<br />

Propeller curve<br />

Propeller curve<br />

96 97 98 99 100 101 102 103 104 105 % SMCR<br />

(Logarithmic scales)<br />

Propeller/engine speed<br />

over a period of one year and only<br />

inclu<strong>de</strong>s the influence of weather conditions!<br />

The measuring points have<br />

been reduced to three average weather<br />

conditions and show, for extremely bad<br />

weather conditions, an average heavy<br />

running of 6%, and therefore, in practice,<br />

the heavy running has proved to<br />

be even greater.<br />

In or<strong>de</strong>r to avoid slamming of the ship,<br />

and thereby damage to the stem and<br />

racing of the propeller, the ship speed<br />

will normally be reduced by the navigating<br />

officer on watch.<br />

Another measured example is shown<br />

in Fig. 14, and is valid for a reefer ship<br />

during its sea trial. Even though the<br />

wind velocity is relatively low, only 2.5<br />

m/s, and the wave height is 4 m, the<br />

SMCR: 13,000 kW x 105 r/min<br />

Wind velocity : 2.5 m/s<br />

Head wind<br />

Wave height : 4 m<br />

Tail wind<br />

SMCR<br />

*22.0<br />

7<br />

5<br />

22.3 *<br />

1<br />

Propeller <strong>de</strong>sign<br />

light running Heavy<br />

running<br />

20.5 21.8<br />

** 20.5 *<br />

21.5<br />

*<br />

20.8*<br />

* 21.1 3<br />

21.1 *<br />

*21.2<br />

Fig. 14: Measured relationship between power, propeller and ship speed during seatrial of<br />

a reefer ship<br />

measurements indicate approx. 1.5%<br />

heavy running when sailing in head<br />

wind out, compared with when sailing<br />

in tail wind on return.<br />

Ship acceleration<br />

When the ship accelerates, the propeller<br />

will be subjected to an even larger<br />

load than during free sailing. The power<br />

required for the propeller, therefore, will<br />

be relatively higher than for free sailing,<br />

and the engine’s operating point will be<br />

heavy running, as it takes some time<br />

before the propeller speed has reached<br />

its new and higher level. An example<br />

with two different accelerations, for an<br />

engine without electronic governor and<br />

scavenge air pressure limiter, is shown<br />

in Fig. 15. The load diagram and scavenge<br />

air pressure limiter are is <strong>de</strong>scribed<br />

in Chapter 3.<br />

Shallow waters<br />

When sailing in shallow waters, the residual<br />

resistance of the ship may be increased<br />

and, in the same way as when<br />

the ship accelerates, the propeller will<br />

be subjected to a larger load than during<br />

free sailing, and the propeller will be<br />

heavy running.<br />

Influence of displacement<br />

When the ship is sailing in the loa<strong>de</strong>d<br />

condition, the ship’s displacement volume<br />

may, for example, be 10% higher<br />

or lower than for the displacement valid<br />

for the average loa<strong>de</strong>d condition. This,<br />

of course, has an influence on the ship’s<br />

resistance, and the required propeller<br />

power, but only a minor influence on<br />

the propeller curve.<br />

On the other hand, when the ship is<br />

sailing in the ballast condition, the displacement<br />

volume, compared to the<br />

loa<strong>de</strong>d condition, can be much lower,<br />

and the corresponding propeller curve<br />

may apply to, for example, a 2% “lighter”<br />

propeller curve, i.e. for the same power<br />

to the propeller, the rate of revolution<br />

will be 2% higher.<br />

Parameters causing heavy running<br />

propeller<br />

Together with the previously <strong>de</strong>scribed<br />

operating parameters which cause a<br />

heavy running propeller, the parameters<br />

summarised below may give an indication<br />

of the risk/sensitivity of getting<br />

a heavy running propeller when sailing<br />

in heavy weather and rough seas:<br />

1 Relatively small ships (


Engine shaft power, % A<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

A 100% reference point<br />

M Specified engine MCR<br />

O Optimising point<br />

mep<br />

110%<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

A=M<br />

60 65 70 75 80 85 90 95 100 105<br />

(Logarithmic scales)<br />

Engine speed, % A<br />

O<br />

power will be nee<strong>de</strong>d but, of course,<br />

this will be higher for running in heavy<br />

weather with increased resistance on<br />

the ship.<br />

Direction of propeller rotation (si<strong>de</strong> thrust)<br />

When a ship is sailing, the propeller<br />

bla<strong>de</strong>s bite more in their lowermost position<br />

than in their uppermost position.<br />

The resulting si<strong>de</strong>-thrust effect is larger<br />

the more shallow the water is as, for<br />

example, during harbour manoeuvres.<br />

Therefore, a clockwise (looking from aft<br />

to fore) rotating propeller will tend to<br />

push the ship’s stern in the starboard<br />

direction, i.e. pushing the ship’s stem<br />

to port, during normal ahead running.<br />

This has to be counteracted by the<br />

rud<strong>de</strong>r.<br />

When reversing the propeller to astern<br />

running as, for example, when berthing<br />

alongsi<strong>de</strong> the quay, the si<strong>de</strong>-thrust effect<br />

