15.05.2015 Views

Textos de Apoio (pdf)

Textos de Apoio (pdf)

Textos de Apoio (pdf)

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Hidrodinâmica e Propulsão<br />

Engenharia <strong>de</strong> Máquinas Marítimas<br />

Jorge Trinda<strong>de</strong><br />

ENIDH<br />

2012


Índice<br />

1 Introdução 1<br />

1.1 Geometria do navio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br />

1.1.1 Principais dimensões dos navios . . . . . . . . . . . . . . . . . . . . . . . 1<br />

1.1.2 Coeficientes <strong>de</strong> forma do navio . . . . . . . . . . . . . . . . . . . . . . . 3<br />

1.2 Comportamento hidrodinâmico do navio . . . . . . . . . . . . . . . . . . . . . . 6<br />

1.3 Métodos empíricos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

1.4 Métodos experimentais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

1.5 Simulações numéricas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

2 Resistência 13<br />

2.1 Análise dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br />

2.2 Leis da semelhança . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

2.2.1 Semelhança geométrica . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

2.2.2 Semelhança cinemática . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

2.2.3 Semelhança dinâmica . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

2.3 Decomposição da resistência . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br />

2.3.1 Resistência <strong>de</strong> onda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

2.3.2 Resistência <strong>de</strong> atrito . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

2.3.3 Resistência viscosa <strong>de</strong> pressão . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

2.4 Ensaios <strong>de</strong> resistência em tanques <strong>de</strong> reboque . . . . . . . . . . . . . . . . . . . 26<br />

2.5 Cálculo da resistência . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

2.5.1 Métodos <strong>de</strong> extrapolação . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

2.5.2 Resistências adicionais . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

2.6 Previsão com dados sistemáticos ou estatísticos . . . . . . . . . . . . . . . . . . 32<br />

2.7 Ensaios à escala real . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br />

3 Propulsão 35<br />

3.1 Sistemas <strong>de</strong> propulsão . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br />

3.1.1 Hélices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br />

3.1.2 Outros meios <strong>de</strong> propulsão . . . . . . . . . . . . . . . . . . . . . . . . . 37<br />

3.2 Hélices propulsores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40<br />

3.2.1 Geometria do hélice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40<br />

3.2.2 Valores característicos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br />

3.3 Teoria da quantida<strong>de</strong> <strong>de</strong> movimento . . . . . . . . . . . . . . . . . . . . . . . . 42<br />

3.3.1 Força propulsiva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42<br />

i


ii<br />

ÍNDICE<br />

3.3.2 Coeficiente <strong>de</strong> carga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44<br />

3.3.3 Rendimento i<strong>de</strong>al do hélice . . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

3.4 Ensaios com mo<strong>de</strong>los reduzidos <strong>de</strong> hélices . . . . . . . . . . . . . . . . . . . . . 45<br />

3.4.1 Diagrama em águas livres . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br />

3.4.2 Rendimento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br />

3.4.3 Índice <strong>de</strong> qualida<strong>de</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br />

3.5 Séries sistemáticas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br />

3.5.1 Série sistemática <strong>de</strong> Wageningen . . . . . . . . . . . . . . . . . . . . . . 48<br />

3.5.2 Outras séries sistemáticas . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br />

3.5.3 Diagrama <strong>de</strong> 4 quadrantes . . . . . . . . . . . . . . . . . . . . . . . . . . 51<br />

3.6 Cavitação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53<br />

3.6.1 Origem da cavitação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53<br />

3.6.2 Controle da cavitação . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54<br />

3.6.3 Consi<strong>de</strong>ração da cavitação na selecção do hélice . . . . . . . . . . . . . . 55<br />

3.6.4 Ensaios experimentais . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56<br />

3.7 Selecção do hélice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58<br />

3.7.1 Variáveis <strong>de</strong> optimização . . . . . . . . . . . . . . . . . . . . . . . . . . . 58<br />

3.7.2 Tipos <strong>de</strong> problema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60<br />

3.8 Interacção entre casco e hélice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60<br />

3.8.1 Ensaios <strong>de</strong> propulsão . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61<br />

3.8.2 Potência e velocida<strong>de</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62<br />

3.8.3 Extrapolação dos resultados do ensaio <strong>de</strong> propulsão . . . . . . . . . . . 66<br />

4 Instalações Propulsoras 67<br />

4.1 Introdução . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67<br />

4.2 Propulsão diesel-mecânica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69<br />

4.2.1 Accionamento <strong>de</strong> auxiliares . . . . . . . . . . . . . . . . . . . . . . . . . 70<br />

4.2.2 Engrenagens redutoras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71<br />

4.2.3 Configuração ”pai-e-filho” . . . . . . . . . . . . . . . . . . . . . . . . . . 73<br />

4.3 Propulsão diesel-eléctrica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74<br />

4.3.1 Propulsão por motor eléctrico . . . . . . . . . . . . . . . . . . . . . . . . 74<br />

4.3.2 Propulsores azimutais . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77<br />

4.4 Selecção do motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78<br />

4.4.1 Turbinas e motores eléctricos . . . . . . . . . . . . . . . . . . . . . . . . 79<br />

4.4.2 Motores diesel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79<br />

Índice Remissivo 83<br />

A Previsão Baseada nos Ensaios <strong>de</strong> Propulsão 87<br />

B Provas <strong>de</strong> velocida<strong>de</strong> e Potência 121<br />

C Condições das Provas <strong>de</strong> Velocida<strong>de</strong> e Potência 133<br />

D Selecção <strong>de</strong> Motores Propulsores 141<br />

E Derating 175


Lista <strong>de</strong> Figuras<br />

1.1 Plano <strong>de</strong> flutuação, longitudinal e transversal <strong>de</strong> um navio. . . . . . . . . . . . 2<br />

1.2 Plano geométrico <strong>de</strong> um navio. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2<br />

1.3 Principais dimensões dos navios. . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

1.4 Marcação no costado das linhas <strong>de</strong> carga do navio. . . . . . . . . . . . . . . . . 5<br />

1.5 Tanque <strong>de</strong> provas utilizado por W. Frou<strong>de</strong>. . . . . . . . . . . . . . . . . . . . . 7<br />

1.6 Tanque <strong>de</strong> testes actual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

1.7 Bacia para testes com ondulação. . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

1.8 Bacia para testes com águas geladas. . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

1.9 Escoamento num hélice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

1.10 Malha colocada à esquerda e <strong>de</strong>sfasada à direita. . . . . . . . . . . . . . . . . . 9<br />

1.11 Representação esquemática <strong>de</strong> um “PC-cluster”. . . . . . . . . . . . . . . . . . . 10<br />

1.12 Um “PC-cluster” com 24 nós computacionais. . . . . . . . . . . . . . . . . . . . 10<br />

1.13 Decomposição 1D, 2D ou 3D do domínio espacial <strong>de</strong> um problema. . . . . . . . 11<br />

1.14 Troca <strong>de</strong> valores nas fronteiras dos sub-domínios. . . . . . . . . . . . . . . . . . 11<br />

2.1 Decomposição da resistência. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

2.2 Sistema <strong>de</strong> ondas gerado por um ponto <strong>de</strong> pressão em movimento. . . . . . . . 20<br />

2.3 Sistemas <strong>de</strong> ondas da proa e da popa. . . . . . . . . . . . . . . . . . . . . . . . 21<br />

2.4 Interacção entre os dois sistemas <strong>de</strong> ondas. . . . . . . . . . . . . . . . . . . . . . 22<br />

2.5 Curva da resistência <strong>de</strong> onda. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

2.6 Variação do coeficiente da resistência <strong>de</strong> atrito com o número <strong>de</strong> Reynolds e<br />

com a rugosida<strong>de</strong> da superfície. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

2.7 Distribuição <strong>de</strong> pressão num escoamento i<strong>de</strong>al, invíscido. . . . . . . . . . . . . . 26<br />

2.8 Mo<strong>de</strong>lo à escala reduzida para ensaios <strong>de</strong> resistência. . . . . . . . . . . . . . . . 27<br />

2.9 Representação gráfica da <strong>de</strong>pendência <strong>de</strong> c T<br />

com F r4<br />

. . . . . . . . . . . . . . 29<br />

c F 0 c F 0<br />

2.10 Redução <strong>de</strong> velocida<strong>de</strong> (%) em águas pouco profundas. . . . . . . . . . . . . . . 33<br />

3.1 Hélice com tubeira. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36<br />

3.2 Hélices <strong>de</strong> passo fixo e <strong>de</strong> passo controlável. . . . . . . . . . . . . . . . . . . . . 36<br />

3.3 Hélices em contra-rotação. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37<br />

3.4 Hélices supercavitante. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38<br />

3.5 Propulsão por jacto <strong>de</strong> água. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38<br />

3.6 Propulsores azimutais. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39<br />

3.7 Propulsores cicloidais. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39<br />

iii


iv<br />

LISTA DE FIGURAS<br />

3.8 Geometria do hélice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br />

3.9 Distribuição espacial <strong>de</strong> velocida<strong>de</strong> e pressão para a teoria da quantida<strong>de</strong> <strong>de</strong><br />

movimento. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43<br />

3.10 Diagrama <strong>de</strong> águas livres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br />

3.11 Aspecto geométrico das pás da série B <strong>de</strong> Wageningen . . . . . . . . . . . . . . 48<br />

3.12 Diagrama em águas livres <strong>de</strong> um hélice da série sistemática <strong>de</strong> Wageningen. . . 50<br />

3.13 Notação do diagrama com 4 quadrantes. . . . . . . . . . . . . . . . . . . . . . . 51<br />

3.14 Diagrama em águas livres <strong>de</strong> 4 quadrantes para os hélices Wageningen B-4.70. 53<br />

3.15 Efeito da cavitação no valor dos parâmetros relativos a águas livres. . . . . . . 54<br />

3.16 Pressão <strong>de</strong> vapor da água em função da temperatura. . . . . . . . . . . . . . . 55<br />

3.17 Diagrama <strong>de</strong> Burrill. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56<br />

3.18 Instalações <strong>de</strong> ensaio do RINA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57<br />

3.19 Imagem da cavitação num hélice. . . . . . . . . . . . . . . . . . . . . . . . . . . 58<br />

3.20 Mo<strong>de</strong>lo para ensaios <strong>de</strong> propulsão. . . . . . . . . . . . . . . . . . . . . . . . . . 61<br />

3.21 Resultados dos ensaios <strong>de</strong> propulsão. . . . . . . . . . . . . . . . . . . . . . . . . 66<br />

4.1 Variantes <strong>de</strong> instalações propulsoras diesel-mecânicas lentas e <strong>de</strong> média velocida<strong>de</strong>.<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68<br />

4.2 Instalações propulsoras diesel-mecânica (em cima) e diesel-eléctrica (em baixo). 69<br />

4.3 Acoplamento com relação variável <strong>de</strong> velocida<strong>de</strong>s. . . . . . . . . . . . . . . . . . 71<br />

4.4 Conversão da frequência da energia eléctrica. . . . . . . . . . . . . . . . . . . . 72<br />

4.5 Instalação propulsora com quatro motores, engrenagens redutoras e dois hélices. 73<br />

4.6 Instalação com dois motores diesel diferentes, engrenagens redutoras, embraiagens<br />

e geradores acoplados aos veios. . . . . . . . . . . . . . . . . . . . . . . . 74<br />

4.7 Motor eléctrico <strong>de</strong> propulsão. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75<br />

4.8 Instalação diesel-eléctrica. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76<br />

4.9 Representação esquemática <strong>de</strong> uma instalação diesel-eléctrica. . . . . . . . . . . 77<br />

4.10 Propulsores azimutais. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78<br />

4.11 Diagrama <strong>de</strong> carga <strong>de</strong> um motor diesel . . . . . . . . . . . . . . . . . . . . . . . 80


Lista <strong>de</strong> Tabelas<br />

1.1 Valores <strong>de</strong> K na fórmula <strong>de</strong> Alexan<strong>de</strong>r. . . . . . . . . . . . . . . . . . . . . . . 6<br />

2.1 Valores do coeficiente <strong>de</strong> correcção c A em função do comprimento do navio. . . 29<br />

3.1 Séries sistemáticas <strong>de</strong> propulsores. . . . . . . . . . . . . . . . . . . . . . . . . . 48<br />

3.2 Coeficiente para atribuição do diâmetro máximo do hélice pela Eq. (3.34). . . . 59<br />

3.3 Constante para o cálculo do diâmetro equivalente em água livres pela Eq. (3.35). 59<br />

v


vi<br />

LISTA DE TABELAS


Capítulo 1<br />

Introdução<br />

1.1 Geometria do navio<br />

A variação da proporção relativa das dimensões principais <strong>de</strong> um navio tem um importante<br />

efeito nas suas características operacionais. Afecta as suas características hidrodinâmicas, a<br />

sua resistência estrutural e, naturalmente a capacida<strong>de</strong> <strong>de</strong> carga.<br />

Os navios existentes, em particular as unida<strong>de</strong>s <strong>de</strong> construção mais recente, constituem<br />

uma boa “fonte <strong>de</strong> inspiração” para o pré-dimensionamento <strong>de</strong> um navio novo. No que diz<br />

respeito à informação mais <strong>de</strong>talhada, estas bases <strong>de</strong> dados são, regra geral, bem resguardadas<br />

pelos gabinetes <strong>de</strong> estudo e projecto, bem como pelos estaleiros construtores. No entanto,<br />

alguns <strong>de</strong>stes dados estão disponíveis nos registos publicados pelas socieda<strong>de</strong>s classificadoras<br />

e por alguns gabinetes <strong>de</strong> estudo.<br />

Depois <strong>de</strong> um processo iterativo <strong>de</strong> dimensionamento do navio, durante o qual são tidas<br />

em consi<strong>de</strong>ração as variáveis <strong>de</strong> optimização seleccionadas, a solução final da forma do navio<br />

constitui o plano geométrico do navio. Na prática, este plano geométrico é gerado por uma<br />

das seguintes vias:<br />

- <strong>de</strong>formação <strong>de</strong> um navio <strong>de</strong> referência;<br />

- mo<strong>de</strong>lo matemático para <strong>de</strong>finição <strong>de</strong> forma em função <strong>de</strong> parâmetros do navio;<br />

- utilização das séries sistemáticas.<br />

1.1.1 Principais dimensões dos navios<br />

O casco <strong>de</strong> um navio é uma forma tridimensional, na maior parte dos casos simétrica relativamente<br />

a um plano vertical longitudinal do navio. O contorno do casco fica <strong>de</strong>finido pela<br />

sua intersecção com três planos ortogonais (Fig. 1.1):<br />

- o plano <strong>de</strong> flutuação <strong>de</strong> projecto;<br />

- o plano longitudinal;<br />

- o plano transversal.<br />

1


2<br />

CAPÍTULO 1. INTRODUÇÃO<br />

Figura 1.1: Plano <strong>de</strong> flutuação, longitudinal e transversal <strong>de</strong> um navio.<br />

O plano longitudinal, único plano <strong>de</strong> simetria do navio, é o plano <strong>de</strong> referência. A forma<br />

do navio cortada por este plano é o perfil. O plano <strong>de</strong> flutuação <strong>de</strong> projecto é um plano<br />

perpendicular ao plano longitudinal, escolhido como plano <strong>de</strong> referência. Os planos paralelos<br />

ao plano <strong>de</strong> flutuação <strong>de</strong> projecto são conhecidos como planos <strong>de</strong> água, ou <strong>de</strong> flutuação, e as<br />

linhas <strong>de</strong> intersecção como linhas <strong>de</strong> água. Os planos <strong>de</strong> flutuação são simétricos relativamente<br />

ao plano longitudinal. Os planos perpendiculares ao plano longitudinal e ao plano <strong>de</strong> flutuação<br />

<strong>de</strong> projecto são os planos transversais. As secções transversais exibem simetria relativamente<br />

ao plano longitudinal.<br />

A secção do navio equidistante das perpendiculares e normal aos planos <strong>de</strong> flutuação <strong>de</strong><br />

verão e longitudinal é <strong>de</strong>signada por secção <strong>de</strong> meio-navio, ou secção mestra. Na Fig. 1.2<br />

está representado um plano <strong>de</strong> linhas do navio, que inclui o plano do casco, no qual, por<br />

convenção, sempre que o navio é simétrico, se exibem meta<strong>de</strong>s das secções. Do lado direito<br />

representam-se meta<strong>de</strong>s das secções avante <strong>de</strong> meio-navio e do lado esquerdo meta<strong>de</strong>s das<br />

secções a ré. O plano <strong>de</strong> linhas do navio inclui ainda o plano da meta<strong>de</strong> da boca, no qual são<br />

representados os planos <strong>de</strong> flutuação.<br />

Figura 1.2: Plano geométrico <strong>de</strong> um navio.