is also reversed and becomes further<br />

pronounced as the ship’s speed<br />

<strong>de</strong>creases. Awareness of this behaviour<br />

is very important in critical situations<br />

and during harbour manoeuvres.<br />

Fig. 15: Load diagram – acceleration<br />

larger force than on the slow-going<br />

ship.<br />

4 Ships with a “flat” stem<br />

may be slowed down faster by waves<br />

than a ship with a “sharp” stem.<br />

Thus an axe-shaped upper bow may<br />

better cut the waves and thereby<br />

reduce the heavy running ten<strong>de</strong>ncy.<br />

5 Fouling of the hull and propeller<br />

will increase both hull resistance and<br />

propeller torque. Polishing the propeller<br />

(especially the tips) as often as<br />

possible (also when in water) has a<br />

positive effect. The use of effective<br />

anti-fouling paints will prevent fouling<br />

caused by living organisms.<br />

6 Ship acceleration<br />

will increase the propeller torque,<br />

and thus give a temporarily heavy<br />

running propeller.<br />

7 Sailing in shallow waters<br />

increases the hull resistance and reduces<br />

the ship’s directional stability.<br />

8 Ships with scewed propeller<br />

are able to absorb a higher torque<br />

un<strong>de</strong>r heavy running conditions.<br />

Manoeuvring speed<br />

Below a certain ship speed, called the<br />

manoeuvring speed, the manoeuvrability<br />

of the rud<strong>de</strong>r is insufficient because<br />

of a too low velocity of the water<br />

arriving at the rud<strong>de</strong>r. It is rather difficult<br />

to give an exact figure for an a<strong>de</strong>quate<br />

manoeuvring speed of the ship as the<br />

velocity of the water arriving at the rud<strong>de</strong>r<br />

<strong>de</strong>pends on the propeller’s slip<br />

stream.<br />

Often a manoeuvring speed of the<br />

magnitu<strong>de</strong> of 3.5-4.5 knots is mentioned.<br />

According to the propeller law,<br />

a correspondingly low propulsion<br />

According to Ref. [5], page 15-3, the<br />

real reason for the appearance of the<br />

si<strong>de</strong> thrust during reversing of the propeller<br />

is that the upper part of the propeller’s<br />

slip stream, which is rotative,<br />

strikes the aftbody of the ship.<br />

Thus, also the pilot has to know precisely<br />

how the ship reacts in a given<br />

situation. It is therefore an unwritten<br />

law that on a ship fitted with a fixed<br />

pitch propeller, the propeller is always<br />

<strong>de</strong>signed for clockwise rotation when<br />

sailing ahead. A direct coupled main<br />

engine, of course, will have the same<br />

rotation.<br />

In or<strong>de</strong>r to obtain the same si<strong>de</strong>-thrust<br />

effect, when reversing to astern, on<br />

ships fitted with a controllable pitch<br />

propeller, CP-propellers are <strong>de</strong>signed<br />

for anti-clockwise rotation when sailing<br />

ahead.<br />

19


Engine Layout and<br />

Load Diagrams<br />

Power functions and logarithmic<br />

scales<br />

As is well-known, the effective brake<br />

power P B<br />

of a diesel engine is proportional<br />

to the mean effective pressure<br />

(mep) p e<br />

and engine speed (rate of revolution)<br />

n. When using c as a constant,<br />

P B<br />

may then be expressed as follows:<br />

P B<br />

= c × p e<br />

× n<br />

or, in other words, for constant mep<br />

the power is proportional to the speed:<br />

P B<br />

= c × n 1<br />

(for constant mep)<br />

As already mentioned – when running<br />

with a fixed pitch propeller – the power<br />

may, according to the propeller law, be<br />

expressed as:<br />

P B<br />

= c × n 3<br />

(propeller law)<br />

Thus, for the above examples, the brake<br />

power P B<br />

may be expressed as a function<br />

of the speed n to the power of i, i.e.<br />

P B<br />

= c × n i<br />

Fig. 16 shows the relationship between<br />

the linear functions, y = ax + b, see (A),<br />

using linear scales and the power functions<br />

P B<br />

= c × n i , see (B), using logarithmic<br />

scales.<br />

The power functions will be linear when<br />

using logarithmic scales, as:<br />

log (P B<br />

) = i × log (n) + log (c)<br />

which is equivalent to:<br />

y = ax + b<br />

Thus, propeller curves will be parallel to<br />

lines having the inclination i = 3, and<br />

lines with constant mep will be parallel<br />

to lines with the inclination i = 1.<br />

Therefore, in the layout and load diagrams<br />

for diesel engines, as <strong>de</strong>scribed in the<br />

following, logarithmic scales are used,<br />

making simple diagrams with straight<br />

lines.<br />

Propulsion and engine running<br />

points<br />

Propeller <strong>de</strong>sign point PD<br />

Normally, estimations of the necessary<br />

propeller power and speed are based<br />

on theoretical calculations for loa<strong>de</strong>d<br />

ship, and often experimental tank tests,<br />

both assuming optimum operating<br />

conditions, i.e. a clean hull and good<br />

weather. The combination of speed<br />

and power obtained may be called the<br />

ship’s propeller <strong>de</strong>sign point PD placed<br />

on the light running propeller curve 6,<br />

2<br />

1<br />

y<br />

a<br />

b<br />

y = ax + b<br />

0<br />

X<br />

0 1 2<br />

A. Straight lines in linear scales<br />

y = log (P )<br />

B<br />

i = 0<br />

i = 1<br />

i = 2<br />

i = 3<br />

i<br />

y = log (P<br />

B) = log (c x n )<br />

PB<br />

= engine brake power<br />

c = constant<br />

n = engine speed<br />

log( PB) = i x log(n) + log(c)<br />

P = c x n i<br />

B<br />

y = ax + b<br />

B. Power function curves<br />

in logarithmic scales<br />

x = log (n)<br />

Fig. 16: Relationship between linear functions<br />

using linear scales and power functions<br />

using logarithmic scales<br />

see Fig. 17. On the other hand, some<br />

shipyards and/or propeller manufacturers<br />

sometimes use a propeller <strong>de</strong>sign<br />

point PD´ that incorporates all or part of<br />

the so-called sea margin <strong>de</strong>scribed below.<br />

Fouled hull<br />

When the ship has been sailing for<br />

some time, the hull and propeller become<br />

fouled and the hull’s resistance<br />

will increase. Consequently, the ship<br />

speed will be reduced unless the engine<br />

<strong>de</strong>livers more power to the propeller, i.e.<br />

the propeller will be further loa<strong>de</strong>d and<br />

will become heavy running HR.<br />

Furthermore, newer high-efficiency ship<br />

types have a relatively high ship speed,<br />

and a very smooth hull and propeller<br />

surface (at sea trial) when the ship is<br />

<strong>de</strong>livered. This means that the inevitable<br />

build-up of the surface roughness on<br />

the hull and propeller during sea service<br />

after seatrial may result in a relatively<br />

heavier running propeller, compared<br />

with ol<strong>de</strong>r ships born with a more rough<br />

hull surface.<br />

Heavy weather and sea margin used<br />

for layout of engine<br />

If, at the same time, the weather is<br />

bad, with head winds, the ship’s resistance<br />

may increase much more, and<br />

lead to even heavier running.<br />

When <strong>de</strong>termining the necessary engine<br />

power, it is normal practice to add<br />

an extra power margin, the so-called<br />

sea margin, which is traditionally about<br />

15% of the propeller <strong>de</strong>sign PD power.<br />

However, for large container ships,<br />

20-30% may sometimes be used.<br />

When <strong>de</strong>termining the necessary engine<br />

speed, for layout of the engine, it<br />

is recommen<strong>de</strong>d – compared with the<br />

clean hull and calm weather propeller<br />

curve 6 – to choose the heavier propeller<br />

curve 2, see Fig. 17, corresponding<br />

to curve 6 having a 3-7% higher rate of<br />

revolution than curve 2, and in general<br />

with 5% as a good choice.<br />

Note that the chosen sea power margin<br />

does not equalise the chosen<br />

heavy engine propeller curve.<br />

20


Power<br />

Engine margin<br />

(10% of MP)<br />

Sea margin<br />

(15% of PD)<br />

2 6<br />

Continuous service propulsion point SP<br />

The resulting speed and power combination<br />

– when including heavy propeller<br />

running and sea margin – is called the<br />

“continuous service rating for propulsion”<br />

SP for fouled hull and heavy weather.<br />

The heavy propeller curve, curve 2, for<br />

fouled hull and heavy weather will normally<br />

be used as the basis for the engine<br />

operating curve in service, and the<br />

propeller curve for clean hull and calm<br />

weather, curve 6, is said to represent a<br />

“light running” LR propeller.<br />

LR(5%)<br />

HR<br />

SP<br />

Fig. 17: Ship propulsion running points and engine layout<br />

MP<br />

PD´<br />

Engine speed<br />

2 Heavy propeller curve<br />

_<br />

fouled hull and heavy weather<br />

6 Light propeller curve<br />

_<br />

clean hull and calm weather<br />

MP: Specified propulsion point<br />

SP: Service propulsion point<br />

PD: Propeller <strong>de</strong>sign point<br />

Pd´: Alternative propeller <strong>de</strong>sign point<br />

LR: Light running factor<br />

HR: Heavy running<br />

PD<br />

Continuous service rating S<br />

The continuous service rating is the<br />

power at which the engine, including<br />

the sea margin, is assumed to operate,<br />

and point S is i<strong>de</strong>ntical to the service<br />

propulsion point SP unless a main engine<br />

driven shaft generator is installed.<br />

Light running factor f LR<br />

The heavy propeller curve for a fouled<br />

hull and heavy weather, and if no shaft<br />

generator is installed may, as mentioned<br />

above, be used as the <strong>de</strong>sign basis for<br />

the engine operating curve in service,<br />

curve 2, whereas the light propeller<br />

curve for clean hull and calm weather,<br />

curve 6, may be valid for running conditions<br />

with new ships, and equal to<br />

the layout/<strong>de</strong>sign curve of the propeller.<br />

Therefore, the light propeller curve<br />

for clean hull and calm weather is said<br />

to represent a “light running” LR propeller<br />

and will be related to the heavy<br />

propeller curve for fouled hull and<br />

heavy weather condition by means of a<br />

light running factor f LR<br />

, which, for the<br />

same power to the propeller, is <strong>de</strong>fined<br />

as the percentage increase of the rate<br />

of revolution n, compared to the rate of<br />

revolution for heavy running, i.e.<br />

f<br />

LR<br />

n<br />

=<br />

light<br />

− n<br />

n<br />

heavy<br />

heavy<br />

×100%<br />

Engine margin<br />

Besi<strong>de</strong>s the sea margin, a so-called<br />

“engine margin” of some 10-15% is<br />

frequently ad<strong>de</strong>d as an operational<br />

margin for the engine. The corresponding<br />

point is called the “specified MCR<br />

for propulsion” MP, see Fig. 17, and<br />

refers to the fact that the power for<br />

point SP is 10-15% lower than for<br />

point MP, i.e. equal to 90-85% of MP.<br />

Specified MCR M<br />

The engine’s specified MCR point M is<br />

the maximum rating required by the<br />

yard or owner for continuous operation<br />

of the engine. Point M is i<strong>de</strong>ntical to the<br />

specified propulsion MCR point MP unless<br />

a main engine driven shaft generator<br />

is installed. In such a case, the extra<br />

power <strong>de</strong>mand of the shaft generator<br />

must also be consi<strong>de</strong>red.<br />

Note:<br />

Light/heavy running, fouling and sea<br />

margin are overlapping terms.<br />

Light/heavy running of the propeller refers<br />

to hull and propeller <strong>de</strong>terioration,<br />

and bad weather, and sea margin, i.e.<br />

extra power to the propeller, refers to<br />

the influence of the wind and the sea.<br />

Based on feedback from service, it<br />

seems reasonable to <strong>de</strong>sign the propeller<br />

for 3-7% light running. The <strong>de</strong>gree<br />

of light running must be <strong>de</strong>ci<strong>de</strong>d<br />

upon, based on experience from the<br />

actual tra<strong>de</strong> and hull <strong>de</strong>sign, but 5%<br />

is often a good choice.<br />

21


Engine shaft power, % A<br />

110<br />

100<br />

90<br />

A 100% reference point<br />

M Specified engine MCR<br />

O Optimising point<br />

A=M<br />

5<br />

O<br />

7<br />

gine may be drawn-in. The specified<br />

MCR point M must be insi<strong>de</strong> the limitation<br />

lines of the layout diagram; if it is<br />

not, the propeller speed will have to be<br />

changed or another main engine type<br />

must be chosen. Yet, in special cases,<br />

point M may be located to the right of<br />

line L 1<br />

-L 2<br />

, see “Optimising/Matching<br />

Point” below.<br />

80<br />

70<br />

60<br />

mep<br />

110%<br />

100%<br />

90%<br />

10<br />

8<br />

4<br />

2<br />

1<br />

6<br />

Optimising point O<br />

The “Optimising (MC)/Matching (ME)<br />

point” O – or, better, the layout point of<br />

the engine – is the rating at which the<br />

engine (timing and) compression ratio<br />

are adjusted, with consi<strong>de</strong>ration to the<br />

scavenge air pressure of the turbocharger.<br />

50<br />

40<br />

60<br />

80%<br />

70%<br />

65 70 75 80 85 90 95 100 105<br />

Engine speed, % A<br />

Line 1: Propeller curve through optimising point (O)<br />

_<br />

layout curve for engine<br />

Line 2: Heavy propeller curve<br />

_<br />

fouled hull and heavy seas<br />

Line 3: Speed limit<br />

Line 4: Torque/speed limit<br />

Line 5: Mean effective pressure limit<br />

Line 6: Light propeller curve<br />

_<br />

clean hull and calm weather<br />

_<br />

layout curve for propeller<br />

Line 7: Power limit for continuous running<br />

Line 8: Overload limit<br />

Line 9: Sea trial speed limit<br />

Line 10: Constant mean effective pressure (mep) lines<br />

Fig. 18: Engine load diagram<br />

60%<br />

3<br />

9<br />

As mentioned below, un<strong>de</strong>r “Load diagram”,<br />

the optimising point O (later on<br />

in this paper also used in general<br />

where matching point for ME engines<br />

was the correct one) is placed on line 1<br />

(layout curve of engine) of the load diagram,<br />

and the optimised power can be<br />

from 85 to 100% of point M‘s power.<br />

Overload running will still be possible<br />

(110% of M‘s power), as long as consi<strong>de</strong>ration<br />

to the scavenge air pressure has<br />

been taken.<br />

The optimising point O is to be placed<br />

insi<strong>de</strong> the layout diagram. In fact, the<br />

specified MCR point M can be placed<br />

outsi<strong>de</strong> the layout diagram, but only by<br />

exceeding line L 1<br />

-L 2<br />

, and, of course,<br />

only provi<strong>de</strong>d that the optimising point<br />

O is located insi<strong>de</strong> the layout diagram.<br />

It should be noted that MC/MC-C engines<br />

without VIT (variable injection timing)<br />

fuel pumps cannot be optimised at<br />

part-load. Therefore, these engines are<br />

always optimised in point A, i.e. having<br />

point M‘s power.<br />

Engine layout diagram<br />

An engine’s layout diagram is limited by<br />

two constant mean effective pressure<br />

(mep) lines L 1<br />

-L 3<br />

and L 2<br />

-L 4<br />

, and by two<br />

constant engine speed lines L 1<br />

-L 2<br />

and<br />

L 3<br />

-L 4<br />

, see Fig. 17. The L 1<br />

point refers to<br />

the engine’s nominal maximum continuous<br />

rating. Within the layout area<br />

there is full freedom to select the engines<br />

specified MCR point M and relevant<br />

optimising point O, see below,<br />

which is optimum for the ship and the<br />

operating profile. Please note that the<br />

lowest specific fuel oil consumption for<br />

a given optimising point O will be obtained<br />

at 70% and 80% of point O’s<br />

power, for electronically (ME) and mechanically<br />

(MC) controlled engines,<br />

respectively.<br />

Based on the propulsion and engine<br />

running points, as previously found, the<br />

layout diagram of a relevant main en-<br />

Load diagram<br />

Definitions<br />

The load diagram (Fig. 18) <strong>de</strong>fines the<br />

power and speed limits for continuous<br />

as well as overload operation of an installed<br />

engine which has an optimising<br />

point O and a specified MCR point M<br />

that conforms to the ship’s specification.<br />

Point A is a 100% speed and power<br />

reference point of the load diagram,<br />

and is <strong>de</strong>fined as the point on the pro-<br />

22


peller curve (line 1) – the layout curve of<br />

the engine – through the optimising point<br />

O, having the specified MCR power.<br />

Normally, point M is equal to point A,<br />

but in special cases, for example if a<br />

shaft generator is installed, point M<br />

may be placed to the right of point A<br />

on line 7. The service points of the installed<br />

engine incorporate the engine<br />

power required for ship propulsion and<br />

for the shaft generator, if installed.<br />

During shoptest running, the engine will<br />

always operate along curve 1, with<br />

point A as 100% MCR. If CP-propeller<br />

and constant speed operation is required,<br />

the <strong>de</strong>livery test may be finished<br />

with a constant speed test.<br />

Limits to continuous operation<br />

The continuous service range is limited<br />

by the four lines 4, 5, 7 and 3 (9), see<br />

Fig. 18:<br />

Line 3 and line 9<br />

Line 3 represents the maximum acceptable<br />

speed for continuous operation, i.e.<br />

105% of A, however, maximum 105%<br />

of L 1<br />

. During sea trial conditions the<br />

maximum speed may be exten<strong>de</strong>d to<br />

107% of A, see line 9.<br />

The above limits may, in general, be<br />

exten<strong>de</strong>d to 105% and, during sea trial<br />

conditions, to 107% of the nominal L 1<br />

speed of the engine, provi<strong>de</strong>d the torsional<br />

vibration conditions permit.<br />

The overspeed set-point is 109% of<br />

the speed in A, however, it may be<br />

moved to 109% of the nominal speed<br />

in L 1<br />

, provi<strong>de</strong>d that torsional vibration<br />

conditions permit.<br />

Running at low load above 100% of<br />

the nominal L 1<br />

speed of the engine is,<br />

however, to be avoi<strong>de</strong>d for exten<strong>de</strong>d<br />

periods.<br />

Line 4:<br />

Represents the limit at which an ample<br />

air supply is available for combustion and<br />

imposes a limitation on the maximum<br />

combination of torque and speed.<br />

Line 5:<br />

Represents the maximum mean effective<br />

pressure level (mep) which can be<br />

accepted for continuous operation.<br />

Line 7:<br />

Represents the maximum power for<br />

continuous operation.<br />

Line 10:<br />

Represents the mean effective pressure<br />

(mep) lines. Line 5 is equal to the 100%<br />

mep-line. The mep-lines are also an<br />

expression of the corresponding fuel<br />

in<strong>de</strong>x of the engine.<br />

Limits for overload operation<br />

The overload service range is limited as<br />

follows, see Fig. 18:<br />

Line 8:<br />

Represents the overload operation limitations.<br />

The area between lines 4, 5, 7 and the<br />

dashed line 8 in Fig. 18 is available for<br />

overload running for limited periods<br />

only (1 hour per 12 hours).<br />

M: Specified MCR of engine<br />

S: Continuous service rating of engine<br />

O: Optimising point of engine<br />

A: Reference point of load diagram<br />

M: Specified MCR of engine<br />

S: Continuous service rating of engine<br />

O: Optimising point of engine<br />

A: Reference point of load diagram<br />

Power<br />

A=M=MP<br />

O<br />

S=SP<br />

7<br />

7<br />

5<br />

4<br />

Power 1 2 6<br />

3.3% A<br />

5% A<br />

1<br />

2<br />

6<br />

A=M<br />

5<br />

O<br />

S<br />

7<br />

5% L 1<br />

Propulsion and<br />

engine service curve<br />

for heavy running<br />

4 1<br />

2<br />

6<br />

Engine speed<br />

Point A of load diagram<br />

Line 1: Propeller curve through optimising point (O)<br />

Line 7: Constant power line through specified MCR (M)<br />

Point A: Intersection between lines 1 and 7<br />

Propulsion and engine service<br />

curve for heavy running<br />

3<br />

Engine speed<br />

Fig. 19a: Example 1 with FPP – engine layout without SG (normal case)<br />

Fig. 19b: Example 1 with FPP – load diagram without SG (normal case)<br />

23


Electronic governor with load limitation<br />

In or<strong>de</strong>r to safeguard the diesel engine<br />

against thermal and mechanical overload,<br />

the approved electronic governors inclu<strong>de</strong><br />

the following two limiter functions:<br />

• Torque limiter<br />

The purpose of the torque limiter is<br />

to ensure that the limitation lines of<br />

the load diagram are always observed.<br />

The torque limiter algorithm compares<br />

the calculated fuel pump in<strong>de</strong>x (fuel<br />

amount) and the actually measured<br />

engine speed with a reference limiter<br />

curve giving the maximum allowable<br />

fuel pump in<strong>de</strong>x at a given engine<br />

speed. If the calculated fuel pump<br />

in<strong>de</strong>x is above this curve, the resulting<br />

fuel pump in<strong>de</strong>x will be reduced<br />

correspondingly.<br />

The reference limiter curve is to be<br />

adjusted so that it corresponds to the<br />

limitation lines of the load diagram.<br />

• Scavenge air pressure limiter<br />

The purpose of the scavenge air<br />

pressure limiter is to ensure that the<br />

engine is not being overfuelled during<br />

acceleration, as for example during<br />

manoeuvring.<br />

The scavenge air pressure limiter<br />

algorithm compares the calculated<br />

fuel pump in<strong>de</strong>x and measured<br />

scavenge air pressure with a reference<br />

limiter curve giving the maximum<br />

allowable fuel pump in<strong>de</strong>x at a<br />

given scavenge air pressure. If the<br />

calculated fuel pump in<strong>de</strong>x is above<br />

this curve, the resulting fuel pump<br />

in<strong>de</strong>x will be reduced correspondingly.<br />

The reference limiter curve is to be<br />

adjusted to ensure that sufficient air<br />

will always be available for a good<br />

combustion process.<br />

Recommendation<br />

Continuous operation without a time<br />

limitation is allowed only within the area<br />

limited by lines 4, 5, 7 and 3 of the<br />

load diagram. For fixed pitch propeller<br />

operation in calm weather with loa<strong>de</strong>d<br />

ship and clean hull, the propeller/engine<br />

may run along or close to the propeller<br />

<strong>de</strong>sign curve 6.<br />

After some time in operation, the ship’s<br />

hull and propeller will become fouled,<br />