1.1. GEOMETRIA DO NAVIO 3<br />

Na Fig. 1.3 estão representadas as dimensões mais frequentemente utilizadas para <strong>de</strong>finir<br />

o navio. Quanto ao comprimento do navio, são três as <strong>de</strong>finições a consi<strong>de</strong>rar:<br />

- o comprimento entre perpendiculares, L pp , distância medida ao longo do plano <strong>de</strong> flutuação<br />

<strong>de</strong> verão entre a perpendicular da popa e a perpendicular da proa;<br />

- o comprimento na linha <strong>de</strong> água, L wl , distância na linha <strong>de</strong> flutuação que se verifique, se<br />

nada for referido <strong>de</strong>verá enten<strong>de</strong>r-se a linha <strong>de</strong> flutuação <strong>de</strong> verão, entre as intersecções<br />

da proa e popa com a mesma linha <strong>de</strong> flutuação;<br />

- o comprimento fora a fora, L oa , distância entre os pontos extremos a vante e a ré do<br />

navio, medida numa direcção paralela à linha <strong>de</strong> flutuação <strong>de</strong> verão.<br />

Designa-se por boca, a máxima distância entre as faces interiores das chapas <strong>de</strong> costado<br />

nos dois bordos do navio, na secção mestra, se outra secção não for indicada. O pontal é a<br />

distância na vertical, medida a meio navio, entre a face inferior do convés e a face superior<br />

da chapa da quilha. O calado <strong>de</strong> um navio em qualquer ponto do seu comprimento é a<br />

distância na vertical entre a quilha e a linha <strong>de</strong> água. O calado varia não só com o estado <strong>de</strong><br />

carregamento do navio mas também com a <strong>de</strong>nsida<strong>de</strong> da água em que este se encontra.<br />

A altura <strong>de</strong>s<strong>de</strong> a linha <strong>de</strong> flutuação e o convés é <strong>de</strong>signada por bordo livre. Po<strong>de</strong> ser<br />

calculado pela diferença entre o pontal e o calado.<br />

Um aspecto importante relativamente à segurança <strong>de</strong> um navio mercante pren<strong>de</strong>-se com<br />

a alocação regulamentar <strong>de</strong> um valor mínimo do bordo livre, como forma <strong>de</strong> garantir uma<br />

reserva <strong>de</strong> estabilida<strong>de</strong> suficiente para a segurança da navegação. Este valor mínimo do bordo<br />

livre <strong>de</strong>pen<strong>de</strong> do local <strong>de</strong> navegação e da época do ano. No costado do navio estão marcadas<br />

as linhas <strong>de</strong> carga por forma a permitir verificar facilmente se as condições <strong>de</strong> segurança são<br />

verificadas. O valor <strong>de</strong> referência é a linha <strong>de</strong> Verão que é marcada no centro <strong>de</strong> um círculo,<br />

Fig. 1.4. Ao lado <strong>de</strong>ste círculo, são marcadas na horizontal linhas adicionais que correspon<strong>de</strong>m<br />

ao:<br />

- bordo livre <strong>de</strong> Inverno, superior em 1/48 avos do bordo livre <strong>de</strong> Verão;<br />

- bordo livre <strong>de</strong> Inverno no Atlântico Norte, ainda superior em 50 mm;<br />

- bordo livre tropical, inferior em 1/48 avos do bordo livre <strong>de</strong> Verão;<br />

- bordo livre em água doce, inferior em ∆ / (40 t) cm, sendo ∆ o <strong>de</strong>slocamento em ton e<br />

t as ton por cm <strong>de</strong> imersão;<br />

- bordo livre tropical em água doce é inferior em 1/48 avos do bordo livre <strong>de</strong> Verão ao<br />

bordo livre em água doce.<br />

1.1.2 Coeficientes <strong>de</strong> forma do navio<br />

O <strong>de</strong>slocamento do navio é o peso do volume <strong>de</strong> água que o navio <strong>de</strong>sloca quando a flutuar<br />

em águas tranquilas,<br />

∆ = ρg∇ (1.1)<br />

em que ρ é a massa volúmica da água em que o navio se encontra a flutuar, g é a aceleração<br />

da gravida<strong>de</strong> e ∇ o volume <strong>de</strong>slocado.<br />

A partir das principais dimensões da navio, <strong>de</strong>finem-se os seguintes coeficientes <strong>de</strong> forma:


4<br />

CAPÍTULO 1. INTRODUÇÃO<br />

Figura 1.3: Principais dimensões dos navios.<br />

- o coeficiente <strong>de</strong> finura total (“block coeficient”):<br />

C b =<br />

∇<br />

L pp BT<br />

(1.2)<br />

on<strong>de</strong>:<br />

- ∇ é o volume do <strong>de</strong>slocamento;<br />

- L pp o comprimento entre perpendiculares;<br />

- B a boca (máxima abaixo da linha <strong>de</strong> água);<br />

- e T é o calado médio do navio.<br />

- o coeficiente <strong>de</strong> finura da flutuação:<br />

em que:<br />

C wp =<br />

A wp<br />

L wp B<br />

(1.3)<br />

- A wp é a área do plano <strong>de</strong> flutuação;


1.1. GEOMETRIA DO NAVIO 5<br />

Figura 1.4: Marcação no costado das linhas <strong>de</strong> carga do navio.<br />

- L wp o comprimento na linha <strong>de</strong> flutuação;<br />

- e B a boca (máxima na linha <strong>de</strong> flutuação).<br />

- o coeficiente <strong>de</strong> finura da secção mestra:<br />

C m = A m<br />

BT<br />

representando por:<br />

(1.4)<br />

- A m a área imersa na secção mestra;<br />

- B a boca na secção mestra;<br />

- e T o calado a meio navio.<br />

- o coeficiente prismático longitudinal:<br />

C p =<br />

em que novamente:<br />

∇<br />

A m L pp<br />

(1.5)<br />

- ∇ é o volume da querena;<br />

- A m a área imersa a meio navio;<br />

- e L pp o comprimento entre perpendiculares.<br />

Como exemplo da utilização dos coeficientes <strong>de</strong> forma no estabelecimento <strong>de</strong> relações<br />

empíricas para início do projecto <strong>de</strong> um navio, po<strong>de</strong>-se indicar a fórmula <strong>de</strong> Alexan<strong>de</strong>r,<br />

C b = K − 0.5 × V √<br />

L<br />

(1.6)<br />

em que K apresenta os valores da Tab. 1.1 <strong>de</strong> acordo com o tipo <strong>de</strong> navio. A fórmula <strong>de</strong><br />

Alexan<strong>de</strong>r estabelece uma relação empírica entre o coeficiente <strong>de</strong> finura total do navio, a sua<br />

velocida<strong>de</strong> e o comprimento. Pela especificida<strong>de</strong> <strong>de</strong> cada caso, o coeficiente <strong>de</strong> finura total<br />

C b do navio po<strong>de</strong>rá <strong>de</strong>pois <strong>de</strong>sviar-se do valor inicialmente previsto durante o processo <strong>de</strong><br />

optimização das características do navio.


6<br />

CAPÍTULO 1. INTRODUÇÃO<br />

Tipo <strong>de</strong> Navio K<br />

Petroleiro 1.13<br />

Graneleiro 1.11<br />

Carga geral 1.10<br />

Navio <strong>de</strong> linha 1.05<br />

Ferry 1.08<br />

Rebocador 1.18<br />

Tabela 1.1: Valores <strong>de</strong> K na fórmula <strong>de</strong> Alexan<strong>de</strong>r.<br />

1.2 Comportamento hidrodinâmico do navio<br />

A análise do comportamento hidrodinâmico do navio po<strong>de</strong> ser <strong>de</strong>composta em diversas áreas,<br />

<strong>de</strong> entre as quais se po<strong>de</strong> salientar:<br />

- a resistência;<br />

- a propulsão;<br />

- o comportamento do navio no mar;<br />

- a capacida<strong>de</strong> <strong>de</strong> manobra.<br />

O cálculo do escoamento e o projecto <strong>de</strong> hélices po<strong>de</strong> ser consi<strong>de</strong>rado como um sub-tópico do<br />

tema resistência e propulsão.<br />

As metodologias para o cálculo ou para a previsão dos parâmetros relevantes do comportamento<br />

do navio po<strong>de</strong>m ser classificadas como:<br />

- empíricas e estatísticas;<br />

- experimentais em mo<strong>de</strong>los à escala reduzida, ou à escala real;<br />

- numéricas, através <strong>de</strong> soluções analíticas ou com recurso à mecânica <strong>de</strong> fluidos computacional.<br />

Os princípios fundamentais <strong>de</strong>stas metodologias são sumariamente <strong>de</strong>scritos nas secções<br />

seguintes.<br />

1.3 Métodos empíricos<br />

Os métodos empíricos baseiam-se num mo<strong>de</strong>lo físico relativamente simples e na análise por<br />

regressão para a <strong>de</strong>terminação dos coeficientes relevantes, a partir <strong>de</strong> um só navio ou <strong>de</strong> uma<br />

série <strong>de</strong> navios. Os resultados assim obtidos são <strong>de</strong>pois expressos sob a forma <strong>de</strong> constantes,<br />

fórmulas, tabelas, gráficos, etc.<br />

Numerosos estudos realizados entre 1940 e 1960 permitiram criar séries <strong>de</strong> “boas” formas<br />

<strong>de</strong> carenas. O efeito da variação dos principais parâmetros do casco, como por exemplo o<br />

coeficiente <strong>de</strong> bloco, foi <strong>de</strong>terminado por alteração sistemática daqueles parâmetros.


1.4.<br />

MÉTODOS EXPERIMENTAIS 7<br />

Figura 1.5: Tanque <strong>de</strong> provas utilizado<br />

por W. Frou<strong>de</strong>.<br />

Figura 1.6: Tanque <strong>de</strong> testes actual.<br />

1.4 Métodos experimentais<br />

Esta abordagem baseia-se no teste <strong>de</strong> mo<strong>de</strong>los em escala reduzida para extrair informação que<br />

possa ser extrapolada para a escala do navio. Apesar dos gran<strong>de</strong>s esforços <strong>de</strong> investigação e<br />

normalização, a correlação mo<strong>de</strong>lo-navio está sujeita a algum grau <strong>de</strong> empirismo. Cada uma<br />

das principais instalações <strong>de</strong> teste (túneis, bacias, etc.) ten<strong>de</strong> a adoptar os métodos <strong>de</strong> ensaio<br />

e tratamento da informação que melhor se adaptam à experiência já incorporada nas suas<br />

bases <strong>de</strong> dados. Esta não uniformida<strong>de</strong> <strong>de</strong> processos dificulta, se não mesmo em muitos casos<br />

impossibilita, o aproveitamento estatístico dos dados <strong>de</strong> uma forma agregada.<br />

Embora a metodologia base para a avaliação da resistência <strong>de</strong> um mo<strong>de</strong>lo num tanque <strong>de</strong><br />

testes se mantenha praticamente inalterada <strong>de</strong>s<strong>de</strong> os tempos <strong>de</strong> Frou<strong>de</strong> (1874), vários aspectos<br />

técnicos sofreram gran<strong>de</strong> evolução. De entre estes, po<strong>de</strong>m-se salientar:<br />

- as técnicas experimentais não-intrusivas, como a Laser-Doppler Velocimetry, que permitem<br />

a medição do campo <strong>de</strong> velocida<strong>de</strong>s na esteira do navio para melhorar o projecto<br />

do hélice;<br />

- a análise do padrão da formação ondosa gerada pelo mo<strong>de</strong>lo para estimar a resistência<br />

<strong>de</strong> onda;<br />

- nos testes <strong>de</strong> mo<strong>de</strong>los com propulsão autónoma, é possível agora medir gran<strong>de</strong>zas relacionadas<br />

com o propulsor como o impulso, binário, rpm, etc.<br />

Instalações com características bem diferentes surgiram entretanto para possibilitar outro<br />

tipo <strong>de</strong> estudos. Trata-se <strong>de</strong> bacias equipadas com geradores <strong>de</strong> ondas, para ensaios <strong>de</strong> mo<strong>de</strong>los<br />

com o objectivo <strong>de</strong> estudar as questões <strong>de</strong> manobrabilida<strong>de</strong> e <strong>de</strong> comportamento do navio no<br />

mar, Fig. 1.7.<br />

Outro tipo <strong>de</strong> bacias para ensaios <strong>de</strong> mo<strong>de</strong>los <strong>de</strong> navios, Fig. 1.8, <strong>de</strong>dica-se preferencialmente<br />

a estudos e ensaios relacionados com a presença <strong>de</strong> gelo no mar.<br />

Por último, um outro tipo <strong>de</strong> instalação <strong>de</strong> teste nesta área <strong>de</strong>dica-se ao estudo do <strong>de</strong>sempenho<br />

<strong>de</strong> hélices propulsores. Neste tipo <strong>de</strong> instalação, que iremos abordar com um pouco<br />

mais <strong>de</strong> <strong>de</strong>talhe no Cap. 3, para além da <strong>de</strong>terminação <strong>de</strong> várias características <strong>de</strong> <strong>de</strong>sempenho<br />

do hélice, po<strong>de</strong>-se vizualizar o padrão <strong>de</strong> cavitação no hélice.


8<br />

CAPÍTULO 1. INTRODUÇÃO<br />

Figura 1.7: Bacia para testes<br />

com ondulação.<br />

Figura 1.8: Bacia para testes com<br />

águas geladas.<br />

Figura 1.9: Escoamento num hélice.<br />

1.5 Simulações numéricas<br />

As simulações <strong>de</strong> escoamento obtidas pela mecânica <strong>de</strong> fluidos computacional são ainda consi<strong>de</strong>radas<br />

pela indústria como pouco precisas para a previsão da resistência <strong>de</strong> um casco ou da<br />

força propulsiva <strong>de</strong> um hélice. No entanto, o contributo da mecânica <strong>de</strong> fluidos computacional<br />

está a tornar-se cada vez mais importante em <strong>de</strong>terminados passos do processo <strong>de</strong> projecto.<br />

Casos típicos <strong>de</strong> aplicação são, por exemplo:<br />

- a simulação <strong>de</strong> escoamento invíscido, com superfície livre, para análise do comportamento<br />

da proa, interacção com o bolbo, formação ondosa, etc.<br />

- as simulações <strong>de</strong> escoamento viscoso na zona da popa, <strong>de</strong>sprezando a formação ondosa<br />

para avaliação do comportamento <strong>de</strong> apêndice ou análise do escoamento <strong>de</strong> aproximação<br />

ao hélice.<br />

No caso mais geral, o escoamento <strong>de</strong> fluidos incompressíveis em regime não-estacionário é<br />

mo<strong>de</strong>lado pelas seguintes equações:


1.5.<br />

SIMULAÇÕES NUMÉRICAS 9<br />

- Equação da continuida<strong>de</strong>,<br />

∂u i<br />

∂x i<br />

= 0 (1.7)<br />

- Equação <strong>de</strong> conservação da quantida<strong>de</strong> <strong>de</strong> movimento,<br />

∂ρu i<br />

∂t<br />

+ ∂<br />

∂x j<br />

(ρu i u j ) = − ∂p<br />

∂x i<br />

+ µ ∂2 u i<br />

∂x j ∂x j<br />

+ ρb i (1.8)<br />

- Equação <strong>de</strong> conservação da energia (forma simplificada),<br />

∂θ<br />

∂t + ∂ (θu j)<br />

∂x j<br />

= κ ∂ 2 θ<br />

(1.9)<br />

ρc ∂x j ∂x j<br />

em que x i é a coor<strong>de</strong>nada na direcção i, u i é a componente da velocida<strong>de</strong> na direcção i, ρ<br />

e µ são a massa específica e a viscosida<strong>de</strong> do fluido, respectivamente, p é a pressão, κ é a<br />

condutivida<strong>de</strong> térmica, c é o calor específico, θ é a temperatura, b é a componente na direcção<br />

i das forças exteriores por unida<strong>de</strong> <strong>de</strong> massa e t é o tempo.<br />

As equações são discretizadas no espaço <strong>de</strong> acordo com uma malha colocada ou <strong>de</strong>sfasada.<br />

Na Fig. 1.10 está indicada a localização das variáveis, no caso bi-dimensional, para cada<br />

uma daqueles tipos <strong>de</strong> malhas. Cada um daqueles tipos <strong>de</strong> malha <strong>de</strong> discretização apresenta<br />

Figura 1.10: Malha colocada à esquerda e <strong>de</strong>sfasada à direita.<br />

algumas vantagens e <strong>de</strong>svantagens. As mais importantes estão relacionadas com:<br />

- a complexida<strong>de</strong> da programação;<br />

- o tratamento das fronteiras do problema;<br />

- a solução para o acoplamento pressão-velocida<strong>de</strong> (formato xadrez na solução da pressão).<br />

Selecionado o tipo <strong>de</strong> malha a utilizar, outras opções há a tomar para <strong>de</strong>senvolver o método<br />

<strong>de</strong> solução. Algumas das mais comuns são:


10<br />

CAPÍTULO 1. INTRODUÇÃO<br />

Figura 1.11: Representação esquemática<br />

<strong>de</strong> um “PC-cluster”.<br />

Figura 1.12: Um “PC-cluster”<br />

com 24 nós computacionais.<br />

- SIMPLE / método <strong>de</strong> projecção;<br />

- volume finito / diferenças finitas;<br />

- aproximação dos termos convectivos/difusivos das equações;<br />

- “upwind”;<br />

- diferenças centrais <strong>de</strong> or<strong>de</strong>m 2;<br />

- diferenças centrais <strong>de</strong> or<strong>de</strong>m 4;<br />

- o método <strong>de</strong> integração para a evolução temporal;<br />

- Euler;<br />

- Crank-Nicolson;<br />

- Adams-Bashforth;<br />

- Runge-Kutta.<br />

Tratando-se <strong>de</strong> cálculos complexos, o tempo <strong>de</strong> cálculo po<strong>de</strong>rá ser reduzido, sem acréscimo<br />

significativo <strong>de</strong> custos, com recurso <strong>de</strong> um “PC-cluster”, Fig. 1.11.<br />

Este tipo <strong>de</strong> estruturas computacionais caracterizam-se por dispor <strong>de</strong>:<br />

- 20 a 1000 CPU;<br />

- 2 a 8 GB RAM por nó;<br />

- comunicação em re<strong>de</strong> com velocida<strong>de</strong> superior a 1 Gbps;<br />

- elevada capacida<strong>de</strong> para armazenamento <strong>de</strong> dados;<br />

- sistema operativo estável.


1.5.<br />

SIMULAÇÕES NUMÉRICAS 11<br />

Para a solução <strong>de</strong> um problema <strong>de</strong> mecânica <strong>de</strong> fluidos num “PC-cluster” é necessário proce<strong>de</strong>r<br />

à <strong>de</strong>composição do domínio espacial do problema (Fig. 1.13) e recorrer a rotinas <strong>de</strong> uma<br />

das várias bibliotecas disponíveis para efectuar a troca <strong>de</strong> dados entre os nós computacionais,<br />

como por exemplo a biblioteca Message Passing Interface, necessária para a continuação do<br />

cálculo. Na Fig. 1.14 estão representados esquematicamente aquelas comunicações <strong>de</strong> dados<br />

relativos às fronteiras dos sub-domínios <strong>de</strong> cálculo.<br />

Figura 1.13: Decomposição 1D, 2D ou 3D do domínio espacial <strong>de</strong> um problema.<br />

Figura 1.14: Troca <strong>de</strong> valores nas fronteiras dos sub-domínios.