resulting in heavier running of the propeller,<br />

i.e. the propeller curve will move<br />

to the left from line 6 towards line 2, and<br />

extra power will be required for propulsion<br />

in or<strong>de</strong>r to maintain the ship speed.<br />

At calm weather conditions the extent<br />

of heavy running of the propeller will<br />

indicate the need for cleaning the hull<br />

and, possibly, polishing the propeller.<br />

The area between lines 4 and 1 is available<br />

for operation in shallow water,<br />

heavy weather and during acceleration,<br />

i.e. for non-steady operation without<br />

any actual time limitation.<br />

M: Specified MCR of engine<br />

S: Continuous service rating of engine<br />

O: Optimising point of engine<br />

A: Reference point of load diagram<br />

M: Specified MCR of engine<br />

S: Continuous service rating of engine<br />

O: Optimising point of engine<br />

A: Reference point of load diagram<br />

Power<br />

1<br />

2<br />

A<br />

O<br />

6<br />

S=SP<br />

7<br />

M=MP<br />

Power<br />

7<br />

5<br />

4<br />

1 2<br />

6<br />

3.3% A<br />

5% A<br />

A<br />

7<br />

5<br />

O M<br />

S<br />

5% L 1<br />

Propulsion and<br />

engine service curve<br />

for heavy running<br />

Engine speed<br />

Point A of load diagram<br />

Line 1: Propeller curve through optimising point (O)<br />

Line 7: Constant power line through specified MCR (M)<br />

Point A: Intersection between lines 1 and 7<br />

4 1<br />

2<br />

6<br />

Propulsion and engine service<br />

curve for heavy running<br />

3<br />

Engine speed<br />

Fig. 20a: Example 2 with FPP – engine layout without SG (special case)<br />

Fig. 20b: Example 2 with FPP – load diagram without SG (special case)<br />

24


The recommen<strong>de</strong>d use of a relatively<br />

high light running factor for <strong>de</strong>sign of<br />

the propeller will involve that a relatively<br />

higher propeller speed will be used for<br />

layout <strong>de</strong>sign of the propeller. This, in<br />

turn, may involve a minor reduction of<br />

the propeller efficiency, and may possibly<br />

cause the propeller manufacturer to<br />

abstain from using a large light running<br />

margin. However, this reduction of the<br />

propeller efficiency caused by the large<br />

light running factor is actually relatively<br />

insignificant compared with the improved<br />

engine performance obtained when<br />

sailing in heavy weather and/or with<br />

fouled hull and propeller.<br />

Use of layout and load<br />

diagrams - examples<br />

In the following, four different examples<br />

based on fixed pitch propeller (FPP)<br />

and one example based on controllable<br />

pitch propeller (CPP) are given in or<strong>de</strong>r<br />

to illustrate the flexibility of the layout<br />

and load diagrams.<br />

In this respect the choice of the optimising<br />

point O has a significant influence.<br />

Examples with fixed pitch propeller<br />

Example 1:<br />

Normal running conditions, without<br />

shaft generator<br />

Normally, the optimising point O, and<br />

thereby the engine layout curve 1, will<br />

be selected on the engine service<br />

curve 2 (for heavy running), as shown<br />

in Fig. 19a.<br />

Point A is then found at the intersection<br />

between propeller curve 1 (2) and the<br />

constant power curve through M, line<br />

7. In this case, point A will be equal to<br />

point M.<br />

Once point A has been found in the<br />

layout diagram, the load diagram can<br />

be drawn, as shown in Fig. 19b, and<br />

hence the actual load limitation lines<br />

of the diesel engine may be found.<br />

Example 2:<br />

Special running conditions, without<br />

shaft generator<br />

When the ship accelerates, the propeller<br />

will be subjected to an even larger<br />

load than during free sailing. The same<br />

applies when the ship is subjected to<br />

an extra resistance as, for example,<br />

when sailing against heavy wind and<br />

sea with large wave resistance.<br />

In both cases, the engine’s operating<br />

point will be to the left of the normal<br />

operating curve, as the propeller will<br />

run heavily.<br />

In or<strong>de</strong>r to avoid exceeding the<br />

left-hand limitation line 4 of the load<br />

diagram, it may, in certain cases, be<br />

necessary to limit the acceleration<br />

and/or the propulsion power.<br />

If the expected tra<strong>de</strong> pattern of the<br />

ship is to be in an area with frequently<br />

appearing heavy wind and sea and<br />

M: Specified MCR of engine<br />

S: Continuous service rating of engine<br />

O: Optimising point of engine<br />

A: Reference point of load diagram<br />

M: Specified MCR of engine<br />

S: Continuous service rating of engine<br />

O: Optimising point of engine<br />

A: Reference point of load diagram<br />

Power<br />

1 2<br />

Shaft generator<br />

6<br />

A=M<br />

7<br />

O SG<br />

S<br />

SG MP<br />

Propulsion curve<br />

for heavy running<br />

Engine service curve<br />

for heavy running<br />

Engine speed<br />

Point A of load diagram<br />

Line 1: Propeller curve through optimising point (O)<br />

Line 7: Constant power line through specified MCR (M)<br />

Point A: Intersection between lines 1 and 7<br />

SP<br />

Power<br />

7<br />

5<br />

4<br />

1 2 6<br />

4 1<br />

Engine service curve<br />

for heavy running<br />

3.3% A<br />

2<br />

Shaft generator<br />

6<br />

5% A<br />

A=M<br />

7<br />

5<br />

O<br />

S<br />

MP<br />

SP<br />

Propulsion curve<br />

for heavy running<br />

Engine speed<br />

3<br />

5% L 1<br />

Fig. 21a: Example 3 with FPP – engine layout with SG (normal case)<br />

Fig. 21b: Example 3 with FPP – load diagram with SG (normal case)<br />

25


large wave resistance, it can, therefore,<br />

be an advantage to <strong>de</strong>sign/move the<br />

load diagram more towards the left.<br />

The latter can be done by moving the<br />

engine’s optimising point O – and thus<br />

the propeller curve 1 through the optimising<br />

point – towards the left. However,<br />

this will be at the expense of a<br />

slightly increased specific fuel oil consumption.<br />

An example is shown in Figs. 20a and<br />

20b. As will be seen in Fig. 20b, and<br />

compared with the normal case shown<br />

in Example 1 (Fig. 19b), the left-hand<br />

limitation line 4 is moved to the left, giving<br />

a wi<strong>de</strong>r margin between lines 2 and<br />

4, i.e. a larger light running factor has<br />

been used in this example.<br />

Example 3:<br />

Normal case, with shaft generator<br />

In this example a shaft generator (SG)<br />

is installed, and therefore the service<br />

power of the engine also has to incorporate<br />

the extra shaft power required<br />

for the shaft generator’s electrical<br />

power production.<br />

In Fig. 21a, the engine service curve<br />

shown for heavy running incorporates<br />

this extra power.<br />

The optimising point O, and thereby the<br />

engine layout curve 1, will normally be<br />

chosen on the propeller curve (~ engine<br />

service curve) through point M.<br />

Point A is then found in the same way<br />

as in example 1, and the load diagram<br />

can be drawn as shown in Fig. 21b.<br />

Example 4:<br />

Special case, with shaft generator<br />

Also in this special case, a shaft generator<br />

is installed but, unlike in Example<br />

3, now the specified MCR for propulsion<br />

MP is placed at the top of the layout<br />

diagram, see Fig. 22a. This involves<br />

that the inten<strong>de</strong>d specified MCR of the<br />

engine (Point M’) will be placed outsi<strong>de</strong><br />

the top of the layout diagram.<br />

One solution could be to choose a<br />

diesel engine with an extra cylin<strong>de</strong>r,<br />

but another and cheaper solution is to<br />

reduce the electrical power production<br />

of the shaft generator when running in<br />

the upper propulsion power range.<br />

If choosing the latter solution, the required<br />

specified MCR power of the engine<br />

can be reduced from point M’ to<br />

point M as shown in Fig. 22a. Therefore,<br />

when running in the upper propulsion<br />

power range, a diesel generator has to<br />

take over all or part of the electrical<br />

power production.<br />

However, such a situation will seldom<br />

occur, as ships rather infrequently operate<br />

in the upper propulsion power<br />

range. In the example, the optimising<br />

point O has been chosen equal to<br />

point S, and line 1 may be found.<br />

Point A, having the highest possible<br />

power, is then found at the intersection<br />

of line L 1<br />

-L 3<br />

with line 1, see Fig. 22a,<br />

and the corresponding load diagram is<br />

M: Specified MCR of engine<br />

S: Continuous service rating of engine<br />

O: Optimising point of engine<br />

A: Reference point of load diagram<br />

Power<br />

1<br />

2<br />

Shaft generator<br />

6<br />

M´<br />

A<br />

M<br />

O=S<br />

SG MP<br />

SP<br />

7<br />

M: Specified MCR of engine<br />

S: Continuous service rating of engine<br />

O: Optimising point of engine<br />

A: Reference point of load diagram<br />

Power<br />

7<br />

5<br />

4<br />

1 2 6<br />

3.3% A<br />

5% A<br />

M´<br />

A<br />

5 M<br />

O=S<br />

7<br />

SG MP<br />

5% L 1<br />

SP<br />

Engine service curve<br />

for heavy running<br />

Propulsion curve for heavy running<br />

Engine speed<br />

4<br />

1<br />

2<br />

Shaft generator<br />

6<br />

3<br />

Point A and M of load diagram<br />

Line 1: Propeller curve through optimising point (O)<br />

Point A: Intersection between line 1 and line L1 - L3<br />

Point M: Located on constant power line 7 through point A<br />

and at MP’s speed<br />

Propulsion curve<br />

for heavy running<br />

Engine service curve<br />

for heavy running<br />

Engine speed<br />

Fig. 22a: Example 4 with FPP – engine layout with SG (special case)<br />

Fig. 22b: Example 4 with FPP – load diagram with SG (special case)<br />

26


drawn in Fig. 22b. Point M is found on<br />

line 7 at MP’s speed.<br />

Example with controllable pitch propeller<br />

Example 5:<br />

With or without shaft generator<br />

Layout diagram – without shaft generator<br />

If a controllable pitch propeller (CPP)<br />

is applied, the combinator curve (of<br />

the propeller with optimum propeller<br />

efficiency) will normally be selected for<br />

loa<strong>de</strong>d ship including sea margin.<br />

For a given propeller speed, the combinator<br />

curve may have a given propeller<br />

pitch, and this means that, like for a fixed<br />

pitch propeller, the propeller may be<br />

heavy running in heavy weather.<br />

Power<br />

M: Specified MCR of engine<br />

S: Continuous service rating of engine<br />

O: Optimising point of engine<br />

A: Reference point of load diagram<br />

7<br />

5<br />

4<br />

1<br />

Combinator curve<br />

for loa<strong>de</strong>d ship<br />

and incl. sea margin<br />

3.3%A<br />

1<br />

Min<br />

speed<br />

Therefore, it is recommen<strong>de</strong>d to use a<br />

light running combinator curve (the dotted<br />

curve), as shown in Fig. 23, to obtain an<br />

increased operating margin for the diesel<br />

engine in heavy weather to the load limits<br />

indicated by curves 4 and 5.<br />

Layout diagram – with shaft generator<br />

The hatched area in Fig. 23 shows the<br />

recommen<strong>de</strong>d speed range between<br />

100% and 96.7% of the specified MCR<br />

speed for an engine with shaft generator<br />