12<br />

CAPÍTULO 1. INTRODUÇÃO


Capítulo 2<br />

Resistência<br />

2.1 Análise dimensional<br />

A resistência do navio a uma velocida<strong>de</strong> constante é a força necessária para rebocar o navio<br />

a essa velocida<strong>de</strong> em águas tranquilas. Se a querena não tiver apêndices, a resistência diz-se<br />

da querena simples. Designaremos por potência efectiva, ou potência <strong>de</strong> reboque, a potência<br />

necessária para vencer a resistência do navio a uma dada velocida<strong>de</strong>,<br />

P e = V R T (2.1)<br />

em que V é a velocida<strong>de</strong> do navio e R T a sua resistência total.<br />

A resistência do navio R T = f (V, L, ρ, ν, g) <strong>de</strong>pen<strong>de</strong>:<br />

- da velocida<strong>de</strong> do navio V ;<br />

- das dimensões do navio, representadas aqui por uma dimensão linear L;<br />

- da massa específica do fluido ρ;<br />

- da viscosida<strong>de</strong> cinemática do fluido ν;<br />

- da aceleração da gravida<strong>de</strong> g.<br />

Assim, a resistência do navio <strong>de</strong>verá ser uma função da forma<br />

R T = V a L b ρ c ν d g e (2.2)<br />

Ao estudar a resistência <strong>de</strong> um navio é importante calcular não o seu valor absoluto, mas<br />

também a sua relação com outro valor, dimensionalmente semelhante, tomado como referência.<br />

Vamos dar o nome <strong>de</strong> coeficientes específicos a estas relações. No caso da resistência<br />

total do navio, o valor do coeficiente é obtido por<br />

c T =<br />

R T<br />

(2.3)<br />

1<br />

2 ρSV 2<br />

em que ρ é a massa específica do fluido, S a superfície molhada do navio e V a sua velocida<strong>de</strong>.<br />

13


14<br />

CAPÍTULO 2. RESISTÊNCIA<br />

Resolvendo o sistema <strong>de</strong> equações gerado pela Eq. (2.2) em or<strong>de</strong>m a a, b e c, e consi<strong>de</strong>rando<br />

a <strong>de</strong>finição do coeficiente em 2.3 dada pela Eq. (2.3), temos<br />

R T = ρV 2 L 2 f<br />

( V L<br />

ν , gL )<br />

V 2<br />

(2.4)<br />

Ou seja, a análise dimensional mostra que o coeficiente <strong>de</strong> resistência total do navio,<br />

( V L<br />

c t = f<br />

ν , gL )<br />

V 2 (2.5)<br />

<strong>de</strong>pen<strong>de</strong> dos grupos adimensionais <strong>de</strong>signados por número <strong>de</strong> Frou<strong>de</strong>,<br />

F r =<br />

V √ gL<br />

(2.6)<br />

e por número <strong>de</strong> Reynolds,<br />

Re = V L<br />

ν<br />

(2.7)<br />

calculados para o navio.<br />

2.2 Leis da semelhança<br />

No caso dos ensaios <strong>de</strong> mo<strong>de</strong>los para avaliação da resistência <strong>de</strong> uma querena, po<strong>de</strong>mos<br />

consi<strong>de</strong>rar três formas <strong>de</strong> semelhança:<br />

- semelhança geométrica;<br />

- semelhança cinemática;<br />

- semelhança dinâmica.<br />

2.2.1 Semelhança geométrica<br />

Verificar-se semelhança geométrica significa a existência <strong>de</strong> uma razão constante entre qualquer<br />

dimensão linear na escala real do protótipo (comprimento, boca, calado do navio, etc.)<br />

L s e o dimensão linear na escala do mo<strong>de</strong>lo L m . Aquela razão é a escala geométrica do mo<strong>de</strong>lo<br />

λ,<br />

L s = λ L m (2.8)<br />

Consequentemente, temos para as áreas,<br />

A s = λ 2 A m (2.9)<br />

e para os volumes,<br />

∇ s = λ 3 ∇ m (2.10)


2.2. LEIS DA SEMELHANÇA 15<br />

2.2.2 Semelhança cinemática<br />

A semelhança cinemática significa a existência <strong>de</strong> uma razão constante entre o “tempo” na<br />

escala real, t s e o “tempo” na escala do mo<strong>de</strong>lo t m , a escala cinemática τ:<br />

t s = τ · t m (2.11)<br />

A verificação simultânea das condições <strong>de</strong> semelhança geométrica e cinemática resulta nos<br />

seguintes factores <strong>de</strong> escala:<br />

- para a velocida<strong>de</strong>:<br />

V s = λ τ V m (2.12)<br />

- e para a aceleração:<br />

a s = λ τ 2 a m (2.13)<br />

2.2.3 Semelhança dinâmica<br />

Obter semelhança dinâmica significa que a razão entre cada uma das forças actuantes no navio<br />

à escala real e as correspon<strong>de</strong>ntes forças actuantes no mo<strong>de</strong>lo é constante, escala dinâmica do<br />

mo<strong>de</strong>lo κ,<br />

F s = κ · F m (2.14)<br />

As forças presentes, actuantes sobre o navio e sobre o mo<strong>de</strong>lo, po<strong>de</strong>m ser classificadas <strong>de</strong><br />

acordo com a sua natureza como:<br />

- as forças <strong>de</strong> inércia;<br />

- as forças gravíticas;<br />

- as forças <strong>de</strong> atrito.<br />

Forças <strong>de</strong> inércia<br />

As forças <strong>de</strong> inércia regem-se pela lei <strong>de</strong> Newton, expressa por<br />

F = m · a (2.15)<br />

em que F é a força <strong>de</strong> inércia, m a massa do corpo, e a a aceleração a que ele é sujeito.<br />

Consi<strong>de</strong>rando o volume <strong>de</strong>slocado pelo navio ∇, a massa do navio é<br />

m = ρ · ∇ (2.16)<br />

sendo ρ a massa volúmica da água.<br />

Então, a razão entre as forças <strong>de</strong> inércia é uma equação que incorpora os três factores <strong>de</strong><br />

escala, lei da Semelhança <strong>de</strong> Newton, é dada por<br />

κ = F s<br />

F m<br />

=<br />

que po<strong>de</strong> ser re-escrita como<br />

ρ s · ∇ s · a s<br />

ρ m · ∇ m · a m<br />

= ρ s<br />

ρ m<br />

· λ4<br />

τ 2 (2.17)<br />

κ = F s<br />

F m<br />

= ρ s<br />

ρ m<br />

· λ 2 ·<br />

( λ<br />

τ<br />

) 2<br />

= ρ s<br />

ρ m<br />

· As<br />

A m<br />

·<br />

(<br />

Vs<br />

V m<br />

) 2<br />

(2.18)


16<br />

CAPÍTULO 2. RESISTÊNCIA<br />

Forças <strong>de</strong> origem hidrodinâmica<br />

As forças <strong>de</strong> origem hidrodinâmica são normalmente <strong>de</strong>scritas recorrendo a um coeficiente<br />

adimensional c na seguinte forma, semelhante à Eq. (2.3),<br />

F = c · 1<br />

2 ρ · V 2 · A (2.19)<br />

em que V é uma velocida<strong>de</strong> <strong>de</strong> referência, por exemplo a velocida<strong>de</strong> do navio e A uma área <strong>de</strong><br />

referência como, por exemplo, a área das obras vivas com mar calmo. Aplicando a Eq. (2.19)<br />

ao navio e ao mo<strong>de</strong>lo e combinando as duas equações, obtem-se<br />

F s<br />

= c s · ρ s · Vs 2 · A s<br />

F m c m · ρ m · Vm 2 = c ( )<br />

s ρ 2<br />

s<br />

· As Vs<br />

·<br />

(2.20)<br />

· A m c m ρ m A m V m<br />

Daqui resulta que igualando o valor dos coeficientes no navio e no mo<strong>de</strong>lo, c s = c m , fica<br />

garantida a verificação da lei da semelhança <strong>de</strong> Newton.<br />

Forças Gravíticas<br />

As forças gravíticas po<strong>de</strong>m ser <strong>de</strong>scritas <strong>de</strong> forma semelhante às forças <strong>de</strong> inércia, para o<br />

navio<br />

G s = ρ s · g · ∇ s (2.21)<br />

e para o mo<strong>de</strong>lo<br />

G s = ρ s · g · ∇ s G m = ρ m · g · ∇ m (2.22)<br />

daqui resultando uma nova escala,<br />

κ g = G s<br />

G m<br />

= ρ s<br />

ρ m<br />

· ∇s<br />

∇ m<br />

= ρ s<br />

ρ m<br />

· λ 3 (2.23)<br />

Para que se possa verificar a semelhança dinâmica, os factores <strong>de</strong> escala <strong>de</strong>vem apresentar<br />

o mesmo valor, ou seja, κ = κ g . Se<br />

e<br />

κ = ρ s<br />

· λ4<br />

ρ m τ 2<br />

κ g = ρ s<br />

ρ m<br />

· λ 3<br />

então, para que κ = κ g é necessário verificar-se<br />

τ = √ λ (2.24)<br />

Esta nova relação permite eliminar a escala temporal em todas as relações apresentadas,<br />

ficando a proporcionalida<strong>de</strong> apenas <strong>de</strong>pen<strong>de</strong>nte <strong>de</strong> λ como, por exemplo, na Eq. (2.12), fazendo<br />

V s<br />

V m<br />

= √ λ (2.25)


2.2. LEIS DA SEMELHANÇA 17<br />

Número <strong>de</strong> Frou<strong>de</strong><br />

A Eq. (2.25) po<strong>de</strong> ainda assumir a forma <strong>de</strong> uma relação entre a dimensão linear e a<br />

velocida<strong>de</strong> do mo<strong>de</strong>lo e do navio,<br />

V s<br />

√<br />

Ls<br />

=<br />

V m<br />

√<br />

Lm<br />

(2.26)<br />

Adimensionalisando a razão entre a velocida<strong>de</strong> V e a raiz quadrada do comprimento L<br />

com a aceleração da gravida<strong>de</strong>, g = 9.81 m/s 2 , obtemos o número <strong>de</strong> Frou<strong>de</strong><br />

F r =<br />

V √ g · L<br />

(2.27)<br />

Na ausência <strong>de</strong> forças viscosas, igual número <strong>de</strong> Frou<strong>de</strong> assegura semelhança dinâmica.<br />

Para igual número <strong>de</strong> Frou<strong>de</strong>, as ondulações no mo<strong>de</strong>lo e à escala real, <strong>de</strong>s<strong>de</strong> que <strong>de</strong> pequena<br />

amplitu<strong>de</strong>, po<strong>de</strong>m consi<strong>de</strong>rar-se geometricamente semelhantes.<br />

A lei <strong>de</strong> Frou<strong>de</strong> é verificada em todos os ensaios <strong>de</strong> mo<strong>de</strong>los <strong>de</strong> navios, ensaios <strong>de</strong> resistência,<br />

propulsão, comportamento no mar e manobrabilida<strong>de</strong>. A aplicação da lei <strong>de</strong> Frou<strong>de</strong><br />

impõe os seguintes factores <strong>de</strong> escala para a velocida<strong>de</strong>,<br />

força,<br />

e potência,<br />

V s<br />

V m<br />

= √ λ (2.28)<br />

F s<br />

F m<br />

= ρ s<br />

ρ m<br />

· λ 3 (2.29)<br />

P s<br />

P m<br />

= F s · V s<br />

F m · V m<br />

= ρ s<br />

ρ m<br />

· λ 3.5 (2.30)<br />

Forças <strong>de</strong> atrito<br />

As forças viscosas R, com origem no atrito entre camadas <strong>de</strong> fluido, são mo<strong>de</strong>ladas por<br />

R = µ · ∂u<br />

∂n · A (2.31)<br />

em que µ é a viscosida<strong>de</strong> dinâmica do fluido, A a área sujeita ao atrito e ∂u o gradiente <strong>de</strong><br />

∂n<br />

velocida<strong>de</strong>, avaliado na direcção normal ao escoamento.<br />

A razão das forças <strong>de</strong> atrito no navio e no mo<strong>de</strong>lo é dada por<br />

κ f = R s<br />

R m<br />

=<br />

µ s · ∂u s<br />

∂n s<br />

· A s<br />

µ m · ∂u = µ s λ 2<br />

m µ<br />

· A m τ<br />

m<br />

∂n m<br />

(2.32)<br />

Na presença das forças <strong>de</strong> atrito, para verificar a condição <strong>de</strong> semelhança dinâmica, será<br />

necessário que κ f = κ, ou seja:<br />

µ s<br />

µ m<br />

λ 2<br />

τ = ρ s<br />

ρ m<br />

λ 4<br />

τ 2 (2.33)


18<br />

CAPÍTULO 2. RESISTÊNCIA<br />

Se introduzirmos a viscosida<strong>de</strong> cinemática, como ν = µ/ρ, obtém-se:<br />

ou seja,<br />

ν s<br />

ν m<br />

= λ2<br />

τ = V s · L s<br />

V m · L m<br />

V s · L s<br />

ν s<br />

= V m · L m<br />

ν m<br />

(2.34)<br />

Número <strong>de</strong> Reynolds<br />

Então, <strong>de</strong> acordo com a Eq. (2.34), se apenas estiverem presentes forças <strong>de</strong> inércia e <strong>de</strong><br />

atrito, a igualda<strong>de</strong> do número <strong>de</strong> Reynolds,<br />

Re = V · L<br />

ν<br />

(2.35)<br />

assegura semelhança dinâmica entre o mo<strong>de</strong>lo e o navio.<br />

Para o cálculo do número <strong>de</strong> Reynolds, a viscosida<strong>de</strong> cinemática da água do mar (m 2 /s)<br />

po<strong>de</strong> ser estimada, em função da temperatura θ ( ◦ C) e da salinida<strong>de</strong> s (%), por<br />

ν = (0.014 · s + (0.000645 · θ − 0.0503) · θ + 1.75) · 10 −6 (2.36)<br />

Semelhança dinâmica<br />

O número <strong>de</strong> Frou<strong>de</strong> e o número <strong>de</strong> Reynolds estão relacionados por,<br />

Re<br />

F r = V · L √ √<br />

gL gL 3<br />

=<br />

ν V ν<br />

(2.37)<br />

A semelhança <strong>de</strong> Frou<strong>de</strong> é facilmente obtida para testes em mo<strong>de</strong>los porque para mo<strong>de</strong>los<br />

mais pequenos a velocida<strong>de</strong> <strong>de</strong> teste diminui. A semelhança <strong>de</strong> Reynolds é mais difícil <strong>de</strong><br />

obter pois mo<strong>de</strong>los mais pequenos exigem superior velocida<strong>de</strong> <strong>de</strong> teste para igual viscosida<strong>de</strong><br />

cinemática.<br />

os navios <strong>de</strong> superfície estão sujeitos a forças gravíticas e <strong>de</strong> atrito. Assim, nos testes <strong>de</strong><br />

mo<strong>de</strong>los à escala reduzida ambas as leis, <strong>de</strong> Frou<strong>de</strong> e <strong>de</strong> Reynolds, <strong>de</strong>veriam ser satisfeitas;<br />

Re s<br />

Re m<br />

= ν m<br />

ν s<br />

·<br />

√<br />

L 3 s<br />

L 3 m<br />

= ν m<br />

ν s<br />

· λ 1.5 = 1 (2.38)<br />

No entanto, não existem, ou pelo menos não são economicamente viáveis, fluidos que permitam<br />

satisfazer esta condição. Para diminuir os erros <strong>de</strong> extrapolação dos efeitos viscosos, a água em<br />

que são realizados os testes po<strong>de</strong> ser aquecida para aumentar a diferença entre as viscosida<strong>de</strong>s.<br />

2.3 Decomposição da resistência<br />

A resistência do navio tem origem complexa e, para facilida<strong>de</strong> <strong>de</strong> análise, é tradicionalmente<br />

<strong>de</strong>composta em vários termos. No entanto, não existe uniformida<strong>de</strong> nos diversos textos quanto<br />

à forma como realizar aquela <strong>de</strong>composição. Uma das abordagens a este assunto consiste<br />

em consi<strong>de</strong>rar as <strong>de</strong>composições constantes na Fig. 2.1. De acordo com a figura, po<strong>de</strong>mos<br />

consi<strong>de</strong>rar a seguinte <strong>de</strong>composição da resistência total:


2.3.<br />

DECOMPOSIÇÃO DA RESISTÊNCIA 19<br />

- a resistência <strong>de</strong> onda;<br />

- a resistência <strong>de</strong> atrito;<br />

- a resistência viscosa <strong>de</strong> pressão.<br />

Figura 2.1: Decomposição da resistência.<br />

Para além dos termos relativos a uma querena simples em águas tranquilas, outras componentes<br />

adicionais da resistência <strong>de</strong>verão ser consi<strong>de</strong>radas:<br />

- a resistência aerodinâmica, resistência ao avanço no ar da parte emersa do casco e<br />

superestruturas do navio;<br />

- a resistência adicional em mar ondoso, resistência resultante da acção <strong>de</strong> ondas inci<strong>de</strong>ntes<br />

sobre a estrutura do navio;<br />

- a resistência adicional <strong>de</strong>vida aos apêndices da querena.<br />

2.3.1 Resistência <strong>de</strong> onda<br />

Quando o navio avança na superfície tranquila do mar é ro<strong>de</strong>ado e seguido por uma formação<br />

ondosa. Esta formação é quase imperceptível a baixa velocida<strong>de</strong>. No entanto, a partir <strong>de</strong><br />

uma dada velocida<strong>de</strong> torna-se claramente visível e, a partir daí, tem dimensão crescente<br />

com a velocida<strong>de</strong>. Para além da <strong>de</strong>pendência com a velocida<strong>de</strong>, a formação ondosa <strong>de</strong>pen<strong>de</strong><br />

também da forma da querena.


20<br />

CAPÍTULO 2. RESISTÊNCIA<br />

Nos estudos <strong>de</strong> resistência <strong>de</strong> onda não se po<strong>de</strong> afirmar que uma dada velocida<strong>de</strong> é elevada<br />

ou baixa sem conhecermos também a dimensão do navio. Assim, surge frequentemente a<br />

referência ao conceito <strong>de</strong> velocida<strong>de</strong> relativa, como razão entre a velocida<strong>de</strong> do navio e um<br />

parâmetro representativo da dimensão do navio,<br />

v rel = V √<br />

L<br />

(2.39)<br />

com V em nós e L em pés, em substituição do adimensional número <strong>de</strong> Frou<strong>de</strong>.<br />

Numa perspectiva do estudo hidrodinâmico do escoamanto, o navio po<strong>de</strong> ser consi<strong>de</strong>rado<br />

como um campo <strong>de</strong> pressão em movimento. Kelvin resolveu analiticamente o caso simplificado<br />

do sistema <strong>de</strong> ondas criado pelo movimento <strong>de</strong> um ponto <strong>de</strong> pressão. Demonstrou que o padrão<br />

da formação ondosa inclui um sistemas <strong>de</strong> ondas divergentes e um outro sistema cujas cristas<br />

das ondas se apresentam normais à direcção do movimento, como representado na Fig. 2.2.<br />

Ambos os sistemas <strong>de</strong> ondas viajam à velocida<strong>de</strong> do ponto <strong>de</strong> pressão.<br />

Figura 2.2: Sistema <strong>de</strong> ondas gerado por um ponto <strong>de</strong> pressão em movimento.<br />

O sistema <strong>de</strong> ondas associado ao movimento <strong>de</strong> um navio é bastante mais complicado.<br />

No entanto, como primeira aproximação, o navio po<strong>de</strong> ser consi<strong>de</strong>rado com um campo <strong>de</strong><br />

pressão em movimento composto por uma sobrepressão consi<strong>de</strong>rada pontual na proa e uma<br />

<strong>de</strong>pressão, também pontual, na popa. Assim, num navio que se <strong>de</strong>sloque a uma velocida<strong>de</strong><br />

relativa elevada, a formação ondosa provocada é constituída por dois sistemas principais <strong>de</strong><br />

ondas, Fig. 2.3:<br />

- o sistema da proa;<br />

- o sistema da popa.<br />

Cada um dos sistemas <strong>de</strong> ondas formados, com origem na proa e na popa do navio, é<br />

constituído por dois tipos <strong>de</strong> ondas:<br />

- as ondas transversais;<br />

- as ondas divergentes.<br />

Geralmente, os dois sistemas <strong>de</strong> ondas divergentes são <strong>de</strong>tectáveis apesar <strong>de</strong> o sistema da<br />

popa ser muito mais fraco. Não é normalmente possível isolar o sistema transversal da popa,<br />

sendo apenas visível a ré do navio a composição dos dois sistemas, transversal e divergente.


2.3.<br />

DECOMPOSIÇÃO DA RESISTÊNCIA 21<br />

Figura 2.3: Sistemas <strong>de</strong> ondas da proa e da popa.<br />

A proa produz um sistema <strong>de</strong> ondas semelhante ao <strong>de</strong>scrito por Kelvin para um ponto <strong>de</strong><br />

pressão em movimento e, pelo contrário, na popa forma-se um sistema <strong>de</strong> ondas semelhante,<br />

mas com uma <strong>de</strong>pressão localizada na popa. Conforme representado na Fig. 2.3, se a linha<br />

que une os pontos <strong>de</strong> maior elevação das cristas das ondas divergentes fizer com a direcção<br />

longitudinal do navio um ângulo α, então a direcção <strong>de</strong>stas fará um ângulo 2α com a mesma<br />

direcção.<br />

O comprimento <strong>de</strong> onda <strong>de</strong> ambos os sistemas transversais é igual e dado por:<br />

λ = 2πV 2<br />

g<br />

(2.40)<br />

Existe uma interacção entre as formações ondosa transversais dos sistemas <strong>de</strong> ondas da<br />

proa e da popa. Se os sistemas estiverem “em fase”, <strong>de</strong> tal forma que as cristas das ondas<br />

coincidam, o sistema resultante terá maior altura e, consequentemente, maior energia. Se,<br />

pelo contrário, a cava <strong>de</strong> um dos sistemas <strong>de</strong> ondas ficar sobreposta com uma crista do outro<br />

sistema, a energia consumida para gerar o sistema <strong>de</strong> ondas será reduzida. A velocida<strong>de</strong> V<br />

e o comprimento do navio L são muito importantes para a <strong>de</strong>terminação da energia total do<br />

sistema <strong>de</strong> ondas gerado e, consequentemente, para a resistência <strong>de</strong> onda do navio.<br />

Continuando a assumir o mo<strong>de</strong>lo físico que aproxima o movimento do navio por um<br />

campo <strong>de</strong> pressão em movimento, a distância entre os dois pontos <strong>de</strong> pressão, proa e popa,<br />

é aproximada por 0, 9 L. Sabendo que uma onda gravítica com comprimento <strong>de</strong> onda λ se<br />

<strong>de</strong>sloca em águas profundas à velocida<strong>de</strong><br />

C =<br />

√<br />

λg<br />

2π<br />

(2.41)<br />

para que haja coincidência <strong>de</strong> uma crista ou cava do sistema da proa com a primeira cava<br />

gerada na popa, <strong>de</strong>verá verificar-se<br />

V 2<br />

0, 9L = g<br />

Nπ<br />

(2.42)<br />

Tomando em consi<strong>de</strong>ração a Fig. 2.4, verifica-se que as cavas vão coincidir para N =<br />

1, 3, 5, ... enquanto que para N par as cristas do sistema da proa coinci<strong>de</strong>m com as cavas do<br />

sistema da popa. Se não existisse esta interacção entre os dois sistemas <strong>de</strong> ondas a resistência<br />

<strong>de</strong> onda apresentaria uma evolução “bem comportada” crescente com a velocida<strong>de</strong> do navio,


22<br />

CAPÍTULO 2. RESISTÊNCIA<br />

Figura 2.4: Interacção entre os dois sistemas <strong>de</strong> ondas.<br />

conforme representado pela linha tracejada da Fig. 2.5. Na realida<strong>de</strong>, a partir <strong>de</strong> uma dada<br />

velocida<strong>de</strong> a partir da qual esta interacção se torna significativa, verifica-se a existência <strong>de</strong><br />

elevações e <strong>de</strong>pressões na curva correspon<strong>de</strong>ndo aos casos extremos <strong>de</strong> interacção entre os<br />

sistemas <strong>de</strong> ondas. É <strong>de</strong> esperar que a maior elevação se verifique para N = 1 porque a<br />

velocida<strong>de</strong> é mais elevada para esta condição.<br />

Como a curva <strong>de</strong> resistência <strong>de</strong> onda exibe estes máximos e mínimos locais, o navio <strong>de</strong>ve<br />

ser projectado para operar num mínimo local da curva <strong>de</strong> resistência <strong>de</strong> onda, a velocida<strong>de</strong><br />

económica.<br />

Quando o comprimento <strong>de</strong> onda das ondas transversais é igual ao comprimento do navio,<br />

o número <strong>de</strong> Frou<strong>de</strong> é aproximadamente 0, 4. Até este valor do número <strong>de</strong> Frou<strong>de</strong>, as<br />

ondas transversais são as principais responsáveis pelas elevações e <strong>de</strong>pressões na curva da<br />

resistência <strong>de</strong> onda. Se o número <strong>de</strong> Frou<strong>de</strong> aumentar, aumentará também a resistência <strong>de</strong><br />

onda sobretudo à custa da influência das ondas divergentes. O máximo da resistência <strong>de</strong><br />

onda verifica-se para F r ≈ 0, 5. A velocida<strong>de</strong> correspon<strong>de</strong>nte <strong>de</strong>signa-se por “velocida<strong>de</strong> da<br />

querena”. Acima da “velocida<strong>de</strong> da querena” a resistência <strong>de</strong> onda do navio <strong>de</strong>cresce. Navios<br />

rápidos que operem acima da velocida<strong>de</strong> <strong>de</strong> querena <strong>de</strong>verão naturalmente dispor <strong>de</strong> potência<br />

instalada suficiente para vencer aquele pico <strong>de</strong> resistência.<br />

Bolbo <strong>de</strong> proa<br />

A finalida<strong>de</strong> da instalação dos bolbos <strong>de</strong> proa é a redução da resistência <strong>de</strong> onda. O<br />

mecanismo <strong>de</strong> redução consiste na interferência dos sistemas <strong>de</strong> onda. O sistema <strong>de</strong> ondas<br />

gerado pela pressão elevada no bolbo interfere com o sistema <strong>de</strong> ondas da proa, reduzindo a<br />

sua amplitu<strong>de</strong>. A interferência favorável ocorre quando a cava do sistema transversal <strong>de</strong> ondas


2.3.<br />

DECOMPOSIÇÃO DA RESISTÊNCIA 23<br />

Figura 2.5: Curva da resistência <strong>de</strong> onda.<br />

do bolbo surgir na crista do sistema <strong>de</strong> ondas da proa do navio. Esta situação <strong>de</strong> interferência<br />

favorável sendo optimizada para uma dada velocida<strong>de</strong>, po<strong>de</strong> no entanto ser consi<strong>de</strong>rada como<br />

tendo efeito favorável num <strong>de</strong>terminado intervalo <strong>de</strong> velocida<strong>de</strong>s.<br />

Efeito da profundida<strong>de</strong> restrita<br />

Os efeitos da profundida<strong>de</strong> finita começam a fazer-se sentir quando a profundida<strong>de</strong> h é<br />

menor que meta<strong>de</strong> do comprimento <strong>de</strong> onda da formação ondosa gerada pelo movimento do<br />

navio, h < λ/2. Doutra forma, po<strong>de</strong>mos consi<strong>de</strong>rar profundida<strong>de</strong> infinita sempre que,<br />

h > λ 2<br />

(2.43)<br />

No caso <strong>de</strong> profundida<strong>de</strong>s muito pequenas, h < 0, 05λ ∞ , a velocida<strong>de</strong> <strong>de</strong> propagação <strong>de</strong>ixa<br />

<strong>de</strong> <strong>de</strong>pen<strong>de</strong>r do comprimento <strong>de</strong> onda, Eq. (2.41) e passa a <strong>de</strong>pen<strong>de</strong>r apenas da profundida<strong>de</strong><br />

C = √ gh (2.44)<br />

Neste caso, a velocida<strong>de</strong> <strong>de</strong> grupo é igual à velocida<strong>de</strong> <strong>de</strong> propagação, a velocida<strong>de</strong> crítica:<br />

C g = C = √ gh (2.45)<br />

Para caracterizar o efeito da profundida<strong>de</strong> é usado o número <strong>de</strong> Frou<strong>de</strong> baseado na profundida<strong>de</strong><br />

h:


24<br />

CAPÍTULO 2. RESISTÊNCIA<br />

- se V/ √ gh < 0, 4, o padrão <strong>de</strong> ondas é semelhante ao caso <strong>de</strong> profundida<strong>de</strong> infinita;<br />

- se V/ √ gh se aproximar <strong>de</strong> 1, o ângulo da envolvente aproxima-se <strong>de</strong> 90 ◦ ;<br />

- se V/ √ gh > 1, sin α = √ gh/V .<br />

2.3.2 Resistência <strong>de</strong> atrito<br />

A resistência <strong>de</strong> atrito do navio resulta do escoamento em torno da querena com número <strong>de</strong><br />

Reynolds elevado. Quando um corpo se move num fluido em repouso, uma fina camada <strong>de</strong><br />

fluido a<strong>de</strong>re ao corpo em movimento, ou seja, tem velocida<strong>de</strong> nula relativamente ao corpo.<br />

A variação <strong>de</strong> velocida<strong>de</strong> é elevada nas proximida<strong>de</strong>s da superfície do corpo e diminui com<br />

o aumento da distância ao mesmo. É prática habitual convencionar-se para a <strong>de</strong>finição da<br />

espessura da camada limite, a distância a partir da superfície do corpo até que a velocida<strong>de</strong><br />

do fluido seja 1% da velocida<strong>de</strong> do corpo.<br />

Desenvolve-se assim da proa para a popa do navio uma camada limite tridimensional. Esta<br />

camada limite inicia-se em escoamento laminar e sofre transição para o regime turbulento.<br />

Normalmente, esta transição ocorre junto à proa do navio. Esta transição é controlada pelo<br />

número <strong>de</strong> Reynolds do escoamento. Consi<strong>de</strong>rando o caso da placa lisa plana, a transição<br />

ocorre para valores entre Re = 3×10 5 e Re = 10 6 . Em regime turbulento os efeitos dissipativos<br />

<strong>de</strong> energia vão além do atrito molecular. Com crescente número <strong>de</strong> Reynolds, verificam-se<br />

intensas trocas <strong>de</strong> quantida<strong>de</strong> <strong>de</strong> movimento em camadas adjacentes do fluido, ou seja, maior<br />

transporte <strong>de</strong> energia.<br />

No caso <strong>de</strong> uma placa plana, a espessura da camada limite turbulenta po<strong>de</strong> ser aproximada<br />

por:<br />

δx<br />

L = 0, 37 (Re L) −1/5 (2.46)<br />

Num navio, o gradiente lontitudinal <strong>de</strong> pressão na região da proa é, em geral, favorável<br />

ao escoamento. Pelo contrário, este gradiente é adverso na região da popa e a camada limite<br />

aumenta significativamente <strong>de</strong> espessura <strong>de</strong>ixando <strong>de</strong> po<strong>de</strong>r ser consi<strong>de</strong>rada pequena quando<br />

comparada com o comprimento ou a boca do navio. Para todos os efeitos práticos, a camada<br />

limite <strong>de</strong> um navio po<strong>de</strong> ser consi<strong>de</strong>rada completamente turbulenta.<br />

A <strong>de</strong>pendência da resistência <strong>de</strong> atrito com o número <strong>de</strong> Reynolds e com a rugosida<strong>de</strong> da<br />

superfície é indicada pelo gráfico da Fig. 2.6. Para uma superfície rugosa, a resistência segue<br />

a linha da superfície lisa até que, para um dado valor <strong>de</strong> Re, se separa e tem a partir daí<br />

um andamento quase horizontal, ou seja, o coeficiente torna-se in<strong>de</strong>pen<strong>de</strong>nte do Re. Quanto<br />

mais rugosa for a superfície mais cedo se evi<strong>de</strong>ncia este comportamento.<br />

A resistência <strong>de</strong> atrito <strong>de</strong> um navio é habitualmente dividida em duas componentes:<br />

- a resistência a que ficaria sujeita uma placa plana com área equivalente;<br />

- o aumento <strong>de</strong> resistência originado pela forma do navio.<br />

A resistência <strong>de</strong> atrito foi estimada durante décadas por expressões empíricas como, por<br />

exemplo, a fórmula <strong>de</strong> Frou<strong>de</strong>:<br />

R F = 1 − 0, 0043 (θ − 15) fSV 1,825 (2.47)


2.3.<br />

DECOMPOSIÇÃO DA RESISTÊNCIA 25<br />

Figura 2.6: Variação do coeficiente da resistência <strong>de</strong> atrito com o número<br />

<strong>de</strong> Reynolds e com a rugosida<strong>de</strong> da superfície.<br />

em que θ é a temperatura do fluido, expressa em ◦ C e<br />

f = 0, 1392 +<br />

0, 258<br />

2, 68 + L<br />

(2.48)<br />

Outra fórmula empírica muito popular para a previsão do coeficiente da resistência <strong>de</strong> atrito é<br />

<strong>de</strong>vida a Schoenherr e conhecida como fórmula da ATTC (American Towing Tank Conference)<br />

0, 242<br />

√<br />

cF<br />

= log (Re · c F ) (2.49)<br />

Esta correlação prevê coeficientes <strong>de</strong> atrito excessivos quando aplicada a mo<strong>de</strong>los muito<br />

pequenos. Para ultrapassar este problema foi proposta na ITTC (International Towing Tank<br />

Conference) <strong>de</strong> 1957 uma nova fórmula,<br />

c F =<br />

0, 075<br />

(logRe − 2) 2 (2.50)<br />

<strong>de</strong>signada por linha <strong>de</strong> correlação mo<strong>de</strong>lo-navio da ITTC 1957.<br />

2.3.3 Resistência viscosa <strong>de</strong> pressão<br />

A componente da pressão originada pelas ondas formadas pelo movimento do navio já foi<br />

consi<strong>de</strong>rada. Resta agora consi<strong>de</strong>rar a resistência originada por diferenças <strong>de</strong> pressão a actuar<br />

no casco <strong>de</strong>vida a efeitos viscosos do escoamento. Num escoamento i<strong>de</strong>al, ver Fig. 2.7, a<br />

pressão exercida na popa do navio seria igual à exercida na proa, ou seja força resultante<br />

nula. Na prática, os efeitos viscosos vão reduzir a pressão exercida na popa do navio.<br />

Parte <strong>de</strong>sta resistência será <strong>de</strong>vida à geração <strong>de</strong> vórtices nas <strong>de</strong>scontinuida<strong>de</strong>s do casco.<br />

Outra parte será <strong>de</strong>vida a um aumento <strong>de</strong> espessura da camada limite nalguns casos potenciada<br />

por fenómenos <strong>de</strong> separação do escoamento. Estes aspectos são fundamentalmente<br />

condicionados pela forma do casco pelo que são normalmente consi<strong>de</strong>rados como uma “resistência<br />

<strong>de</strong> forma”.


26<br />

CAPÍTULO 2. RESISTÊNCIA<br />

Figura 2.7: Distribuição <strong>de</strong> pressão num escoamento i<strong>de</strong>al, invíscido.<br />

2.4 Ensaios <strong>de</strong> resistência em tanques <strong>de</strong> reboque<br />

Apesar da crescente importância dos métodos numéricos, os ensaios com mo<strong>de</strong>los à escala<br />

reduzida <strong>de</strong> navios em tanques <strong>de</strong> reboque são ainda essenciais para a avaliação hidrodinâmica<br />

dos novos projectos e para a validação <strong>de</strong> novas soluções.<br />

Os testes <strong>de</strong>vem ser realizados em condições que permitam consi<strong>de</strong>rar que o mo<strong>de</strong>lo e o<br />

navio têm comportamentos semelhantes por forma a que os resultados obtidos para o mo<strong>de</strong>lo<br />

possam ser extrapolados para a escala real do navio. Com este objectivo, os ensaios realizamse<br />

respeitando a igualda<strong>de</strong> do número <strong>de</strong> Frou<strong>de</strong>.<br />

Os testes são realizados em tanques <strong>de</strong> reboque, com água imóvel e o mo<strong>de</strong>lo rebocado por<br />

um “carrinho” ou, em alternativa, os testes po<strong>de</strong>m ser realizados em “tanques <strong>de</strong> circulação”,<br />

em que o mo<strong>de</strong>lo está imóvel e a água circula.<br />

No primeiro caso, após um percurso inicial <strong>de</strong> aceleração, a velocida<strong>de</strong> do “carrinho” <strong>de</strong>ve<br />

ser mantida constante para obter um regime estacionário e garantir o rigor das observações<br />

efectuadas. A fase final é <strong>de</strong> <strong>de</strong>saceleração e imobilização do mo<strong>de</strong>lo. Assim, os tanques <strong>de</strong><br />

reboque apresentam frequentemente centenas <strong>de</strong> metros <strong>de</strong> extensão.<br />

O comprimento do mo<strong>de</strong>lo, como o exemplo representado esquematicamente na Fig. 2.8,<br />

é escolhido <strong>de</strong> acordo com as condições experimentais no tanque <strong>de</strong> reboque. O mo<strong>de</strong>lo <strong>de</strong>ve<br />

ser tão gran<strong>de</strong> quanto possível por forma a minimizar efeitos <strong>de</strong> escala relativos aos aspectos<br />

viscosos, nomeadamente as diferenças relativas a escoamentos laminares e turbulentos e as<br />

questões relacionadas com fenómenos <strong>de</strong> separação do escoamento. Por outro lado, a dimensão<br />

do mo<strong>de</strong>lo <strong>de</strong>ve ainda permitir evitar <strong>de</strong>formações resultantes <strong>de</strong> esforços no mo<strong>de</strong>lo e no<br />

equipamento <strong>de</strong> teste.<br />

A dimensão do mo<strong>de</strong>lo <strong>de</strong>ve ser suficientemente pequena para permitir que o “carrinho”<br />

<strong>de</strong> reboque do mo<strong>de</strong>lo atinja a velocida<strong>de</strong> correspon<strong>de</strong>nte e evitar os efeitos <strong>de</strong> águas restritas<br />

nos testes efectuados. Estes constrangimentos conduzem naturalmente a um intervalo<br />

prático <strong>de</strong> comprimentos admissíveis. Os mo<strong>de</strong>los para ensaios <strong>de</strong> resistência e propulsão<br />

têm normalmente comprimentos entre 4 m < L m < 10 m. A escala dos mo<strong>de</strong>los está entre<br />

15 < λ < 45.