running at constant speed.<br />

The service point S can be located at<br />

any point within the hatched area.<br />

The procedure shown in Examples 3<br />

and 4 for engines with FPP can also be<br />

A=M<br />

5<br />

O<br />

S<br />

5%A<br />

7<br />

Max<br />

speed<br />

Fig. 23: Example 5 with CPP – with or without shaft generator<br />

4<br />

3<br />

5%L<br />

1<br />

Engine speed<br />

Recommen<strong>de</strong>d range<br />

for shaft generator<br />

operation with<br />

constant speed<br />

applied for engines with CPP running<br />

on a combinator curve.<br />

The optimising point O for engines with<br />

VIT can be chosen on the propeller curve<br />

1 through point A=Mwith an optimised<br />

power from 85 to 100% of the specified<br />

MCR as mentioned before in the section<br />

<strong>de</strong>aling with optimising point O.<br />

Load diagram<br />

Therefore, when the engine’s specified<br />

MCR point M has been chosen including<br />

engine margin, sea margin and the<br />

power for a shaft generator, if installed,<br />

point M can be used as point A of the<br />

load diagram, which can then be drawn.<br />

The position of the combinator curve<br />

ensures the maximum load range<br />

within the permitted speed range for<br />

engine operation, and it still leaves a<br />

reasonable margin to the load limits<br />

indicated by curves 4 and 5.<br />

Influence on engine running of<br />

different types of ship resistance<br />

– plant with FP-propeller<br />

In or<strong>de</strong>r to give a brief summary regarding<br />

the influence on the fixed pitch<br />

propeller running and main engine operation<br />

of different types of ship resistance,<br />

an arbitrary example has been chosen,<br />

see the load diagram in Fig. 24.<br />

The influence of the different types of<br />

resistance is illustrated by means of<br />

corresponding service points for propulsion<br />

having the same propulsion power,<br />

using as basis the propeller <strong>de</strong>sign<br />

point PD, plus 15% extra power.<br />

Propeller <strong>de</strong>sign point PD<br />

The propeller will, as previously <strong>de</strong>scribed,<br />

normally be <strong>de</strong>signed according to a<br />

specified ship speed V valid for loa<strong>de</strong>d<br />

ship with clean hull and calm weather<br />

conditions. The corresponding engine<br />

speed and power combination is<br />

shown as point PD on propeller curve<br />

6 in the load diagram, Fig. 24.<br />

Increased ship speed, point S0<br />

If the engine power is increased by, for<br />

example, 15%, and the loa<strong>de</strong>d ship is<br />

still operating with a clean hull and in<br />

calm weather, point S0, the ship speed<br />

27


V and engine speed n will increase in<br />

accordance with the propeller law (more<br />

or less valid for the normal speed range):<br />

3.<br />

5<br />

VS<br />

0<br />

= V × 115 . = 1041 . × V<br />

3.<br />

0<br />

n = n× 115 . = 1048 . × n<br />

S 0<br />

Engine shaft power % of A<br />

Point S0 will be placed on the same<br />

propeller curve as point PD.<br />

Sea running with clean hull and 15%<br />

sea margin, point S 2<br />

Conversely, if still operating with loa<strong>de</strong>d<br />

ship and clean hull, but now with extra<br />

PD: Propeller <strong>de</strong>sign point, clean hull and calm weather<br />

Continuous service rating for propulsion with<br />

a power equal to 90% specified MCR, based on:<br />

S0: Clean hull and calm weather, loa<strong>de</strong>d ship<br />

S1: Clean hull and calm weather, ballast (trial)<br />

S2: Clean hull and 15% sea margin, loa<strong>de</strong>d ship<br />

SP: Fouled hull and heavy weather, loa<strong>de</strong>d ship<br />

S3: Very heavy sea and wave resistance<br />

110<br />

100% ref. point (A)<br />

Specified MCR (M)<br />

105<br />

100<br />

A=M<br />

5<br />

7<br />

95<br />

S0<br />

S1<br />

90<br />

S2<br />

85<br />

SP<br />

S3<br />

8 4 1 6<br />

80<br />

2<br />

PD<br />

3 9<br />

75<br />

6.3<br />

6.2 6.1<br />

70<br />

80 85 90 95 100 105 110<br />

Engine speed, % of A<br />

Line 1: Propeller curve through point A=M, layout curve for engine<br />

Line 2: Heavy propeller curve, fouled hull and heavy weather, loa<strong>de</strong>d ship<br />

Line 6: Light propeller curve, clean hull and calm weather,<br />

loa<strong>de</strong>d ship, layout curve for propeller<br />

Line 6.1: Propeller curve, clean hull and calm weather, ballast (trial)<br />

Line 6.2: Propeller curve, clean hull and 15% sea margin, loa<strong>de</strong>d ship<br />

Line 6.3: Propeller curve, very heavy sea and wave resistance<br />

Fig. 24: Influence of different types of ship resistance on the continuous service rating<br />

resistance from heavy seas, an extra<br />

power of, for example, 15% is nee<strong>de</strong>d<br />

in or<strong>de</strong>r to maintain the ship speed V<br />

(15% sea margin).<br />

As the ship speed V S2<br />

= V, and if the<br />

propeller had no slip, it would be expected<br />

that the engine (propeller) speed would<br />

also be constant. However, as the water<br />

does yield, i.e. the propeller has a slip,<br />

the engine speed will increase and the<br />

running point S2 will be placed on a<br />

propeller curve 6.2 very close to S0, on<br />

propeller curve 6. Propeller curve 6.2<br />

will possibly represent an approximate<br />

0.5% heavier running propeller than<br />

curve 6.<br />

Depending on the ship type and size,<br />

the heavy running factor of 0.5% may<br />

be slightly higher or lower.<br />

For a resistance corresponding to<br />

about 30% extra power (30% sea margin),<br />

the corresponding relative heavy<br />

running factor will be about 1%.<br />

Sea running with fouled hull, and<br />

heavy weather, point SP<br />

When, after some time in service, the<br />

ship’s hull has been fouled, and thus<br />

becomes more rough, the wake field<br />

will be different from that of a smooth<br />

ship (clean hull).<br />

A ship with a fouled hull will, consequently,<br />

be subject to an extra resistance<br />

which, due to the changed<br />

wake field, will give rise to a heavier<br />

running propeller than experienced<br />

during bad weather conditions alone.<br />

When also incorporating some average<br />

influence of heavy weather, the<br />

propeller curve for loa<strong>de</strong>d ship will<br />

move to the left, see propeller curve<br />

2 in the load diagram in Fig. 24. This<br />

propeller curve, <strong>de</strong>noted fouled hull<br />

and heavy weather for a loa<strong>de</strong>d ship,<br />

is about 5% heavy running compared<br />

to the clean hull and calm weather<br />

propeller curve 6.<br />

In or<strong>de</strong>r to maintain an ample air<br />

supply for the diesel engine’s combustion,<br />

which imposes a limitation<br />

on the maximum combination of<br />

torque and speed, see curve 4 of the<br />

load diagram, it is normal practice to<br />

match the diesel engine and turbo-<br />

28


charger etc. according to a propeller<br />

curve 1 of the load diagram, equal to<br />

the heavy propeller curve 2.<br />

Instead of point S2, therefore, point SP<br />

will normally be used for the engine layout<br />

by referring this service propulsion<br />

rating to, for example, 90% of the engine’s<br />

specified MCR, which corresponds to<br />

choosing a 10% engine margin.<br />

In other words, in the example the propeller’s<br />

<strong>de</strong>sign curve is about 5% light<br />

running compared with the propeller<br />

curve used for layout of the main engine.<br />

Running in very heavy seas with<br />

heavy waves, point S3<br />

When sailing in very heavy sea against,<br />

with heavy waves, the propeller can be<br />

7-8% heavier running (and even more)<br />

than in calm weather, i.e. at the same<br />

propeller power, the rate of revolution<br />

may be 7-8% lower.<br />

For a propeller power equal to 90% of<br />

specified MCR, point S3 in the load<br />

diagram in Fig. 24 shows an example<br />

of such a running condition.<br />

In some cases in practice with strong<br />

wind against, the heavy running has<br />

proved to be even greater and even to<br />

be found to the left of the limitation line<br />

4 of the load diagram.<br />

In such situations, to avoid slamming of<br />

the ship and thus damage to the stem<br />

and racing of the propeller, the ship<br />

speed will normally be reduced by the<br />

navigating officers on watch.<br />

Ship acceleration and operation in<br />

shallow waters<br />

When the ship accelerates and the<br />

propeller is being subjected to a larger<br />

load than during free sailing, the effect<br />

on the propeller may be similar to that<br />

illustrated by means of point S3 in the<br />

load diagram, Fig. 24. In some cases in<br />

practice, the influence of acceleration<br />

on the heavy running has proved to be<br />

even greater. The same conditions are<br />

valid for running in shallow waters.<br />

Sea running at trial conditions, point S1<br />

Normally, the clean hull propeller curve<br />

6 will be referred to as the trial trip propeller<br />

curve. However, as the ship is<br />

seldom loa<strong>de</strong>d during sea trials and<br />

more often is sailing in ballast, the actual<br />

propeller curve 6.1 will be more<br />

light running than curve 6.<br />

For a power to the propeller equal to<br />

90% specified MCR, point S1 on the<br />

load diagram, in Fig. 24, indicates an<br />

example of such a running condition. In<br />

or<strong>de</strong>r to be able to <strong>de</strong>monstrate operation<br />

at 100% power, if required, during<br />

sea trial conditions, it may in some<br />

cases be necessary to exceed the propeller<br />

speed restriction, line 3, which<br />

during trial conditions may be allowed<br />

to be exten<strong>de</strong>d to 107%, i.e. to line 9<br />

of the load diagram.<br />

S=PD<br />

Line 1<br />

Line 1<br />

Influence of ship resistance on<br />

combinator curves – plant with<br />

CP-propeller<br />

This case is rather similar with the FPpropeller<br />

case <strong>de</strong>scribed above, and<br />

therefore only briefly <strong>de</strong>scribed here.<br />

The CP-propeller will normally operate<br />

on a given combinator curve, i.e. for a<br />

given propeller speed the propeller<br />

pitch is given (not valid for constant<br />

propeller speed). This means that<br />

heavy running operation on a given<br />

propeller speed will result in a higher<br />

power operation, as shown in the example<br />

in Fig. 25.<br />

Propeller <strong>de</strong>sign point incl. sea margins, and continuous service rating of engine<br />

Propeller curve for layout of engine<br />

Combinator curve for propeller <strong>de</strong>sign, clean hull and 15% sea margin, loa<strong>de</strong>d ship<br />

Line 6.1 Light combinator curve, fouled hull and calm weather, loa<strong>de</strong>d ship<br />

Line 2<br />

Heavy combinator curve, fouled hull and heavy weather, loa<strong>de</strong>d ship<br />

Line 2.1 Very heavy combinator curve, very heavy sea and wave resistance<br />

Engine shaft power % of A<br />

110<br />

105<br />

100<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

100% ref. point (A)<br />

Specified MCR (M)<br />

2<br />

2.1<br />

A=M<br />

7<br />

5<br />

8 4 1 6 3<br />

50<br />

65 70 75 80 85 90 95 100 105 110<br />

Engine speed, % of A<br />

Fig. 25: Influence of ship resistance on combinator curves for CP-propeller<br />