2.5.<br />

CÁLCULO DA RESISTÊNCIA 27<br />

Figura 2.8: Mo<strong>de</strong>lo à escala reduzida para ensaios <strong>de</strong> resistência.<br />

Durante o movimento, o mo<strong>de</strong>lo mantém o rumo através <strong>de</strong> fios-guia, sendo livre para<br />

adoptar o caimento que resultar do seu movimento. Ainda <strong>de</strong> acordo com a Fig. 2.8, a<br />

resistência total <strong>de</strong> reboque do mo<strong>de</strong>lo é dada por,<br />

R T = G 1 + sin αG 2 (2.51)<br />

Com os ensaios <strong>de</strong> resistência com o mo<strong>de</strong>lo à escala reduzida preten<strong>de</strong>-se obter dados<br />

que permitam estimar a resistência do navio sem o propulsor e apêndices, ou seja, dita da<br />

querena simples. Dos ensaios no tanque <strong>de</strong> reboque obtém-se a resistência nas condições do<br />

tanque, ou seja:<br />

- águas suficientemente profundas;<br />

- ausência <strong>de</strong> correntes;<br />

- ausência <strong>de</strong> vento;<br />

- água doce à temperatura ambiente.<br />

O número <strong>de</strong> Reynolds é normalmente superior duas or<strong>de</strong>ns <strong>de</strong> gran<strong>de</strong>za na escala do navio<br />

que na escala do mo<strong>de</strong>lo, tipicamente na or<strong>de</strong>m <strong>de</strong> 10 9 e 10 7 , respectivamente. O mo<strong>de</strong>lo tem<br />

frequentemente uma fita rugosa para estimular artificialmente a transição da camada limite<br />

laminar para turbulenta mais perto da proa do mo<strong>de</strong>lo. Globalmente, o <strong>de</strong>svio originado<br />

pelo facto <strong>de</strong> não se manter constante o número <strong>de</strong> Reynolds no ensaio é <strong>de</strong>pois compensado<br />

através <strong>de</strong> correcções empíricas.<br />

2.5 Cálculo da resistência<br />

2.5.1 Métodos <strong>de</strong> extrapolação<br />

A resistência do mo<strong>de</strong>lo tem <strong>de</strong>pois <strong>de</strong> ser convertida por forma a obter-se uma estimativa<br />

da resistência do navio na escala real. Para tal, estão disponíveis, entre outros, os seguintes<br />

métodos:


28<br />

CAPÍTULO 2. RESISTÊNCIA<br />

- o método ITTC 1957;<br />

- o método <strong>de</strong> Hughes/Prohaska;<br />

- o método ITTC 1978;<br />

- o método Geosim <strong>de</strong> Telfer.<br />

Actualmente, o método mais frequentemente utilizado na prática é o método ITTC 1978.<br />

Método ITTC 1957<br />

Para a aplicação <strong>de</strong>ste método, a resistência total da querena, R T , é consi<strong>de</strong>rada <strong>de</strong>composta<br />

nos seguintes termos,<br />

R T = R F + R R (2.52)<br />

a resistência <strong>de</strong> atrito, R F , e a resistência residual, R R .<br />

Os coeficientes <strong>de</strong> resistência, adimensionais, são genericamente calculados por,<br />

c i =<br />

R i<br />

1<br />

2 ρV 2 S<br />

(2.53)<br />

Na aplicação <strong>de</strong>ste método <strong>de</strong> previsão é consi<strong>de</strong>rado igual para o mo<strong>de</strong>lo e para o navio<br />

o coeficiente <strong>de</strong> resistência residual,<br />

c R = c T m − c F m (2.54)<br />

<strong>de</strong>terminado a partir do coeficiente <strong>de</strong> resistência total do mo<strong>de</strong>lo,<br />

c T m =<br />

R T m<br />

1<br />

2 ρ (2.55)<br />

mVmS 2 m<br />

e da fórmula “ITTC 1957” (Eq. (2.50)) para o cálculo do coeficiente <strong>de</strong> resistência <strong>de</strong> atrito<br />

c F ,<br />

c F =<br />

0.075<br />

(log 10 Re − 2) 2<br />

O coeficiente <strong>de</strong> resistência total para o navio é então estimado por:<br />

c T s = c F s + c R + c A = c F s + (c T m − c F m ) + c A (2.56)<br />

em que c A é um factor <strong>de</strong> correcção tradicionalmente associado à rugosida<strong>de</strong> do casco. De<br />

facto, embora o mo<strong>de</strong>lo esteja construído a uma dada escala geométrica, a rugosida<strong>de</strong> das<br />

superfícies do mo<strong>de</strong>lo e do navio não respeitam esta escala. O valor <strong>de</strong> c A po<strong>de</strong> ser obtido<br />

por correlações empíricas como, por exemplo,<br />

c A = 0.35 × 10 −3 − 2 × L pp × 10 −6 (2.57)<br />

ou a partir <strong>de</strong> valores tabelados (Tab. 2.1).<br />

A previsão da resistência total do navio é dada por<br />

R T s = c T s · 1<br />

2 ρ sV 2<br />

s S s (2.58)


2.5.<br />

CÁLCULO DA RESISTÊNCIA 29<br />

L pp (m) c A<br />

50 - 150 0,0004-0,00035<br />

150 - 210 0,0002<br />

210 - 260 0,0001<br />

260 - 300 0<br />

300 - 350 -0,0001<br />

350 - 400 0,00025<br />

Tabela 2.1: Valores do coeficiente <strong>de</strong> correcção c A em função do comprimento<br />

do navio.<br />

Método <strong>de</strong> Hughes-Prohaska<br />

O método <strong>de</strong> Hughes-Prohaska é normalmente classificado como um método <strong>de</strong> factor <strong>de</strong><br />

forma. É consi<strong>de</strong>rada a <strong>de</strong>composição da resistência total em duas componentes, uma associada<br />

à resistência <strong>de</strong> onda e outra <strong>de</strong>pen<strong>de</strong>nte da forma do casco. Consi<strong>de</strong>rando então os<br />

coeficientes adimensionais, fica<br />

c T = (1 + k) · c F 0 + c w (2.59)<br />

Para a <strong>de</strong>terminação do factor <strong>de</strong> forma, presume-se aqui a relação<br />

c T<br />

c F 0<br />

= (1 + k) + α F r4<br />

c F 0<br />

(2.60)<br />

que é particularmente válida para valores reduzidos <strong>de</strong> velocida<strong>de</strong>.<br />

Após vários ensaios a diferentes velocida<strong>de</strong>s, diferentes números <strong>de</strong> Frou<strong>de</strong>, é possível<br />

construir um gráfico semelhante ao representado na Fig. 2.9 e, com base naqueles valores,<br />

obter o valor <strong>de</strong> k por regressão linear.<br />

Figura 2.9: Representação gráfica da <strong>de</strong>pendência <strong>de</strong> c T<br />

c F 0<br />

com F r4<br />

c F 0<br />

.<br />

Este factor <strong>de</strong> forma, (1 + k),é assumido como in<strong>de</strong>pen<strong>de</strong>nte dos valores <strong>de</strong> F r e <strong>de</strong> Re e<br />

igual para o navio e mo<strong>de</strong>lo.<br />

O procedimento <strong>de</strong> cálculo do método <strong>de</strong> Hughes-Prohaska é o seguinte:


30<br />

CAPÍTULO 2. RESISTÊNCIA<br />

- <strong>de</strong>terminar o coeficiente <strong>de</strong> resistência total,<br />

c T m =<br />

R T m<br />

1<br />

2 ρ mV 2 mS m<br />

- <strong>de</strong>terminar o coeficiente <strong>de</strong> resistência <strong>de</strong> onda, o mesmo para o mo<strong>de</strong>lo e o navio,<br />

c w = c T m − c F 0m · (1 + k) (2.61)<br />

- <strong>de</strong>terminar o coeficiente <strong>de</strong> resistência total para o navio,<br />

c T s = c w + c F 0s · (1 + k) + c A (2.62)<br />

- <strong>de</strong>terminar a resistência total para o navio, novamente por<br />

R T s = c T s · 1<br />

2 ρ sV 2<br />

s S s<br />

O coeficiente da resistência <strong>de</strong> atrito, c F 0 , é neste caso obtido pela correlação <strong>de</strong> Hughes,<br />

c F 0 =<br />

0.067<br />

(log 10 Re − 2) 2 (2.63)<br />

Quanto ao coeficiente <strong>de</strong> correcção c A , a ITTC recomenda a aplicação universal <strong>de</strong><br />

c A = 0.0004 (2.64)<br />

na aplicação <strong>de</strong>ste método.<br />

Método ITTC 1978<br />

É uma modificação do método <strong>de</strong> Hughes-Prohaska, geralmente mais preciso que os anteriormente<br />

apresentados. Ao contrário dos métodos anteriormente <strong>de</strong>scritos, este método <strong>de</strong><br />

extrapolação dos resultados obtidos nos ensaios com mo<strong>de</strong>los à escala reduzida inclui o efeito<br />

da resistência do ar.<br />

A previsão do coeficiente <strong>de</strong> resistência total para o navio é, também aqui, <strong>de</strong>scrita em<br />

termos do factor <strong>de</strong> forma, ou seja,<br />

em que:<br />

c T s = (1 + k) c F s + c w + c A + c AA (2.65)<br />

- c w é o coeficiente <strong>de</strong> resistência <strong>de</strong> onda, igual para o navio e mo<strong>de</strong>lo;<br />

- c A é o coeficiente <strong>de</strong> correcção;<br />

- e c AA a resistência do ar, c AA = 0.001 · AT<br />

S .


2.5.<br />

CÁLCULO DA RESISTÊNCIA 31<br />

O coeficiente da resistência <strong>de</strong> atrito é <strong>de</strong>terminada <strong>de</strong> forma semelhante à preconizada<br />

para o método ITTC 57, Eq. (2.50).<br />

Para a <strong>de</strong>terminação da correcção <strong>de</strong>vida pela variação da rugosida<strong>de</strong> da querena, é aconselhada<br />

aqui a seguinte fórmula:<br />

c A · 10 3 = 105 3 √<br />

ks<br />

L oss<br />

− 0.64 (2.66)<br />

em que k s é a rugosida<strong>de</strong> do casco e L oss é o comprimento do navio no plano <strong>de</strong> flutuação.<br />

Para navios novos k s /L oss = 10 −6 e c A = 0.00041.<br />

Os <strong>de</strong>talhes sugeridos pela ITTC na aplicação <strong>de</strong>ste método estão indicados no Apêndice<br />

A.<br />

Método Geosim<br />

Este método foi proposto por Telfer em 1927. Dos métodos aqui enunciados, é consi<strong>de</strong>rado<br />

como o método <strong>de</strong> extrapolação com previsões mais precisas da resistência do navio. A<br />

gran<strong>de</strong> vantagem do método resulta <strong>de</strong> não recorrer a qualquer <strong>de</strong>composição, teoricamente<br />

questionável, da resistência total.<br />

São realizados vários ensaios com mo<strong>de</strong>los geometricamente semelhantes mas a diferentes<br />

escalas. Isto significa que os testes po<strong>de</strong>m ser realizados, para a mesma velocida<strong>de</strong> equivalente,<br />

com igual número <strong>de</strong> Frou<strong>de</strong> e diferente número <strong>de</strong> Reynolds. O coeficiente <strong>de</strong> resistência total,<br />

obtido naqueles ensaios, é representado em função <strong>de</strong> logRe −1/3 . Para cada um dos mo<strong>de</strong>los,<br />

obtém-se uma curva da resistência, em função do F r, que permite fazer a extrapolação para<br />

a escala do navio.<br />

Pela gran<strong>de</strong> quantida<strong>de</strong> <strong>de</strong> mo<strong>de</strong>los a construir e ensaios a realizar, trata-se <strong>de</strong> um método<br />

muito dispendioso, utilizado sobretudo apenas para fins <strong>de</strong> investigação.<br />

2.5.2 Resistências adicionais<br />

As condições <strong>de</strong> ensaio dos mo<strong>de</strong>los são substancialmente diferentes daquelas em que o navio<br />

irá operar. As principais diferenças a consi<strong>de</strong>rar resultam <strong>de</strong>:<br />

- a presença <strong>de</strong> apêndices na querena;<br />

- a navegação em águas pouco profundas;<br />

- o vento;<br />

- a crescente rugosida<strong>de</strong> do casco durante a vida do navio;<br />

- as condições <strong>de</strong> mar.<br />

Para estimar as alterações causadas por estes itens no comportamento do navio, usam-se<br />

correcções empíricas, baseadas em pressupostos físicos, para correlacionar os valores obtidos<br />

no mo<strong>de</strong>lo, ou no navio em provas <strong>de</strong> mar, com os estimados para as condições normais <strong>de</strong><br />

serviço do navio. A resistência adicional <strong>de</strong>vida a apêndices e a resistência do navio em águas<br />

pouco profundas são os tópicos sucintamente abordados nos parágrafos seguintes.


32<br />

CAPÍTULO 2. RESISTÊNCIA<br />

Resistência adicional dos apêndices<br />

Os mo<strong>de</strong>los <strong>de</strong> navios à escala reduzida po<strong>de</strong>m ser testados com apêndices à escala geométrica<br />

apropriada. No entanto, nem sempre nesta altura do projecto estes estão completamente<br />

<strong>de</strong>finidos. Por outro lado, o escoamento em torno dos apêndices é predominantemente governado<br />

pelas forças <strong>de</strong> origem viscosa. Seria então necessário, para obter resultados fiáveis,<br />

verificarem-se condições <strong>de</strong> semelhança <strong>de</strong> Reynolds, o que, como já referido, não é viável<br />

se, cumulativamente, preten<strong>de</strong>rmos manter a igualda<strong>de</strong> do número <strong>de</strong> Frou<strong>de</strong>. Consequentemente,<br />

a presença dos apêndices em condições <strong>de</strong> semelhança <strong>de</strong> Frou<strong>de</strong> tem pouca relevância.<br />

Em primeira análise, os apêndices do casco contribuem para um aumento da superfície<br />

molhada do navio. Por outro lado, da sua presença surgem também alterações no factor <strong>de</strong><br />

forma do casco. Para a <strong>de</strong>terminação da resistência <strong>de</strong> forma dos apêndices po<strong>de</strong> recorrer-se a<br />

dois ensaios, com e sem apêndices, a uma velocida<strong>de</strong> superior. Se admitirmos que a resistência<br />

<strong>de</strong> onda é igual nos dois casos, a diferença <strong>de</strong> resistência verificada, tendo <strong>de</strong>scontado a<br />

diferença <strong>de</strong> resistência <strong>de</strong> atrito resultante da variação da área molhada, dá-nos a resistência<br />

<strong>de</strong> forma dos apêndices.<br />

Os valores típicos <strong>de</strong> acréscimo <strong>de</strong> resistência originados pela presença <strong>de</strong> apêndices são<br />

os seguintes:<br />

- robaletes: 1 a 2%;<br />

- impulsores:<br />

- <strong>de</strong> proa: 0 a 1%;<br />

- transversais <strong>de</strong> popa: 1 a 6%;<br />

- aranhas <strong>de</strong> veios: 5 a 12% (“twin-screw” po<strong>de</strong> chegar a 20%);<br />

- leme: 1%.<br />

Resistência em águas pouco profundas<br />

Quando um navio navega em águas pouco profundas verifica-se um aumento, quer da resistência<br />

<strong>de</strong> atrito, quer da resistência <strong>de</strong> onda. Em particular, a resistência aumenta significativamente<br />

para valores próximos do número <strong>de</strong> Frou<strong>de</strong> crítico, baseado na profundida<strong>de</strong>,<br />

F nh = V/ √ gH = 1.<br />

O aumento da resistência do navio quando a navegar em águas pouco profundas foi estudado<br />

por Schlichting. A sua hipótese <strong>de</strong> trabalho foi a seguinte: a resistência <strong>de</strong> onda é a<br />

mesma se o comprimento <strong>de</strong> onda da ondulação transversal for igual.<br />

O gráfico da Fig. 2.10 permite prever a perda <strong>de</strong> velocida<strong>de</strong> do navio em águas pouco<br />

profundas. Correcções simples não são possíveis para águas muito pouco profundas já que os<br />

fenómenos envolvidos são complexos. Nestes casos, só testes em mo<strong>de</strong>los ou simulações por<br />

CFD po<strong>de</strong>rão contribuir para uma melhor previsão.<br />

2.6 Previsão da resistência com dados sistemáticos ou estatísticos<br />

Na fase preliminar do projecto <strong>de</strong> um navio po<strong>de</strong>m ser utilizados métodos aproximados para a<br />

previsão da resistência baseados em ensaios <strong>de</strong> séries sistemáticas <strong>de</strong> navios ou, pela regressão


2.6.<br />

PREVISÃO COM DADOS SISTEMÁTICOS OU ESTATÍSTICOS 33<br />

Figura 2.10: Redução <strong>de</strong> velocida<strong>de</strong> (%) em águas pouco profundas.<br />

estatística <strong>de</strong> dados experimentais relativos a mo<strong>de</strong>los e a navios à escala real.<br />

Séries sistemáticas são conjuntos <strong>de</strong> formas <strong>de</strong> querena em que se provocou a variação,<br />

sistemática, <strong>de</strong> um ou mais dos seus parâmetros <strong>de</strong> forma. As variações sistemáticas são<br />

feitas em torno <strong>de</strong> uma “forma mãe” (“parent form”). Os resultados dos ensaios <strong>de</strong> resistência<br />

dos mo<strong>de</strong>los que constituem a série permitem <strong>de</strong>terminar um coeficiente adimensional <strong>de</strong><br />

resistência para uma forma <strong>de</strong> querena contida ou interpolada na série.<br />

Taylor mediu, entre 1907 e 1914, 80 mo<strong>de</strong>los obtidos por variação sistemática <strong>de</strong>:<br />

- a razão entre o comprimento e a raiz cúbica do <strong>de</strong>slocamento (5 valores <strong>de</strong> L/∆ 1/3 );<br />

- a razão entre a boca e o calado (B/T = 2, 25; 3, 75);<br />

- o coeficiente prismático (8 valores <strong>de</strong> 0,48 a 0,86);<br />

a partir <strong>de</strong> uma “forma mãe”: o cruzador “Leviathan”.<br />

Estes dados foram posteriormente re-trabalhados por Gertler em 1954, disponibilizando<br />

diagramas <strong>de</strong> resistência residual.<br />

Outra série sistemática, com particular interesse para os navios mercantes, é a série 60,<br />

<strong>de</strong>vida aos trabalhos <strong>de</strong> Todd. Consta <strong>de</strong> 5 “formas mãe” com coeficientes <strong>de</strong> finura, 0,60,<br />

0,65, 0,70, 0,75 e 0,80. Para cada uma daquelas “formas mãe” existem variações <strong>de</strong> L/B,<br />

B/T , etc.<br />

Como exemplo <strong>de</strong> um método <strong>de</strong> previsão da resistência <strong>de</strong> navios envolvendo dados<br />

estatísticos po<strong>de</strong>-se indicar o método <strong>de</strong> Holtrop e Mennen. Este método po<strong>de</strong> ser aplicado<br />

para efectuar uma análise qualitativa do projecto <strong>de</strong> um navio no que diz respeito à sua<br />

resistência. O método baseia-se na regressão estatística <strong>de</strong> resultados <strong>de</strong> ensaios em mo<strong>de</strong>los<br />

e <strong>de</strong> resultados <strong>de</strong> provas <strong>de</strong> mar <strong>de</strong> navios. A base <strong>de</strong> dados é muito vasta cobrindo uma<br />

gama muito alargada <strong>de</strong> tipos <strong>de</strong> navios. No entanto, para formas muito específicas <strong>de</strong> navio,


34<br />

CAPÍTULO 2. RESISTÊNCIA<br />

a precisão das previsões po<strong>de</strong> reduzir-se pelo menor número <strong>de</strong> elementos daquele tipo na<br />

base.<br />

2.7 Ensaios à escala real<br />

Os resultados obtidos nas provas <strong>de</strong> mar <strong>de</strong> um navio são talvez o mais importante requisito<br />

para a aceitação <strong>de</strong>ste pelo armador. A especificação <strong>de</strong>talhada <strong>de</strong>stas provas <strong>de</strong>ve estar<br />

claramente contratualizada entre o armador e o estaleiro. Entre outros organismos, a ITTC<br />

recomenda alguns procedimentos para a realização <strong>de</strong>stas provas. As recomendações para as<br />

provas <strong>de</strong> velocida<strong>de</strong> e <strong>de</strong> potência estão incluídas no Apêndice B.<br />

Os problemas surgem normalmente em consequência <strong>de</strong> as provas se realizarem em condições<br />

diferentes, quer das que foram consi<strong>de</strong>radas como condições <strong>de</strong> projecto, quer daquelas<br />

que se verificaram nos ensaios com o mo<strong>de</strong>lo à escala reduzida.<br />

O contrato <strong>de</strong> construção <strong>de</strong>ve especificar uma velocida<strong>de</strong> contratual do navio, à carga <strong>de</strong><br />

projecto, para uma dada percentagem da MCR do motor, em águas tranquilas e profundas e<br />

na ausência <strong>de</strong> vento. São raras as ocasiões em que é possível realizar as provas <strong>de</strong> mar em<br />

condições próximas das condições contratuais. As condições em que se realizam as provas <strong>de</strong><br />

mar incluem, frequentemente:<br />

- condição <strong>de</strong> carga parcial ou em condição <strong>de</strong> lastro;<br />

- presença <strong>de</strong> correntes e ondulação;<br />

- águas pouco profundas;<br />

Para prevenir maior diversida<strong>de</strong> <strong>de</strong> resultados, é habitual <strong>de</strong>finir contratualmente valores<br />

limite para as condições ambientais em que as provas <strong>de</strong> mar se realizarão. As condições<br />

recomendadas pela ITTC para a realização das provas <strong>de</strong> velocida<strong>de</strong> e potência estão no<br />

Apêndice C. As diferenças entre as condições contratuais e verificadas durante a realização<br />

das provas <strong>de</strong> mar impõem a utilização <strong>de</strong> correlações para corrigir os resultados obtidos para<br />

as condições <strong>de</strong> contrato. Para além <strong>de</strong> todas as incertezas experimentais, todo este processo<br />

<strong>de</strong> correcção, com recurso a gráficos e tabelas, oferece muitas dúvidas <strong>de</strong> aplicação.<br />

A “prova da milha” po<strong>de</strong> ser avaliada com velocida<strong>de</strong> “over ground” ou velocida<strong>de</strong> “in<br />

water”. A velocida<strong>de</strong> na água exclui o efeito das correntes. A velocida<strong>de</strong> “over ground”<br />

era avaliada através <strong>de</strong> equipamentos <strong>de</strong> navegação mas, a disponibilida<strong>de</strong> <strong>de</strong> sistemas <strong>de</strong><br />

posicionamento por satélite (GPS) permitiu eliminar muitos problemas e incertezas <strong>de</strong>stas<br />

provas. Para reduzir os efeitos <strong>de</strong> ventos e correntes, as provas <strong>de</strong> velocida<strong>de</strong>, consumo, etc.<br />

<strong>de</strong>vem ser realizadas repetidamente em sentidos opostos.<br />

De notar que as provas <strong>de</strong> mar <strong>de</strong> um navio vão muito para além das provas <strong>de</strong> velocida<strong>de</strong><br />

e potência. Todas as funcionalida<strong>de</strong>s do navio, operacionais e <strong>de</strong> segurança, <strong>de</strong>verão ser<br />

<strong>de</strong>monstradas. Para as restantes provas, nomeadamente as que dizem respeito à manobrabilida<strong>de</strong><br />

do navio, existem também recomendações exaustivas da ITTC para a sua realização.


Capítulo 3<br />

Propulsão<br />

3.1 Sistemas <strong>de</strong> propulsão<br />

Em qualquer tipo <strong>de</strong> navio temos presente um propulsor cuja finalida<strong>de</strong> é a geração <strong>de</strong> uma<br />

força propulsiva. As soluções propulsivas são muito diversas mas predominantemente os navios<br />

continuam a utilizar hélices simples como meio <strong>de</strong> propulsão. Outros meios <strong>de</strong> propulsão com<br />

expressão significativa em aplicações específicas são:<br />

- os hélices “especiais”, com particular <strong>de</strong>staque para os hélices com tubeira e os hélices<br />

contra-rotativos;<br />

- os sistemas <strong>de</strong> jacto <strong>de</strong> água (“water-jets” ou “pump-jets”);<br />

- os propulsores azimutais (“AziPod’s)”;<br />

- e os propulsores cicloidais (“Voith-Schnei<strong>de</strong>r”).<br />

Na escolha da solução propulsiva <strong>de</strong>verá ser sempre consi<strong>de</strong>rado o seu rendimento e a<br />

interacção com a querena. Outro aspecto genérico a consi<strong>de</strong>rar durante o projecto da solução<br />

propulsiva é o fenómeno da cavitação originada pela velocida<strong>de</strong> elevada do movimento das<br />

pás do hélice na água.<br />

3.1.1 Hélices<br />

O hélice é colocado tradicionalmente à popa do navio para recuperar parte da energia dispendida<br />

para vencer a resistência da querena. Na forma mais tradicional da popa dos navios,<br />

a esteira nominal é muito não-uniforme. A uniformida<strong>de</strong> da esteira da querena é uma das<br />

condições necessárias para o bom funcionamento do hélice. A utilização da popa aberta ou<br />

<strong>de</strong> um bolbo na popa permite melhorar a esteira.<br />

As pás do hélice, animadas <strong>de</strong> velocida<strong>de</strong> <strong>de</strong> rotação e <strong>de</strong> avanço, funcionando como<br />

superfícies sustentadoras, estão distribuídas simetricamente em torno do cubo. As secções<br />

das pás funcionam como perfis alares a ângulo <strong>de</strong> ataque gerando uma força <strong>de</strong> sustentação.<br />

Esta força <strong>de</strong> sustentação contribui para a força propulsiva axial e para o binário resistente<br />

ao veio.<br />

Classificam-se com hélices “direitos” aqueles que, quando observados <strong>de</strong> ré, rodam no<br />

sentido horário. Nos navios com dois hélices, são normalmente utilizados:<br />

35


36<br />

CAPÍTULO 3. PROPULSÃO<br />

- um hélice direito a estibordo;<br />

- e um hélice esquerdo a bombordo.<br />

Nestes navios, a popa é relativamente plana e os veios estão expostos e suportados por<br />

aranhas (“shaft brackets”). A presença <strong>de</strong>stas aranhas provoca ainda não-uniformida<strong>de</strong>s na<br />

esteira em que, <strong>de</strong>vido à forma da popa, o escoamento entra no hélice com um certo ângulo.<br />

Figura 3.1: Hélice com tubeira.<br />

A aplicação <strong>de</strong> uma tubeira aceleradora, Fig. 3.1, permite aumentar o rendimento, relativamente<br />

a um hélice convencional, no caso <strong>de</strong> hélices fortemente carregados como os aplicados<br />

em rebocadores, arrastões, petroleiros, etc. Outro objectivo da aplicação das tubeiras po<strong>de</strong><br />

ser a uniformização do escoamento <strong>de</strong> entrada no hélice. Para este fim trata-se normalmente<br />

<strong>de</strong> tubeiras assimétricas colocadas avante do hélice. Frequentemente este tipo <strong>de</strong> tubeiras é<br />

instalada <strong>de</strong>pois <strong>de</strong> o navio estar em serviço.<br />

Figura 3.2: Hélices <strong>de</strong> passo fixo e <strong>de</strong> passo controlável.


3.1. SISTEMAS DE PROPULSÃO 37<br />

Para um hélice <strong>de</strong> passo fixo, a velocida<strong>de</strong> do navio e a força propulsiva são controladas<br />

pela velocida<strong>de</strong> <strong>de</strong> rotação do hélice. Para um hélice <strong>de</strong> passo controlável, a força propulsiva<br />

po<strong>de</strong> também ser controlada por variação do passo do hélice. A variação do passo obtém-se<br />

por rotação das pás em torno <strong>de</strong> um eixo, à direita na Fig. 3.2. Utiliza-se quando a velocida<strong>de</strong><br />

<strong>de</strong> rotação é constante, ou variável numa gama restrita, quando o hélice tem <strong>de</strong> funcionar em<br />

mais <strong>de</strong> uma condição.<br />

Apesar <strong>de</strong> constituírem uma solução cara, pela complicação <strong>de</strong> chumaceiras e engranagens<br />

necessária, encontram-se exemplos <strong>de</strong> propulsão por hélices contrarotativos. São dois hélices,<br />

em que o hélice <strong>de</strong> trás tem um diâmetro ligeiramente menor que o hélice da frente, a rodar<br />

em sentidos contrários, permitindo ao hélice <strong>de</strong> trás eliminar a perda <strong>de</strong> energia cinética<br />

<strong>de</strong> rotação do hélice da frente, Fig. 3.3. Em consequência, apresentam rendimentos típicos<br />

superiores a um hélice isolado.<br />

Figura 3.3: Hélices em contra-rotação.<br />

Outro tipo particular <strong>de</strong> hélice é o hélice supercavitante, Fig. 3.4. É um hélice para<br />

funcionar com elevada velocida<strong>de</strong> <strong>de</strong> rotação em que as secções das pás são concebidas para<br />

provocar uma bolsa <strong>de</strong> cavitação que envolve toda a pá. O perigo <strong>de</strong> implosão é eliminado<br />

porque a implosão das bolhas <strong>de</strong> cavitação ocorre longe das faces das pás. Aplicam-se em<br />

navios <strong>de</strong> alta velocida<strong>de</strong> com rendimento, em geral, fraco.<br />

3.1.2 Outros meios <strong>de</strong> propulsão<br />

Jacto <strong>de</strong> água<br />

Nestes sistemas, a força propulsiva é obtida pela <strong>de</strong>scarga <strong>de</strong> um jacto <strong>de</strong> água à popa do<br />

navio. Para transmitir a energia pretendida ao jacto po<strong>de</strong>m ser utilizadas bombas axiais,<br />

como no caso da Fig. 3.5, ou bombas centrífugas.<br />

Os sistemas <strong>de</strong> jacto <strong>de</strong> água constituem actualmente um solução comprovada para a propulsão<br />

<strong>de</strong> embarcações rápidas, com divulgação crescente nas embarcações <strong>de</strong> recreio,“ferries”,<br />

embarcações <strong>de</strong> patrulha, etc. São boas soluções quando os principais requisitos colocados<br />

passam pela manobrabilida<strong>de</strong> do navio, bom rendimento propulsivo, bom comportamento em<br />

águas restritas e pouca necessida<strong>de</strong> <strong>de</strong> manutenção. Actualmente, já estão disponíveis no<br />

mercado soluções <strong>de</strong>ste tipo para potências propulsivas da or<strong>de</strong>m dos 30MW.


38<br />

CAPÍTULO 3. PROPULSÃO<br />

Figura 3.4: Hélices supercavitante.<br />

Figura 3.5: Propulsão por jacto <strong>de</strong> água.<br />

Propulsores azimutais<br />

Esta configuração, ver Fig. 3.6, possibilita a geração <strong>de</strong> força propulsiva em qualquer direcção<br />

por rotação do propulsor em torno do eixo vertical. No sistema tradicional <strong>de</strong> propulsão<br />

azimutal, o motor era colocado no interior do casco e um sistema mecânico relativamente<br />

complexo fazia a transmissão do movimento às pás. Actualmente, o accionamento é feito<br />

por um motor eléctrico colocado no veio <strong>de</strong> propulsor. Estes sistemas permitem combinar a<br />

propulsão e o governo do navio, dispensando a presença do leme.<br />

Apresentam como principais vantagens um bom rendimento, justificado em gran<strong>de</strong> parte<br />

pela maior uniformida<strong>de</strong> do escoamento à entrada do propulsor, elevada capacida<strong>de</strong> <strong>de</strong> manobra<br />

e economia <strong>de</strong> espaço. A sua aplicação, inicialmente quase que restrita a ferries, tem-se<br />

alargado nos tempos mais recentes a praticamente quase todos os tipos <strong>de</strong> navios.


3.1. SISTEMAS DE PROPULSÃO 39<br />

Figura 3.6: Propulsores azimutais.<br />

Propulsores cicloidais<br />

Esta solução propulsiva, representada na Fig. 3.7, <strong>de</strong>senvolvida pela Voight a partir duma<br />

i<strong>de</strong>ia inicial <strong>de</strong> Ernst Schnei<strong>de</strong>r, permite gerar impulso <strong>de</strong> magnitu<strong>de</strong> variável em qualquer<br />

direcção. As variações daquele impulso são rápidas, contínuas e precisas, combinando assim<br />

as funções <strong>de</strong> propulsão e governo do navio.<br />

Figura 3.7: Propulsores cicloidais.<br />

O propulsor, colocado no fundo do navio, é composto por um conjunto <strong>de</strong> lâminas paralelas<br />

com movimento <strong>de</strong> rotação, segundo um eixo vertical, com velocida<strong>de</strong> variável. Para gerar o<br />

impulso, cada uma daquelas lâminas tem um movimento oscilante em torno do seu próprio<br />

eixo. O percurso das lâminas vai <strong>de</strong>terminar a força impulsiva gerada, enquanto um ângulo<br />

<strong>de</strong> fase entre 0 ◦ e 360 ◦ vai <strong>de</strong>finir a direcção do impulso. Desta forma, po<strong>de</strong> ser gerada a<br />

mesma força propulsiva em qualquer direcção. A intensida<strong>de</strong> e a direcção da força propulsiva


40<br />

CAPÍTULO 3. PROPULSÃO<br />

são controladas por um conjunto cinemático <strong>de</strong> transmissão mecânica.<br />

Pelas suas características, esta solução apresenta bom <strong>de</strong>sempenho na propulsão <strong>de</strong> rebocadores,<br />

ferries, gran<strong>de</strong>s iates, navios <strong>de</strong> apoio a plataformas petrolíferas e outros navios<br />

especiais.<br />

3.2 Hélices propulsores<br />

O projecto do hélice <strong>de</strong>verá dar resposta às seguintes questões:<br />

- será que o hélice <strong>de</strong>senvolverá a <strong>de</strong>sejada força propulsiva à velocida<strong>de</strong> rpm <strong>de</strong> projecto?<br />

- qual vai ser a eficiência do hélice?<br />

- qual vai ser o <strong>de</strong>sempenho do hélice em condições diferentes das condições <strong>de</strong> projecto?<br />

- será a distribuição <strong>de</strong> pressões favorável à prevenção da cavitação?<br />

- qual será o valor das forças e momentos gerados pelo hélice sobre o veio propulsor e<br />

chumaceiras <strong>de</strong> apoio e <strong>de</strong> impulso?<br />

- qual a pressão induzida pelo funcionamento do hélice no casco do navio, potencialmente<br />

responsável por vibrações e ruído?<br />

Os principais métodos <strong>de</strong> cálculo disponíveis para, <strong>de</strong> alguma forma, dar resposta àquelas<br />

questões são:<br />

- a teoria da quantida<strong>de</strong> <strong>de</strong> movimento;<br />

- a teoria dos elementos <strong>de</strong> pá;<br />

- a teoria da linha sustentadora;<br />

- a teoria da superfície <strong>de</strong> sustentação;<br />

- o método <strong>de</strong> painel;<br />

- as simulações RANSE.<br />

Outro contributo importante para o projecto do hélice vem das séries sistemáticas <strong>de</strong><br />

hélices, para as quais são já conhecidos os principais parâmetros <strong>de</strong> funcionamento em águas<br />

livres.<br />

Por último, há que citar o contributo importante dos ensaios experimentais em mo<strong>de</strong>los<br />

à escala reduzida, os ensaios do hélice em águas livres e o ensaio <strong>de</strong> propulsão.<br />

3.2.1 Geometria do hélice<br />

Na complexa geometria do hélice, conjunto <strong>de</strong> pás distribuídas uniformemente em torno do<br />

cubo montado na extremida<strong>de</strong> do veio, representada esquematicamente na Fig. 3.8, distinguemse<br />

as seguintes áreas, linhas e pontos:<br />

- o bordo <strong>de</strong> ataque (“leading edge”), a linha frontal das pás;<br />

- o bordo <strong>de</strong> fuga (“trailing edge”), a aresta atrás;


3.2.<br />

HÉLICES PROPULSORES 41<br />

Figura 3.8: Geometria do hélice.<br />

- a extremida<strong>de</strong> da pá (“tip”) é o ponto linha ou secção <strong>de</strong> maior raio;<br />

- o dorso (“back”) e a face da pá são, respectivamente, a superfície da pá do lado do veio,<br />

aspiração, e a superfície do lado <strong>de</strong> pressão;<br />

No cubo, com uma forma axisimétrica, unem-se as pás pela sua raiz (“ bla<strong>de</strong> root”).<br />

A geometria do hélice propulsor é caracterizada, entre outras, pelas seguintes dimensões,<br />

também representadas naquela figura:<br />

- diâmetro do hélice (“propeller diameter”), D;<br />

- diâmetro do cubo (“boss (or hub) diameter”), d;<br />

- número <strong>de</strong> pás do hélice (“propeller bla<strong>de</strong> number”), Z;<br />

- passo do hélice (“propeller pitch”), P ;<br />

- área do disco, A 0 = πD 2 /4;<br />

- área projectada, área da projecção das pás num plano normal ao eixo do hélice, A P ;<br />

- área expandida, soma das áreas das faces das pás, A E ;<br />

- <strong>de</strong>slocamento circunferencial (“skew”);<br />

- abatimento axial (“rake”), i G .<br />

3.2.2 Valores característicos<br />

Como parâmetros adimensionais para caracterização dos hélices propulsores po<strong>de</strong>mos apontar:<br />

- a razão entre os diâmetros do cubo e do hélice, d/D;<br />

- a razão entre a área expandida e a área do disco, A E /A 0 , frequentemente <strong>de</strong>signada por<br />

“bla<strong>de</strong> area ratio” (BAR);


42<br />

CAPÍTULO 3. PROPULSÃO<br />

- e a razão entre o passo e o diâmetro do hélice, P/D.<br />

São valores típicos para a razão <strong>de</strong> área expandida 0.3 < A E /A 0 < 1.5. Razões superiores<br />

a 1 significam que o hélice tem pás sobrepostas o que o torna dispendioso. O valor <strong>de</strong><br />