6.1<br />

S=PD<br />

29


Closing Remarks<br />

In practice, the ship’s resistance will<br />

frequently be checked against the results<br />

obtained by testing a mo<strong>de</strong>l of the ship<br />

in a towing tank. The experimental tank<br />

test measurements are also used for<br />

optimising the propeller and hull <strong>de</strong>sign.<br />

When the ship’s necessary power requirement,<br />

including margins, and the<br />

propeller’s speed (rate of revolution)<br />

have been <strong>de</strong>termined, the correct<br />

main engine can then be selected, e.g.<br />

with the help of MAN B&W Diesel’s<br />

computer-based engine selection<br />

programme.<br />

In this connection the interaction between<br />

ship and main engine is extremely important,<br />

and the placing of the engine’s<br />

load diagram, i.e. the choice of engine<br />

layout in relation to the engine’s (ship’s)<br />

operational curve, must be ma<strong>de</strong> carefully<br />

in or<strong>de</strong>r to achieve the optimum<br />

propulsion plant. In or<strong>de</strong>r to avoid overloading<br />

of the main engine for excessive<br />

running conditions, the installation of an<br />

electronic governor with load control may<br />

be useful.<br />

References<br />

[1] Technical discussion with<br />

Keld Kofoed Nielsen,<br />

Burmeister & Wain Shipyard,<br />

Copenhagen<br />

[2] Ship Resistance<br />

H.E. Guldhammer and<br />

Sv. Aa. Harvald, 1974<br />

[3] Resistance and Propulsion of Ships,<br />

Sv. Aa. Harvald, 1983<br />

[4] Paint supplier “International<br />

Coatings Ltd.”, 2003<br />

[5] Fartygspropellrar och Fartygs Framdrift,<br />

Jan Tornblad, KaMeWa Publication,<br />

1985<br />

Furthermore, we recommend:<br />

[6] Prediction of Power of Ships<br />

Sv. Aa. Harvald, 1977 and 1986<br />

[7] Propulsion of Single-Screw Ships<br />

Sv. Aa. Harvald & J.M. Hee, 1981<br />

If a main engine driven shaft generator –<br />

producing electricity for the ship – is installed,<br />

the interaction between ship and<br />

main engine will be even more complex.<br />

However, thanks to the flexibility of the<br />

layout and load diagrams for the MAN<br />

B&W engines, a suitable solution will<br />

nearly always be readily at hand.<br />

1


174<br />

APÊNDICE D. SELECÇÃO DE MOTORES PROPULSORES


Apêndice<br />

E<br />

Derating para Reduzir Consumo <strong>de</strong><br />

Combustível<br />

175


176<br />

APÊNDICE E. DERATING


Derating: a solution for<br />

high fuel savings and lower emissions<br />

Rudolf Wettstein 1 & David Brown 2<br />

Wärtsilä Switzerland Ltd, Winterthur<br />

Summary<br />

This paper sets out ways to achieve worthwhile reductions in the fuel consumption of Wärtsilä low-speed engines<br />

when <strong>de</strong>signing newbuildings. The key approach is to use the flexibility offered by the full power/speed layout field to<br />

select a better layout point at a <strong>de</strong>rated power with a lower BSFC and also possibly a higher propeller efficiency.<br />

Introduction<br />

Fuel efficiency and environmental friendliness are<br />

high on the list of requirements for ship propulsion<br />

engines from today’s shipping- and shipbuilding<br />

industries. Thus Wärtsilä is committed to creating<br />

better technology in these areas that will benefit both<br />

the customers and the environment.<br />

Yet it is often forgotten by many ship <strong>de</strong>signers<br />

and those specifying low-speed main engines that<br />

advantage can be taken of the power/speed layout<br />

field of Wärtsilä low-speed engines to select an engine<br />

rating point with a still lower fuel consumption.<br />

The concept of the power/speed layout field for<br />

low-speed marine diesel engines originated in the<br />

1970s. The layout options were step-by-step wi<strong>de</strong>ned<br />

until, in 1984, our low-speed engines began to be<br />

offered with a broad power/speed layout field. An<br />

engine’s contracted maximum continuous rating<br />

(CMCR) can be selected at any point in the power/<br />

speed field <strong>de</strong>fined by the four corner points: R1,<br />

R2, R3 and R4 (Fig. 1). The rating point R1 is the<br />

maximum continuous rating (MCR) of the engine.<br />

Most recently, the layout fields for certain<br />

engines, the RT-flex82C, RTA82C, RT-flex82T and<br />

RTA82T, are exten<strong>de</strong>d to increased speeds for the<br />

R1+ and R2+ points (Fig. 2). The exten<strong>de</strong>d fields<br />

offer wi<strong>de</strong>ned flexibility to select the most efficient<br />

propeller speed for lowest daily fuel consumption,<br />

and the most economic propulsion equipment,<br />

1<br />

Rudolf Wettstein is Director, Marketing &<br />

Application Development, Ship Power, Wärtsilä<br />

Switzerland Ltd.<br />

2<br />

David Brown is Manager, Marketing Support,<br />

Wärtsilä Switzerland Ltd.<br />

Engine power, %R1<br />

100<br />

90<br />

80<br />

70<br />

60<br />

70<br />

Higher propulsive<br />

efficiency<br />

R3<br />

R4<br />

80<br />

Constant torque line<br />

90<br />

R1<br />

0<br />

-1 ∆BSFC<br />

-2 g/kWh<br />

-3<br />

-4<br />

-5<br />

100<br />

Engine speed, %R1<br />

Fig. 1: Typical layout field for RTA and RT-flex engines. The<br />

contracted maximum continuous rating (CMCR) can be<br />

selected at any point, such as Rx, within the layout field. The<br />

∆BSFC is the reduction in full-load BSFC for any rating<br />

point Rx relative to that at the R1 rating.<br />

[08#044]<br />

Rx<br />

R2<br />

-6<br />

-7<br />

Lower<br />

specific<br />

fuel<br />

consumption<br />

namely the propeller, shafting, etc.<br />

One basic principle of the engine layout field is<br />

that the same maximum cylin<strong>de</strong>r pressure (Pmax)<br />

is employed at all CMCR points within the layout<br />

field. Thus the reduced brake mean effective pressure<br />

(BMEP) obtained at the reduced power outputs in<br />

the field results in an increased ratio of Pmax/BMEP<br />

and thus lower brake specific fuel consumption<br />

(BSFC).<br />

The other principle behind the layout field is<br />

— 1 — © Wärtsilä Corporation, June 2008


Engine power, %R1<br />

100<br />

R1<br />

R1+<br />

Engine power, %R1<br />

100<br />

R1<br />

90<br />

R3<br />

90<br />

80<br />

R3<br />

Rx1<br />

Rx2<br />

Rating line<br />

slope = α<br />

80<br />

R4<br />

R2<br />

R2+<br />

70<br />

R4<br />

R2<br />

80<br />

90<br />

100<br />

Engine speed, %R1<br />

60<br />

70<br />

80<br />

90<br />

100<br />

Engine speed, %R1<br />

Fig. 2: For the RT-flex82C, RTA82C, RT-flex82T and<br />

RTA82T engines the layout fields are exten<strong>de</strong>d to the ratings<br />

R1+ and R2+ at the same powers as R1 and R2 respectively<br />

but with increased shaft speed.<br />

[08#049]<br />

that the lower CMCR speeds allow flexibility in<br />

selection of the optimum propeller with consequent<br />

benefits in propulsion efficiency and thus lower fuel<br />

consumption in terms of tonnes per day.<br />

One feature to be borne in mind when selecting<br />

the rating point for the <strong>de</strong>rated engine is the rating<br />

Fig. 4: Since the 1980s engine ratings have been selected over<br />

a steadily smaller area of the layout field.<br />

[08#051]<br />

Engine power, %R1<br />

100<br />

90<br />

80<br />

70<br />

60<br />

70<br />

R3<br />

R4<br />

Area of recent<br />

CMCR selection<br />

80<br />

Area of CMCR<br />

selection in<br />

the 1980s<br />

90<br />

R1<br />

100<br />

R2<br />

Engine speed, %R1<br />

Fig. 3: For a given ship, a rating line (slope α) can be applied<br />

to the layout field so that all rating points on that line would<br />

give the same ship speed with a suitably optimized propeller.<br />

Rating points at lower speeds on the rating line require<br />

a larger propeller diameter and give a greater propulsive<br />

efficiency.<br />

line (Fig. 3). This is the line through a CMCR rating<br />

point such that any point on the line represents<br />

a new power/speed combination that will give<br />

the same ship speed in knots. The points on the<br />

rating line all require the same propeller type but<br />

with different adaptations to suit the power/speed<br />

combination. In general, lower speeds of rotation<br />

require larger propeller diameters and thereby<br />

increase the total propulsive efficiency. Usually the<br />

selected propeller speed <strong>de</strong>pends on the maximum<br />

permissible propeller diameter. The maximum<br />

diameter is often <strong>de</strong>termined by operational<br />

requirements, such as <strong>de</strong>sign draught and ballast<br />

draught limitations, as well as class recommendations<br />

concerning propeller–hull clearance (pressure<br />

impulse induced by the propeller on the hull).<br />

The slope of the rating line (α) <strong>de</strong>pends broadly<br />

upon the ship type. It can range from 0.15 for<br />

tankers, bulk carriers and general cargo ships up to<br />

about 10,000 tdw to 0.22 for container ships larger<br />

than 3000 TEU and 0.25 for tankers and bulk<br />

carriers larger than 30,000 tdw.<br />

Changing engine selection strategies<br />

When the broad layout field was introduced in<br />

RTA engines in 1984 it was wi<strong>de</strong>ly welcomed by<br />

shipowners and shipbuil<strong>de</strong>rs. Afterwards RTA<br />

engines were frequently selected at ratings in the<br />

lower part of the layout field to gain the benefits of<br />

— 2 — © Wärtsilä Corporation, June 2008


Bunker price, US$/tonne<br />

380cSt HFO<br />

500<br />

400<br />

300<br />

200<br />

100<br />

2004 2005 2006 2007 2008<br />

Fig. 5: Bunker prices have consi<strong>de</strong>rably increased in recent times. The chart shows the average price of 380 cSt heavy fuel oil (HFO)<br />

from various ports around the world from 2004 to 2008. The green bars indicate the mean price for each year.<br />

[08#045]<br />

lower fuel consumption.<br />

However, un<strong>de</strong>r the pressure of first costs and<br />

softening bunker prices the strategy was changed and<br />

the selected power/speed combination has, during<br />

the past 15 years or so, been selected to be closer to<br />

the R1 rating (Fig. 4).<br />

Yet, more recently, bunker prices have steadily<br />

climbed, rising by some 85 per cent in the course of<br />

2007 from US$ 270 to US$ 500 per tonne (Fig. 5).<br />

The result is that bunkers are now the dominant part<br />

of ship operating costs.<br />

Such drastic increases in bunker prices give a<br />

strong impetus to reduce fuel costs. They can also<br />

justify additional investment cost such as selecting<br />

an engine with an extra cylin<strong>de</strong>r. The consequent<br />

fuel saving may make for an acceptable payback time<br />

on the additional investment cost. It would justify<br />

any efforts to increase the overall efficiency of the<br />

complete propulsion system.<br />

Further impetus to implementing such changes<br />

in engine selection strategy will come from a future<br />

need to cut CO 2<br />

emissions. If a carbon trading<br />

scheme is imposed on shipping it would give further<br />

economic advantage to reducing fuel consumption<br />

and further help to pay for any necessary extra<br />

investment costs.<br />

In addition it is important to bear in mind that<br />

the fuel savings measures discussed here will also<br />

result in lower NO X<br />

emissions in absolute terms.<br />

Derating engines for greater fuel savings<br />

In the following pages are some case studies for ship<br />

installations for which an engine is selected with an<br />

extra cylin<strong>de</strong>r without increasing the engine’s power.<br />

These cases <strong>de</strong>monstrate that such engine <strong>de</strong>rating<br />

can be an advantageous solution with remarkable<br />

saving potential. Depending on bunker costs, such a<br />

strategy can have a very attractive pay-back time.<br />

The four case studies are for a Suezmax tanker,<br />

a Capesize bulk carrier, a Panamax container ship<br />

and a Post-Panamax container ship. They inclu<strong>de</strong><br />

estimations of the respective pay-back times for the<br />

additional engine costs.<br />

— 3 — © Wärtsilä Corporation, June 2008


Case 1: Suezmax tanker & Capesize bulk carrier<br />

In this case, a typical Suezmax tanker might be<br />

specified with a six-cylin<strong>de</strong>r Wärtsilä RT-flex68-D<br />

main engine. However, if a seven-cylin<strong>de</strong>r engine is<br />

employed instead, the daily fuel consumption can be<br />

reduced by some 3.4 per cent.<br />

In the engine/propeller layout for this ship as<br />

shown in figure 6, the CMCR points for the two<br />

alternative engines are on the same rating line<br />

(α = 0.3) through a common <strong>de</strong>sign point for the<br />

same ship service speed (knots).<br />

The calculation of annual fuel costs given in table<br />

2 is based on 6000 hours running with heavy fuel oil<br />

costing US$ 500 per tonne.<br />

The resulting payback time for the extra cost<br />

associated with the additional engine cylin<strong>de</strong>r is<br />

estimated to be between 3.5 and six years <strong>de</strong>pending<br />

on the bunker price of US$ 600–400 per tonne<br />

respectively (Fig. 7). The calculations of the payback<br />

are based on an interest rate of eight per cent.<br />

A similar case may be ma<strong>de</strong> for a Capesize bulk<br />

carrier as it would be similar in size and speed to a<br />

Suezmax tanker and would thus require a similar<br />

engine.<br />

Table 1: Typical ship parameters for a Suezmax tanker<br />

Length overall: about 274 m<br />

Beam: 46–50 m<br />

Design draught: 16 m<br />

Scantling draught: 17 m<br />

Sea margin: 15 %<br />

Engine service load: 90 %<br />

Table 2: Main engine options<br />

Alternative engines: 6RT-flex68-D 7RT-flex68-D<br />

Cylin<strong>de</strong>r bore, mm: 680 680<br />

Piston stroke, mm: 2720 2720<br />

Stroke/bore ratio: 4:1 4:1<br />

MCR, kW / rpm: 18,780/95 21,910/95<br />

CMCR, kW / rpm: 18,780/95 18,460/89.7<br />

BMEP at CMCR, bar: 20.0 17.9<br />

CSR at 90% CMCR, kW/rpm: 16,902/91.7 16,614/86.6<br />

BSFC at CMCR, g/kWh:<br />

– 100% load: 169.0 164.8<br />

– 90% load: 165.6 162.6<br />

Daily fuel consumption, tonnes/day:<br />

– ISO fuel, LCV 42.7 MJ/kg: 67.2 64.8<br />

– LCV 40.5 MJ/kg: 70.8 68.4<br />

– As percentage, %: 100 96.6 –3.4%<br />

Annual fuel costs, US$: 8,853,000 8,544,000<br />

Fuel saving, US$: 0 – 309,000<br />

Engine length, mm: 8690 9870<br />

Engine mass, tonnes: 472 533<br />

— 4 — © Wärtsilä Corporation, June 2008


Case 1: Suezmax tanker & Capesize bulk carrier<br />

Engine power, kW<br />

22,000<br />

7RT-flex68-D<br />

Fig. 6: Engine/propeller layouts for<br />

a typical Suezmax tanker with a<br />

<strong>de</strong>rated seven-cylin<strong>de</strong>r RT-flex68-D<br />

engine compared with a six-cylin<strong>de</strong>r<br />

engine at the full MCR power and<br />

speed.<br />

[08#052]<br />

20,000<br />

18,000<br />

16,000<br />

Constant ship speed<br />

α = 0.3<br />

CMCR<br />

18,460 kW<br />

89.7 rpm<br />

CSR<br />

16,614 kW<br />

86.6 rpm<br />

CSR<br />

16,902 kW<br />

91.7 rpm<br />

Design point<br />

CMCR = R1<br />

18,780 kW, 95 rpm<br />

6RT-flex68-D<br />

75 80<br />

85 90 95 100<br />

Engine speed, rpm<br />

Millions US$<br />

Fig. 7: Variation of payback times<br />

from fuel savings according to<br />

bunker costs for the <strong>de</strong>rated engine<br />

with an extra cylin<strong>de</strong>r for a typical<br />

Suezmax tanker.<br />

[08#144]<br />

3.0<br />

2.0<br />

1.0<br />

0<br />

Bunker price, HFO:<br />

$600/tonne<br />

$500/tonne<br />

$400/tonne<br />

Investment approx. ($)<br />

2 4 6 8 10 12 14<br />

Years<br />

— 5 — © Wärtsilä Corporation, June 2008


Case 2: Panamax container ship<br />

In this case, a typical Panamax container ship with<br />

a container capacity of up to 5000 TEU might be<br />

specified with an eight-cylin<strong>de</strong>r Wärtsilä RT-flex82C<br />

main engine. However, if a nine-cylin<strong>de</strong>r engine is<br />

employed instead, the daily fuel consumption can be<br />

reduced by some two per cent.<br />

In the engine/propeller layout for this ship as<br />

shown in figure 8, the CMCR points for the two<br />

alternative engines are on the same rating line<br />

(α = 0.2) through a common <strong>de</strong>sign point for the<br />

same ship service speed (knots).<br />

The calculation of annual fuel costs given in table<br />

4 is based on 6000 hours running with heavy fuel oil<br />

costing US$ 500 per tonne.<br />

The resulting payback time for the extra cost<br />

associated with the additional engine cylin<strong>de</strong>r<br />

is estimated to be between four and seven years<br />

<strong>de</strong>pending on the bunker price of US$ 600–400 per<br />

tonne respectively (Fig. 9). The calculations of the<br />

payback are based on an interest rate of eight per<br />

cent.<br />

Table 3: Typical ship parameters for a Panamax<br />

container ship<br />

Length overall: about 295 m<br />

Beam: 32.2 m<br />

Design draught: 12 m<br />

Scantling draught: 13.5 m<br />

Sea margin: 15 %<br />

Engine service load: 90 %<br />

Table 4: Main engine options<br />

Alternative engines: 8RT-flex82C 9RT-flex82C<br />

Cylin<strong>de</strong>r bore, mm: 820 820<br />

Piston stroke, mm: 2646 2646<br />

Stroke/bore ratio: 3.2:1 3.2:1<br />

MCR, kW / rpm: 36,160/102 40,680/102<br />

CMCR, kW / rpm: 36,160/102 35,480/97.5<br />

BMEP at CMCR, bar: 19.0 17.5<br />

CSR at 90% CMCR, kW / rpm: 32,544/98.5 32,250/94.3<br />

BSFC at CMCR, g/kWh:<br />

– 100% load: 169.0 166.6<br />

– 90% load: 166.5 164.6<br />

Daily fuel consumption, tonnes/day:<br />

– ISO fuel, LCV 42.7 MJ/kg: 130.0 127.4<br />

– LCV 40.5 MJ/kg: 137.1 134.3<br />

– As percentage, %: 100 98 – 2.0%<br />

Annual fuel costs, US$: 17,138,000 16,790,000<br />

Fuel saving, US$: 0 – 348,000<br />

Engine length, mm: 14,055 16,500<br />

Engine mass, tonnes: 1020 1140<br />

— 6 — © Wärtsilä Corporation, June 2008


Case 2: Panamax container ship<br />

Engine power, kW<br />

42,000<br />

40,000<br />

Fig. 8: Engine/propeller layouts for a<br />

typical Panamax container ship with<br />

a <strong>de</strong>rated nine-cylin<strong>de</strong>r RT-flex82C<br />

engine compared with an eightcylin<strong>de</strong>r<br />

engine at the full MCR<br />

power and speed.<br />

[08#062]<br />

38,000<br />

36,000<br />

34,000<br />

32,000<br />

9RT-flex82C<br />

Constant ship speed<br />

α = 0.2<br />

8RT-flex82C<br />

CSR<br />

32,250 kW<br />

94.3 rpm<br />

CMCR<br />

35,850 kW<br />

97.5 rpm<br />

CSR<br />

32,544 kW<br />

98.5 rpm<br />

Design point<br />

CMCR = R1+<br />

36,160 kW, 102 rpm<br />

85 90 95 100 105<br />

Engine speed, rpm<br />

Millions US$<br />

4.0<br />

3.0<br />

Bunker price, HFO:<br />

$600/tonne<br />

$500/tonne<br />

$400/tonne<br />

Fig. 9: Variation of payback times<br />

from fuel savings according to<br />

bunker costs for the <strong>de</strong>rated engine<br />

with an extra cylin<strong>de</strong>r for a typical<br />

Panamax container ship.<br />

[08#145]<br />

2.0<br />

1.0<br />

0<br />

Investment approx. ($)<br />

2 4 6 8 10 12 14<br />

Years<br />

— 7 — © Wärtsilä Corporation, June 2008


Case 3: Post-Panamax container ship<br />

In this case, a typical Post-Panamax container<br />

ship with a container capacity of around 7000<br />

TEU might be specified with an eleven-cylin<strong>de</strong>r<br />

Wärtsilä RT-flex96C main engine. However, if a<br />

12-cylin<strong>de</strong>r engine is employed instead, the daily fuel<br />

consumption can be reduced by some 2.4 per cent.<br />

In the engine/propeller layout for this ship as<br />

shown in figure 10, the CMCR points for the two<br />

alternative engines are on the same rating line<br />

(α = 0.2) through a common <strong>de</strong>sign point for the<br />

same ship service speed (knots).<br />

The calculation of annual fuel costs given in table<br />

6 is based on 6000 hours running with heavy fuel oil<br />

costing US$ 500 per tonne.<br />

The resulting payback time for the extra cost<br />

associated with the additional engine cylin<strong>de</strong>r is<br />

estimated to be between two-and-a-half and four<br />

years <strong>de</strong>pending on the bunker price of US$ 600–<br />

400 per tonne respectively (Fig. 11). The calculations<br />

of the payback are based on an interest rate of eight<br />

per cent.<br />

Table 5: Typical ship parameters for a Post-Panamax<br />

container ship<br />

Length overall: about 325 m<br />

Beam: 42.8 m<br />

Design draught: 13 m<br />

Scantling draught: 14.5 m<br />

Sea margin: 15 %<br />

Engine service load: 90 %<br />

Table 6: Main engine options<br />

Alternative engines: 11RT-flex96C 12RT-flex96C<br />

Cylin<strong>de</strong>r bore, mm: 960 960<br />

Piston stroke, mm: 2500 2500<br />

Stroke/bore ratio: 2.6:1 2.6:1<br />

MCR, kW / rpm: 66,330/102 72,360/102<br />

CMCR, kW / rpm: 66,330/102 65,919/98.9<br />

BMEP at CMCR, bar: 19.6 18.4<br />

CSR at 90% CMCR, kW / rpm: 59,697/98.5 59,327/95.5<br />

BSFC at CMCR, g/kWh:<br />

– 100% load: 171.0 168.0<br />

– 90% load: 166.8 163.8<br />

Daily fuel consumption, tonnes/day:<br />

– ISO fuel, LCV 42.7 MJ/kg: 239 233.2<br />

– LCV 40.5 MJ/kg: 252 245.9<br />

– As percentage, %: 100 97.6 – 2.4%<br />

Annual fuel costs, US$: 31,500,000 30,738,000<br />

Fuel saving, US$: 0 – 762,000<br />

Engine length, mm: 21,550 23,230<br />

Engine mass, tonnes: 1910 2050<br />

— 8 — © Wärtsilä Corporation, June 2008


Case 3: Post-Panamax container ship<br />

Engine power, kW<br />

72,000<br />

70,000<br />

12RT-flex96C<br />

Fig. 10: Engine/propeller layouts for<br />

a typical Post-Panamax container<br />

ship with a <strong>de</strong>rated 12-cylin<strong>de</strong>r RTflex96C<br />

engine compared with an<br />

11-cylin<strong>de</strong>r engine at the full MCR<br />

power and speed.<br />

[08#127]<br />

68,000<br />

66,000<br />

64,000<br />

62,000<br />

60,000<br />

58,000<br />

Constant ship speed<br />

α = 0.2<br />

CSR<br />

59,327 kW<br />

95.5 rpm<br />

CMCR<br />

65,919 kW<br />

98.9 rpm<br />

CSR<br />

59,697 kW<br />

98.5 rpm<br />

Design point<br />

CMCR = R1<br />

66,330 kW, 102 rpm<br />

11RT-flex96C<br />

90 95 100 105<br />

Engine speed, rpm<br />

Millions US$<br />

Fig. 11: Variation of payback times<br />

from fuel savings according to<br />

bunker costs for the <strong>de</strong>rated engine<br />

with an extra cylin<strong>de</strong>r for the typical<br />

Post-Panamax container ship.<br />

[08#146]<br />

8.0<br />

6.0<br />

4.0<br />

2.0<br />

0<br />

Bunker price, HFO:<br />

$600/tonne<br />

$500/tonne<br />

$400/tonne<br />

Investment approx. ($)<br />

2 4 6 8 10 12 14<br />

Years<br />

— 9 — © Wärtsilä Corporation, June 2008


Case 4: Derating without adding an<br />

engine cylin<strong>de</strong>r<br />

It is also feasible to apply a <strong>de</strong>rated engine to obtain<br />

fuel savings in such a way that an additional engine<br />

cylin<strong>de</strong>r is not required.<br />

An example of this can be seen with the Wärtsilä<br />

RT-flex50 engine. In October 2007, the D version<br />

of this engine was announced, in which the engine<br />

power was increased by 5.1 per cent and the BSFC<br />

at full-load was reduced by 2 g/kWh compared with<br />

the B version.<br />

Thus if a ‘-D’ engine is <strong>de</strong>rated to the same<br />

cylin<strong>de</strong>r power output as the original version of the<br />

RT-flex50, then the BSFC at full load is reduced<br />

by 4.5 g/kWh, or 2.7 per cent (see Table 7). For a<br />

typical bulk carrier with a six-cylin<strong>de</strong>r RT-flex50<br />

engine this can translate into annual savings of<br />

US$ 124,000 when operating for 6000 running<br />

hours a year with heavy fuel oil costing US$ 500<br />

per tonne. Even greater savings are possible if the<br />

engine is <strong>de</strong>rated to a lower running speed (rpm)<br />

at the <strong>de</strong>rated power to gain the benefits of a better<br />

propulsion efficiency.<br />

There are already a number of standard ship<br />

<strong>de</strong>signs <strong>de</strong>livered and on or<strong>de</strong>r with RT-flex50-B or<br />

even the original RT-flex50 engine. So it would be<br />

perfectly feasible to install a <strong>de</strong>rated RT-flex50-D<br />

in further newbuildings to the same ship <strong>de</strong>signs<br />

and obtain the benefit of the substantial savings in<br />

operating costs. The overall dimensions of the D<br />

version are i<strong>de</strong>ntical to those of the B and original<br />

versions of the RT-flex50. There would, however, be<br />

a mo<strong>de</strong>st increase in cost of the D version for the<br />

higher-efficiency turbochargers used, but the extra<br />

cost would soon be repaid by the fuel cost savings.<br />

Derating with flexibility to full rating<br />

Although <strong>de</strong>rating offers attractive economics, it<br />

can be frustrating to buy more ‘engine’ than seems<br />

necessary. Yet there is an interesting option to retain<br />

an ability to utilise the full available installed engine<br />

power, even up to the full R1 rating for future use to<br />

obtain higher ship service speeds.<br />

The concept would be to set up the engine for<br />

the <strong>de</strong>rated output at the chosen reduced service<br />

speed. Then for a later date, the engine could be<br />

re-adapted to the higher output. However, this needs<br />

corresponding provisions in the selection and <strong>de</strong>sign<br />

of the propeller, shafting and ancillary equipment to<br />

meet the requirements of the envisaged higher power.<br />

Furthermore the engine would need to be tested<br />

and approved by the Classification Society for both<br />

ratings with all the necessary emissions certification.<br />

RT-flex technology as an important<br />

contribution to fuel saving<br />

Wärtsilä RT-flex technology plays an important role<br />

in fuel saving. Wärtsilä RT-flex low-speed engines<br />

incorporate the latest electronically-controlled<br />

common-rail technology for fuel injection and valve<br />

actuation. The result is great flexibility in engine<br />

setting, bringing benefits in lower fuel consumption,<br />

lower minimum running speeds, smokeless operation<br />

Table 7: Options for the Wärtsilä RT-flex50 engine type<br />

Alternative engines: 6RT-flex50 6RT-flex50-D<br />

Cylin<strong>de</strong>r bore, mm: 500 500<br />

Piston stroke, mm: 2050 2050<br />

S/B ratio: 4.1:1 4.1:1<br />

MCR, kW / rpm: 9720/124 10,470/124<br />

CMCR, kW / rpm: 9720/124 9720/124<br />

BMEP at CMCR, bar: 19.5 19.5<br />

CSR at 90% CMCR, kW / rpm: 8748/119.7 8748/119.7<br />

BSFC at CMCR, g/kWh:<br />

– 100% load: 171 165.7<br />

– 90% load: 167.6 163.0<br />

Daily fuel consumption, tonnes/day:<br />

– ISO fuel, LCV 42.7 MJ/kg: 35.2 34.2<br />

– LCV 40.5 MJ/kg: 37.1 36.2<br />

– As percentage, %: 100 97.3 – 2.7%<br />

Annual fuel costs, US$: 4,637,000 4,513,000<br />

Fuel saving, US$: 0 – 124,000<br />

— 10 — © Wärtsilä Corporation, June 2008


at all running speeds, and better control of other<br />

exhaust emissions.<br />

Not only do RT-flex engines have a lower partload<br />

fuel consumption than RTA engines but they<br />

can be adapted through Delta Tuning so that their<br />

part-load fuel consumtion is even lower. [1]<br />

Owing to the interaction between fuel economy<br />

and NO X<br />

emissions, there is always the possibility<br />

that fuel saving measures will have an impact on<br />

NO X<br />

emissions. As with all new marine engines<br />

nowadays, Wärtsilä RTA and RT-flex engines are all<br />

fully compliant with the NO X<br />

emission regulation of<br />

Annexe VI of the MARPOL 1973/78 convention.<br />

Moreover, the engines in the Wärtsilä portfolio will<br />

be adapted to meet the coming IMO NO X<br />

reduction<br />

level Tier II.<br />

also possibly a higher propeller efficiency.<br />

It must also not be forgotten that any fuel savings<br />

achieved at the ship <strong>de</strong>sign stage will have benefits in<br />

also reducing exhaust emissions.<br />

If you have a project for which you wish to<br />

explore the fuel-saving possibilities through <strong>de</strong>rating<br />

as set out in this paper, then please contact your<br />

nearest Wärtsilä office. Our experts will be <strong>de</strong>lighted<br />

to calculate various alternatives for your evaluation.<br />

References<br />

1. German Weisser, ‘Fuel saving with RT-flex’,<br />

Wärtsilä Switzerland Ltd, July 2004.<br />

Conclusion<br />

The paper shows that there are techniques to achieve<br />

worthwhile reductions in the fuel consumption<br />

of Wärtsilä low-speed engines when <strong>de</strong>signing<br />

newbuildings. The key approach is to use the<br />

flexibility offered by the full power/speed layout field<br />

to select a better layout point with a lower BSFC and<br />

Published June 2008 by:<br />

Wärtsilä Switzerland Ltd<br />

PO Box 414<br />

CH-8401 Winterthur<br />

Tel: +41 52 262 49 22<br />

Fax: +41 52 262 07 18<br />

www.wartsila.com<br />

— 11 — © Wärtsilä Corporation, June 2008

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!