A E /A 0 é selecionado <strong>de</strong> tal forma que a carga das pás seja suficientemente baixa para evitar<br />

uma situação inaceitável <strong>de</strong> cavitação. Quanto mais carregada for a condição <strong>de</strong> funcionamento<br />

prevista para o hélice maior <strong>de</strong>verá ser a razão A E /A 0 consi<strong>de</strong>rada na sua selecção. O<br />

rendimento do hélice diminui com o aumento da razão A E /A 0 .<br />

O número <strong>de</strong> pás Z é um parâmetro muito importante para as vibrações induzidas pelo<br />

hélice. Em geral, um número ímpar <strong>de</strong> pás Z proporciona melhores características no que diz<br />

respeito a vibrações. Maior número <strong>de</strong> pás reduz a vibração, <strong>de</strong>vido aos inferiores picos <strong>de</strong><br />

pressão, mas aumenta os custos <strong>de</strong> fabrico.<br />

Os hélices propulsores para navios são sempre adaptados às características específicas do<br />

navio após exaustivo estudo hidrodinâmico. O número <strong>de</strong> pás está normalmente entre 4 e 7.<br />

Os hélices propulsores para pequenas embarcações, regra geral com o número <strong>de</strong> pás entre 2<br />

e 4, são produzidos em massa.<br />

3.3 Teoria da quantida<strong>de</strong> <strong>de</strong> movimento<br />

A teoria mais simples para representar o funcionamento <strong>de</strong> um hélice propulsor é a teoria da<br />

quantida<strong>de</strong> <strong>de</strong> movimento, também <strong>de</strong>signda por vezes como do disco actuante. Esta teoria<br />

permite relacionar a força propulsiva do hélice com as velocida<strong>de</strong>s induzidas. Tem como<br />

principais hipóteses simplificativas:<br />

- consi<strong>de</strong>rar o escoamento <strong>de</strong> fluido perfeito e incompressível;<br />

- o número <strong>de</strong> pás do hélice é infinito;<br />

- o hélice propulsor exerce uma força axial T que se distribui uniformemente sobre o disco<br />

do hélice <strong>de</strong> diâmetro D;<br />

- o hélice não induz velocida<strong>de</strong> velocida<strong>de</strong> <strong>de</strong> rotação no fluido, ou seja, não há velocida<strong>de</strong><br />

circunferencia induzida.<br />

3.3.1 Força propulsiva<br />

Consi<strong>de</strong>remos o escoamento axisimétrico através do plano do hélice, representado na Fig. 3.9,<br />

e <strong>de</strong>notar por V A a velocida<strong>de</strong> <strong>de</strong> aproximação da água ao hélice e por p ∞ a pressão em<br />

pontos suficientemente afastados quer a vante quer a ré do hélice. Conforme representado,<br />

sendo a água incompressível, a secção do escoamento reduz-se pelo aumento <strong>de</strong> velocida<strong>de</strong><br />

transmitido pelo hélice ao escoamento <strong>de</strong> água. Na figura po<strong>de</strong>mos ainda ver que no disco<br />

existe uma <strong>de</strong>scontinuida<strong>de</strong> <strong>de</strong> pressão ∆p. Esta <strong>de</strong>scontinuida<strong>de</strong>, como resultado do referido<br />

“disco actuante”, gera uma força propulsiva do hélice dada por<br />

T = ∆pA 0 (3.1)<br />

Quanto à distribuição <strong>de</strong> velocida<strong>de</strong>s, vamos consi<strong>de</strong>rar que a velocida<strong>de</strong> no disco é V A +V 0<br />

e, no infinito, a velocida<strong>de</strong> é V A + V ∞ .


3.3. TEORIA DA QUANTIDADE DE MOVIMENTO 43<br />

Figura 3.9: Distribuição espacial <strong>de</strong> velocida<strong>de</strong> e pressão para a teoria da<br />

quantida<strong>de</strong> <strong>de</strong> movimento.<br />

Representando por A −∞ e A ∞ as áreas no infinito, a montante e a juzante, respectivamente,<br />

do tubo <strong>de</strong> corrente que passa pelo disco actuante, para se verificar a conservação <strong>de</strong><br />

massa no escoamento será necessário que,<br />

V a A −∞ = (V a + V 0 ) A 0 = (V a + V ∞ ) A ∞ (3.2)<br />

Então, aquelas áreas, A −∞ e A ∞ estão relacionadas com a área do disco e com a velocida<strong>de</strong><br />

induzida por<br />

e<br />

A −∞ = V a + V 0<br />

V a<br />

A 0 (3.3)<br />

A ∞ = V a + V 0<br />

V a + V ∞<br />

A 0 (3.4)<br />

Aplicando agora o princípio da conservação da quantida<strong>de</strong> <strong>de</strong> movimento ao escoamento<br />

<strong>de</strong> fluido no tubo <strong>de</strong> corrente, obtemos a equação,<br />

T = ρ (V a + V ∞ ) 2 A ∞ − ρV 2<br />

a A −∞ (3.5)<br />

Usando a equação <strong>de</strong> conservação da massa, Eq. (3.2), po<strong>de</strong>mos dizer então que a força<br />

propulsiva T é dada por,<br />

T = ρ (V a + V 0 ) V ∞ A 0 (3.6)<br />

e, que o “salto <strong>de</strong> pressão” no disco actuante vale<br />

∆p = ρ (V a + V 0 ) V ∞ (3.7)


44<br />

CAPÍTULO 3. PROPULSÃO<br />

Por fim, vamos aplicar a equação <strong>de</strong> Bernoulli ao tubo <strong>de</strong> corrente. A montante do disco<br />

temos,<br />

p ∞ + 1 2 ρV 2<br />

a = p 0 + 1 2 ρ (V a + V 0 ) 2 (3.8)<br />

e, a juzante,<br />

p ∞ + 1 2 ρ (V a + V ∞ ) 2 = p 0 + ∆p + 1 2 ρ (V a + V 0 ) 2 (3.9)<br />

Fazendo agora a subtracção das equações, Eq. (3.9) − Eq. (3.8), temos uma nova equação<br />

para avaliar o valor <strong>de</strong> ∆p<br />

(<br />

∆p = ρ V a + 1 )<br />

2 V ∞ V ∞ (3.10)<br />

Naturalmente que o “salto <strong>de</strong> pressão” avaliado pela última equação não po<strong>de</strong> ser diferente<br />

daquele que resulta da Eq. (3.7). Logo,<br />

(<br />

ρ (V a + V 0 ) V ∞ = ρ V a + 1 )<br />

2 V ∞ V ∞ (3.11)<br />

e, então, daqui resulta que a velocida<strong>de</strong> induzida no disco é meta<strong>de</strong> da velocida<strong>de</strong> induzida<br />

na esteira no infinito,<br />

V 0 = 1 2 V ∞ (3.12)<br />

A força propulsiva T obtida no disco actuante po<strong>de</strong> ser calculada, em função da velocida<strong>de</strong><br />

induzida no disco, por<br />

T = πD2<br />

4 ρ (V a + V 0 ) 2V 0 (3.13)<br />

3.3.2 Coeficiente <strong>de</strong> carga<br />

Se <strong>de</strong>finirmos para um hélice propulsor como coeficiente <strong>de</strong> carga, C T ,<br />

C T =<br />

T<br />

π<br />

4 D2 1<br />

2 ρV a<br />

2<br />

e consi<strong>de</strong>rarmos a força propulsiva resultante da teoria do disco actuante, obtém-se<br />

C T = 4 V (<br />

0<br />

1 + V )<br />

0<br />

V a V a<br />

ou, em termos <strong>de</strong> velocida<strong>de</strong> induzida no disco,<br />

V 0<br />

= 1 (−1 + √ )<br />

1 + C T<br />

V a 2<br />

(3.14)<br />

(3.15)<br />

(3.16)


3.4. ENSAIOS COM MODELOS REDUZIDOS DE HÉLICES 45<br />

3.3.3 Rendimento i<strong>de</strong>al do hélice<br />

O rendimento i<strong>de</strong>al do hélice é o rendimento máximo que po<strong>de</strong> ser obtido em fluido perfeito<br />

com um hélice propulsor que não induza velocida<strong>de</strong> <strong>de</strong> rotação no fluido.<br />

Num referencial em repouso no fluido, consi<strong>de</strong>re-se que o hélice avança com velocida<strong>de</strong><br />

V a , exercendo uma força propulsiva T . A potência efectiva do hélice é dada por<br />

P E = T V a (3.17)<br />

A perda <strong>de</strong> energia cinética axial por unida<strong>de</strong> <strong>de</strong> tempo é o fluxo <strong>de</strong> energia por unida<strong>de</strong><br />

<strong>de</strong> tempo através <strong>de</strong> um plano perpendicular à direcção <strong>de</strong> avanço, no infinito, a juzante.<br />

Este fluxo <strong>de</strong> energia é calculado pelo produto do caudal mássico que se escoa pelo tubo <strong>de</strong><br />

corrente pela energia cinética específica,<br />

E˙<br />

p = ρ πD2<br />

4 (V a + V 0 ) × 1 2 V ∞<br />

2<br />

ou seja, consi<strong>de</strong>rando a relação conhecida entre a velocida<strong>de</strong> no disco e na esteira no infinito,<br />

E˙<br />

p = ρ πD2<br />

2 (V a + V 0 ) V0 2<br />

(3.18)<br />

O rendimento i<strong>de</strong>al do hélice propulsor será então dado por<br />

η i =<br />

T V a<br />

T V a + ˙ E p<br />

(3.19)<br />

ou, consi<strong>de</strong>rando (3.13) e (3.18), e simplificando, ficamos com<br />

η i = 1<br />

1 + V 0<br />

V a<br />

(3.20)<br />

3.4 Ensaios com mo<strong>de</strong>los reduzidos <strong>de</strong> hélices<br />

Apesar <strong>de</strong> o hélice ir funcionar numa esteira não-uniforme do navio, são realizados ensaios<br />

para avaliação do seu <strong>de</strong>sempenho numa esteira uniforme, recorrendo ao ensaio em águas<br />

livres <strong>de</strong> um mo<strong>de</strong>lo à escala reduzida do hélice, em condições apropriadas <strong>de</strong> semelhança.<br />

Neste ensaio, o chamado “open water test”, um mo<strong>de</strong>lo do hélice é <strong>de</strong>slocado com a velocida<strong>de</strong><br />

da avanço V a num fluido em repouso. O escoamento <strong>de</strong> aproximação <strong>de</strong>ve ser tão uniforme<br />

quanto possível. Durante o <strong>de</strong>slocamento do hélice este é posto a rodar por um pequeno motor<br />

eléctrico à velocida<strong>de</strong> n (rps) pretendida. O ensaio realiza-se normalmente a uma velocida<strong>de</strong><br />

<strong>de</strong> rotação constante, ou seja, para um dado número <strong>de</strong> Reynolds.<br />

As características propulsivas em águas livres, nomeadamente a força propulsiva T e o<br />

binário Q, são medidas em regime estacionário <strong>de</strong> funcionamento. Depois <strong>de</strong> adimensionalizados,<br />

os valores medidos da força propulsiva e do binário para vários regimes <strong>de</strong> funcionamento<br />

constituem o “diagrama em águas livres” do hélice em questão.<br />

A força propulsiva T e o binário Q disponibilizados por um hélice propulsor <strong>de</strong>pen<strong>de</strong>m <strong>de</strong><br />

várias variáveis:<br />

- a velocida<strong>de</strong> <strong>de</strong> avanço V a ;


46<br />

CAPÍTULO 3. PROPULSÃO<br />

- a velocida<strong>de</strong> <strong>de</strong> rotação n;<br />

- o diâmetro D;<br />

- a massa específica do fluido ρ;<br />

- a viscosida<strong>de</strong> cinemática do fluido ν.<br />

Aplicando a análise dimensional, expressando a <strong>de</strong>pendência dos coeficientes <strong>de</strong> força<br />

propulsiva e <strong>de</strong> binário dos seguintes grupos adimensionais:<br />

ou seja,<br />

- coeficiente <strong>de</strong> avanço, J = V a<br />

nD ;<br />

- e número <strong>de</strong> Reynolds, aqui <strong>de</strong>finido como Re = nD2<br />

ν ;<br />

K T = K T (J, Re) e K Q = K Q (J, Re)<br />

obtêm-se os seguintes expressões para os referidos coeficientes adimensionais:<br />

- coeficiente <strong>de</strong> força propulsiva K T = T<br />

ρn 2 D 4 ;<br />

- coeficiente <strong>de</strong> binário K Q = Q<br />

ρn 2 D 5 .<br />

3.4.1 Diagrama em águas livres<br />

O diagrama em águas livres do hélice integra a representação gráfica da variação dos coeficientes<br />

da força propulsiva, K T , e <strong>de</strong> binário, K Q , com o coeficiente <strong>de</strong> avanço, V a . Um exemplo<br />

<strong>de</strong> diagrama em águas livres está representado na Fig. 3.10.<br />

As curvas traçadas nestes diagramas servem principalmente para a optimização do hélice<br />

e <strong>de</strong>terminação do ponto <strong>de</strong> funcionamento. Na prática, já não são utilizadas aquelas representações<br />

gráficas no projecto <strong>de</strong> hélices, mas sim os polinómios representativos daquelas<br />

evoluções para permitir o cálculo computacional. As tabelas têm cerca <strong>de</strong> 50 coeficientes<br />

para os polinómios relativos à série sistemática <strong>de</strong> hélices <strong>de</strong> Wageningen. Embora o trabalho<br />

inicial <strong>de</strong> registo <strong>de</strong>stes coeficientes seja moroso e fastidioso, os processos <strong>de</strong> cálculo e optimização<br />

posteriores ficam muito facilitados e expeditos pela utilização <strong>de</strong> programas ou folhas<br />

<strong>de</strong> cálculo. A importância da representação gráfica está actualmente restrita à verificação<br />

da tendência <strong>de</strong> variação do <strong>de</strong>sempenho do hélice com a alteração <strong>de</strong> algumas condições<br />

operacionais.<br />

3.4.2 Rendimento<br />

Definindo o rendimento <strong>de</strong> um hélice propulsor como sendo a razão entre a potência efectiva<br />

e a potência fornecida pelo veio ao hélice, o rendimento em águas livres é calculado por<br />

η 0 = P E<br />

P D<br />

=<br />

V aT<br />

2πnQ<br />

(3.21)


3.5.<br />

SÉRIES SISTEMÁTICAS 47<br />

Figura 3.10: Diagrama <strong>de</strong> águas livres.<br />

a partir das medições observadas durante o ensaio.<br />

Ou, se quisermos expressá-lo em termos dos coeficientes adimensionais, po<strong>de</strong>mos obter,<br />

η 0 = JK T<br />

2πK Q<br />

(3.22)<br />

3.4.3 Índice <strong>de</strong> qualida<strong>de</strong><br />

A qualida<strong>de</strong> <strong>de</strong> um propulsor não fica bem caracterizada apenas pelo seu rendimento máximo.<br />

O índice <strong>de</strong> qualida<strong>de</strong>, que permite caracterizar melhor um hélice para uma dada aplicação<br />

específica, é dado por<br />

q = η 0<br />

η i<br />

(3.23)<br />

em que η 0 é o rendimento em águas livres e η i é o rendimento i<strong>de</strong>al.<br />

Como C T = 8K T<br />

, substituindo em (3.23):<br />

πJ 2<br />

(<br />

q =<br />

K √ )<br />

T<br />

J + J<br />

4πK 2 + 8<br />

Q π K T<br />

(3.24)<br />

3.5 Séries sistemáticas<br />

Uma série sistemática <strong>de</strong> hélices é um conjunto <strong>de</strong> hélices obtidos por variação sistemática <strong>de</strong><br />

parâmetros geométricos. Ao longo <strong>de</strong> décadas, por todo o mundo têm sido realizados ensaios<br />

em séries sistemáticas <strong>de</strong> propulsores para navios. As principais características <strong>de</strong> alguns<br />

exemplos <strong>de</strong> séries sistemáticas <strong>de</strong> hélices propulsores simples <strong>de</strong> passo fixo estão incluídas na<br />

Tab. 3.1.<br />

O principal objectivo perseguido na realização dos ensaios sistemáticos nestes conjuntos<br />

<strong>de</strong> hélices é criar uma base <strong>de</strong> dados que permita ajudar o projectista a enten<strong>de</strong>r os principais


48<br />

CAPÍTULO 3. PROPULSÃO<br />

Série N o Z A E /A 0 P/D D(mm)<br />

Wageningen B ≈ 120 2 − 7 0, 3 − 1, 05 0, 5 − 1, 4 250<br />

Au 34 4 − 7 0, 4 − 0, 758 0, 5 − 1, 2 250<br />

Gawn 37 3 0, 2 − 1, 1 0, 4 − 2, 0 508<br />

KCA ≈ 30 3 0, 50 − 1, 25 0, 6 − 2, 0 406<br />

Ma 32 3 e 5 0, 75 − 1, 20 1, 0 − 1, 45 250<br />

Newton-Ra<strong>de</strong>r 12 3 0, 5 − 1, 0 1, 05 − 2, 08 254<br />

KCD 24 3 − 6 0, 44 − 0, 80 0, 6 − 1, 6 406<br />

Meridian 20 6 0, 45 − 1, 05 0, 4 − 1, 2 305<br />

Tabela 3.1: Séries sistemáticas <strong>de</strong> propulsores.<br />

factores que influenciam o <strong>de</strong>sempenho do hélice, bem como a ocorrência <strong>de</strong> cavitação, em<br />

várias condições <strong>de</strong> funcionamento. Um segundo objectivo é a construção <strong>de</strong> diagramas que<br />

permitam ajudar à selecção das características mais apropriadas para uma dada aplicação à<br />

escala do navio.<br />

3.5.1 Série sistemática <strong>de</strong> Wageningen<br />

Uma das séries sistemáticas <strong>de</strong> hélices propulsores mais populares é a série B <strong>de</strong> Wageningen.<br />

Esta série, em que os trabalhos iniciais datam <strong>de</strong> 1940, será talvez a mais vasta. As principais<br />

características <strong>de</strong>stes hélices são:<br />

- ter distribuição radial do passo constante;<br />

- um pequeno <strong>de</strong>slocamento circunferencial (“skew”);<br />

- distribuição radial do abatimento axial (“rake”) linear 15 ◦ ;<br />

- contorno largo da pá junto à extremida<strong>de</strong>;<br />

- secção das pás NSMB, indicada na Fig. 3.11.<br />

Figura 3.11: Aspecto geométrico das pás da série B <strong>de</strong> Wageningen<br />

Os parâmetros cuja variação sistemática foi consi<strong>de</strong>rada na realização <strong>de</strong>sta série foram<br />

os seguintes:


3.5.<br />

SÉRIES SISTEMÁTICAS 49<br />

- o número <strong>de</strong> pás: 2 ≤ Z ≤ 7;<br />

- a razão <strong>de</strong> área expandida: 0.3 ≤ A E /A 0 ≤ 1.05;<br />

- a razão passo-diâmetro: 0.5 ≤ P/D ≤ 1.4.<br />

A nomenclatura dos hélices <strong>de</strong>sta série, consi<strong>de</strong>rando a título <strong>de</strong> exemplo um hélice B-4.85,<br />

é a seguinte:<br />

- Série B;<br />

- Número <strong>de</strong> pás: 4;<br />

- razão <strong>de</strong> área expandida: 0.85.<br />

Para cada caso existe um diagrama, ou uma tabela com os já referidos coeficientes polinomiais,<br />

com as curvas características dos diagrams <strong>de</strong> águas livres, para diferentes razões<br />

passo-diâmetro, P/D. Na Fig. 3.12 está representado o caso dos hélices com duas pás, razão<br />

<strong>de</strong> área expandida 0, 3 e razão passo-diâmetro compreendida entre 0, 5 e 1, 4.<br />

3.5.2 Outras séries sistemáticas<br />

A série sistemática <strong>de</strong> hélices propulsores Au é muito popular no Japão mas, fora <strong>de</strong>le, não<br />

conseguiu uma divulgação semelhante à série <strong>de</strong> Wageningen po<strong>de</strong>ndo, no entanto, consi<strong>de</strong>rarse<br />

como uma série complementar daquela.<br />

A série Gawn apresenta como característica distintiva o maior diâmetro dos hélices que<br />

a integram. Isto significa que muitos dos efeitos <strong>de</strong> escala presentes nas outras séries foram<br />

aqui evitados ou, pelo menos, reduzidos. A série KCA, também <strong>de</strong>signada por vezes como<br />

Gawn-Burrill, é complementar da série <strong>de</strong> Gawn. São 30 hélices com 3 pás, também com<br />

gran<strong>de</strong> diâmetro, 400mm. Esta série foi ensaiada num tanque <strong>de</strong> cavitação, e não num tanque<br />

<strong>de</strong> reboque, a diferentes números <strong>de</strong> cavitação e, consequentemente, permite verificar num<br />

<strong>de</strong>terminado projecto <strong>de</strong> aplicação os aspectos relacionados com o fenómeno da cavitação.<br />

Os hélices da série <strong>de</strong> Lindgren, série Ma, são mais pequenos, 250mm, e as suas pás<br />

têm passo constante. Foram testados num tanque <strong>de</strong> reboque e num tanque <strong>de</strong> cavitação e,<br />

assim, resultou dos ensaios um extenso e integrado conjunto <strong>de</strong> dados a<strong>de</strong>quado para a fase<br />

preliminar do projecto.<br />

A série <strong>de</strong> Newton-Ra<strong>de</strong>r compreen<strong>de</strong> um conjunto limitado <strong>de</strong> 12 hélices com três pás<br />

vocacionados para a propulsão <strong>de</strong> embarcações rápidas.<br />

Para além <strong>de</strong>stas séries sistemáticas <strong>de</strong> hélices simples, existem também alguns estudos<br />

relativos a formas particulares <strong>de</strong> hélices como, por exemplo, as séries <strong>de</strong> hélices contrarotativos<br />

do MARIN e SSPA, ou a série <strong>de</strong> Wageningen <strong>de</strong> hélices com tubeira.


50<br />

CAPÍTULO 3. PROPULSÃO<br />

Figura 3.12: Diagrama em águas livres <strong>de</strong> um hélice da série sistemática<br />

<strong>de</strong> Wageningen.


3.5.<br />

SÉRIES SISTEMÁTICAS 51<br />

3.5.3 Diagrama <strong>de</strong> 4 quadrantes<br />

No caso dos hélices <strong>de</strong> passo fixo, a forma convencional <strong>de</strong> operação do hélice, velocida<strong>de</strong> <strong>de</strong><br />

rotação positiva e velocida<strong>de</strong> <strong>de</strong> avanço nula ou positiva, correspon<strong>de</strong> ao funcionamento no<br />

primeiro quadrante do diagrama <strong>de</strong> funcionamento.<br />

No diagrama completo, ver Fig. 3.13, necessário por exemplo para estudar a manobrabilida<strong>de</strong><br />

do navio ou o seu <strong>de</strong>sempenho em marcha a ré, estão <strong>de</strong>finidos quatro quadrantes, <strong>de</strong><br />

acordo o ângulo <strong>de</strong> avanço,<br />

(<br />

)<br />

β = tan −1 V a<br />

(3.25)<br />

0, 7 · π · n · D<br />

Figura 3.13: Notação do diagrama com 4 quadrantes.<br />

Como já referido, o primeiro quadrante correspon<strong>de</strong> a:<br />

- velocida<strong>de</strong> <strong>de</strong> rotação do hélice correspon<strong>de</strong>nte à marcha a vante;<br />

- velocida<strong>de</strong> do navio a vante;<br />

- ou seja, ângulo <strong>de</strong> avanço 0 ≤ β ≤ 90 ◦ .<br />

O segundo quadrante correspon<strong>de</strong> a:<br />

- velocida<strong>de</strong> <strong>de</strong> rotação do hélice correspon<strong>de</strong>nte à marcha a ré;<br />

- velocida<strong>de</strong> do navio a vante;<br />

- ou seja, ângulo <strong>de</strong> avanço 90 ◦ < β ≤ 180 ◦ .<br />

No terceiro quadrante, as condições <strong>de</strong> operação do hélice são:<br />

- velocida<strong>de</strong> <strong>de</strong> rotação do hélice correspon<strong>de</strong>nte à marcha a ré;


52<br />

CAPÍTULO 3. PROPULSÃO<br />

- velocida<strong>de</strong> do navio a ré;<br />

- ou seja, ângulo <strong>de</strong> avanço 180 ◦ < β ≤ 270 ◦ .<br />

E, por fim, no quarto quadrante temos naturalmente:<br />

- velocida<strong>de</strong> <strong>de</strong> rotação do hélice correspon<strong>de</strong>nte à marcha a vante;<br />

- velocida<strong>de</strong> do navio a ré;<br />

- ou seja, ângulo <strong>de</strong> avanço 270 ◦ < β < 360 ◦ .<br />

Se existirem dados experimentais suficientes torna-se possível <strong>de</strong>finir uma função para<br />

estimar o <strong>de</strong>sempenho do hélice, no que diz respeito à força propulsiva e ao binário, nos<br />

quatro quadrantes do diagrama em águas livres. Um exemplo <strong>de</strong> um diagrama <strong>de</strong>ste tipo,<br />

multi-quadrante, está representado na Fig. 3.14, relativo aos hélices da série <strong>de</strong> Wageningen<br />

B4-70 com relação P/D entre 0, 5 e 1, 4.<br />

Justifica-se a introdução <strong>de</strong> uma notação para obter maior flexibilida<strong>de</strong> para trabalhar<br />

nestes diagramas multi-quadrante. De notar que para β = 90 ◦ ou β = 270 ◦ , situações em<br />

que a velocida<strong>de</strong> <strong>de</strong> rotação do hélice é nula, o coeficiente <strong>de</strong> avanço resultaria J = ∞. De<br />

forma semelhante, para prevenir o mesmo tipo <strong>de</strong> situações, são também <strong>de</strong>finidos os seguintes<br />

coeficientes:<br />

- coeficiente <strong>de</strong> força propulsiva modificado,<br />

CT ∗ T<br />

=<br />

(3.26)<br />

1<br />

2 ρV RA 2 0<br />

- coeficiente <strong>de</strong> binário modificado,<br />

CQ ∗ Q<br />

=<br />

1<br />

2 ρV RA 2 0 D<br />

(3.27)<br />

em que V R é a velocida<strong>de</strong> relativa <strong>de</strong> avanço para 0, 7R, ou seja,<br />

e<br />

CT ∗ T<br />

= π<br />

[<br />

8 ρ Va 2 + (0, 7πnD) 2] (3.28)<br />

D 2<br />

CQ ∗ Q<br />

= π<br />

[<br />

8 ρ Va 2 + (0, 7πnD) 2] (3.29)<br />

D 3<br />

Na Fig. 3.14 po<strong>de</strong>-se ver o efeito que a razão P/D tem no coeficiente <strong>de</strong> binário CQ<br />

∗<br />

para praticamente toda a gama <strong>de</strong> β. Em particular, é nos intervalos 40 ◦ < β < 140 ◦ e<br />

230 ◦ < β < 340 ◦ que a magnitu<strong>de</strong> <strong>de</strong> CQ ∗ varia mais significativamente.


3.6.<br />

CAVITAÇÃO 53<br />

Figura 3.14: Diagrama em águas livres <strong>de</strong> 4 quadrantes para os hélices<br />

Wageningen B-4.70.<br />

3.6 Cavitação<br />

3.6.1 Origem da cavitação<br />

A velocida<strong>de</strong> elevada do escoamento <strong>de</strong> água pelo hélice provoca regiões com baixa pressão.<br />

Se a pressão cair o suficiente, formar-se-ão cavida<strong>de</strong>s preenchidas com vapor. Estas cavida<strong>de</strong>s<br />

<strong>de</strong>saparecerão quando a pressão aumentar. O crescimento e o colapso <strong>de</strong>stas “bolhas” é<br />

extremamente rápido.<br />

A cavitação envolve fenómenos físicos complexos uma vez que se trata <strong>de</strong> escoamentos a<br />

duas fases, com mo<strong>de</strong>lação não-linear. Nos hélices dos navios, a velocida<strong>de</strong> em torno das pás<br />

po<strong>de</strong> ser suficiente para reduzir a localmente a pressão e <strong>de</strong>senca<strong>de</strong>ar a cavitação. Devido à<br />

pressão hidrostática, a pressão total será superior nas imediações da pá que se encontre com<br />

a máxima imersão (posição 06:00) do que naquela que se encontra na posição 12:00. Assim,<br />

as pás dos hélices em cavitação alternadamente passarão por regiões em que ten<strong>de</strong>ncialmente<br />

se formarão bolhas <strong>de</strong> cavitação e regiões on<strong>de</strong> as mesmas ten<strong>de</strong>rão a colapsar.<br />

Esta rápida sucessão <strong>de</strong> explosões e implosões nas proximida<strong>de</strong>s das pás do hélice tem<br />

várias consequências nefastas. As principais são:<br />

- vibração;


54<br />

CAPÍTULO 3. PROPULSÃO<br />

Figura 3.15: Efeito da cavitação no valor dos parâmetros relativos a águas<br />

livres.<br />

- ruído;<br />

- erosão da superfície das pás (sobretudo se o colapso das bolhas ocorrer na proximida<strong>de</strong>);<br />

- redução da força propulsiva.<br />

No diagrama em águas livres da Fig. 3.15 está assinalada a redução que é tipicamente<br />

provocada pela cavitação nos coeficientes <strong>de</strong> força propulsiva e binário.<br />

3.6.2 Controle da cavitação<br />

Num meio i<strong>de</strong>al, água sem impurezas ou ar dissolvido, a cavitação ocorrerá quando a pressão<br />

total atingir localmente a pressão <strong>de</strong> vapor a essa temperatura. Na prática, a cavitação iniciase<br />

para valores <strong>de</strong> pressão superiores pela presença <strong>de</strong> partículas microscópicas e da existência<br />

<strong>de</strong> ar dissolvido na água que facilitam e precipitam o início do processo <strong>de</strong> vaporização.<br />

O número <strong>de</strong> cavitação σ é um parâmetro adimensional que estima a possibilida<strong>de</strong> <strong>de</strong><br />

aparecimento do fenómeno <strong>de</strong> cavitação num escoamento,<br />

em que:<br />

σ = p 0 − p<br />

1<br />

2 ρ V 0<br />

2<br />

- p 0 é a pressão ambiente <strong>de</strong> referência;<br />

- p é a pressão local;<br />

- e V 0 é a velocida<strong>de</strong> <strong>de</strong> referência correspon<strong>de</strong>nte.<br />

(3.30)


3.6.<br />

CAVITAÇÃO 55<br />

Figura 3.16: Pressão <strong>de</strong> vapor da água em função da temperatura.<br />

Para σ inferior a σ v , o número <strong>de</strong> cavitação avaliado para a pressão <strong>de</strong> vapor p v , não<br />

ocorrerá cavitação num fluido i<strong>de</strong>al. Na prática, é necessário consi<strong>de</strong>rar um coeficiente <strong>de</strong><br />

segurança, consi<strong>de</strong>rando uma pressão limite superior à pressão <strong>de</strong> vapor.<br />

Para um hélice é habitual <strong>de</strong>finir o número <strong>de</strong> cavitação σ n como:<br />

σ n =<br />

p 0 − p<br />

1<br />

2 ρ n2 D 2 (3.31)<br />

adoptando-se como velocida<strong>de</strong> característica nD.<br />

3.6.3 Consi<strong>de</strong>ração da cavitação na selecção do hélice<br />

O fenómeno da cavitação é predominantemente dominado pelo campo <strong>de</strong> pressão no escoamento<br />

da água pelo plano do hélice. Prevenir a cavitação passa consequentemente pelo<br />

controlo da mínima pressão absoluta naquele escoamento. A possibilida<strong>de</strong> <strong>de</strong> ocorrência <strong>de</strong><br />

cavitação é evitada pela distribuição da força propulsiva por uma área maior, aumentando o<br />

diâmetro do hélice ou a razão da área expandida A E / A 0 . A forma mais usual <strong>de</strong> estimar,<br />

ainda que <strong>de</strong> uma forma não completamente rigorosa, o perigo <strong>de</strong> ocorrência da cavitação<br />

passa pela utilização do diagrama <strong>de</strong> Burrill (Fig. 3.17). O diagrama indica um limite inferior<br />

para a área projectada do hélice <strong>de</strong> um navio mercante. Nos eixos do diagrama <strong>de</strong> Burrill estão<br />

o número <strong>de</strong> cavitação, em abcissas, e o coeficiente <strong>de</strong> Burrill nas or<strong>de</strong>nadas. O coeficiente


56<br />

CAPÍTULO 3. PROPULSÃO<br />

Figura 3.17: Diagrama <strong>de</strong> Burrill.<br />

<strong>de</strong> Burrill é calculado por<br />

τ c =<br />

T<br />

q 0,7R A p<br />

(3.32)<br />

em que, A p é a área projectada do hélice, e o parâmetro q 0,7R é dado por<br />

q 0,7R = 1 2 ρ V 2 R<br />

em que V R é o valor absoluto da velocida<strong>de</strong> local a 0, 7 do raio do hélice, ou seja,<br />

√<br />

V R = Va 2 + (0, 7 π nD ) 2<br />

com V a a velocida<strong>de</strong> <strong>de</strong> entrada do escoamento no plano do hélice.<br />

Nos hélices da série <strong>de</strong> Wageningen, a área expandida está relacionada com a área projectada<br />

por<br />

A E =<br />

A P<br />

1, 067 − 0, 229P/D<br />

(3.33)<br />

3.6.4 Ensaios experimentais<br />

Os ensaios <strong>de</strong> cavitação, bem como frequentemente os ensaios em águas livres, realizam-se em<br />

instalações que compreen<strong>de</strong>m um canal fechado na qual é imposta a circulação da água por<br />

um impulsor. Na Fig. 3.18 está representada esquematicamente uma instalação <strong>de</strong>ste tipo.<br />

Estes túneis são concebidos por forma a proporcionar um escoamento tão uniforme quanto<br />

possível na secção <strong>de</strong> teste. A secção <strong>de</strong> teste, o troço horizontal superior, dispõe <strong>de</strong> visores<br />

para inspecção e vizualização do escoamento. O impulsor para a circulação da água está


3.6.<br />

CAVITAÇÃO 57<br />

Figura 3.18: Instalações <strong>de</strong> ensaio do RINA.<br />

colocado no troço inferior horizontal para garantir que, mesmo quando a pressão no tanque<br />

for reduzida, a coluna hidrostática vai impedir a cavitação neste propulsor.<br />

Normalmente, a pressão é reduzida por bombas <strong>de</strong> vácuo para ajuste do número <strong>de</strong> cavitação<br />

e a instalação dispõe <strong>de</strong> equipamento para reduzir o ar dissolvido na água. Po<strong>de</strong>m ser<br />

instaladas “grelhas metálicas” para induzir a turbulência <strong>de</strong>sejada no escoamento.<br />

Os hélices em teste são sujeitos a iluminação estroboscópica por forma a serem “vistos”<br />

sempre com as pás na mesma posição. Obtém-se assim uma visualização do padrão <strong>de</strong> cavitação<br />

“estacionária”.<br />

O funcionamento do hélice tem alguns pontos característicos que se passa a i<strong>de</strong>ntificar. A<br />

primeira <strong>de</strong>stas situações acontece quando o motor eléctrico faz rodar o veio do hélice a uma<br />

velocida<strong>de</strong> n mantendo-se a velocida<strong>de</strong> <strong>de</strong> avanço nula, ou seja V a = 0. Nestas condições,<br />

verifica-se J = 0 e η = 0, e diz-se que o hélice funciona a ponto fixo. Se em seguida se<br />

fizer avançar o hélice a uma velocida<strong>de</strong> V a , mantendo a mesma velocida<strong>de</strong> <strong>de</strong> rotação, este<br />

<strong>de</strong>senvolverá um impulso T e absorverá um certo momento Q. Esta fase é a fase propulsora,<br />

utilizada para a propulsão dos navios. Continuando a aumentar o coeficiente <strong>de</strong> impulso por<br />

diminuição da velocida<strong>de</strong> <strong>de</strong> rotação n, o impulso vai diminuindo até o hélice chegar ao ponto<br />

<strong>de</strong> impulso nulo. Inicia-se a fase <strong>de</strong> travagem, até um ponto, no qual o hélice trabalha em<br />

concordância com o coeficiente <strong>de</strong> avanço J, com K Q = 0, hélice livre. Um hélice livre opõe<br />

resistência ao avanço. Continuando a reduzir a velocida<strong>de</strong> <strong>de</strong> rotação do hélice e mantendo<br />

V a , entra-se na fase motora, em que o hélice po<strong>de</strong>ria fornecer energia. Quando a velocida<strong>de</strong><br />

do hélice for nula, o hélice diz-se bloqueado.


58<br />

CAPÍTULO 3. PROPULSÃO<br />

Figura 3.19: Imagem da cavitação num hélice.<br />

3.7 Selecção do hélice<br />

No cálculo do hélice procura-se a optimização das principais variáveis, número e área das<br />

pás, diâmetro, velocida<strong>de</strong> <strong>de</strong> rotação e passo, por forma a que a propulsão se faça com bom<br />

rendimento em todas as condições <strong>de</strong> carga do navio. É possível obter uma boa estimativa<br />

das características <strong>de</strong> funcionamento do hélice utilizando uma das várias séries sistemáticas<br />

referenciadas. As variáveis <strong>de</strong> optimização do hélice são <strong>de</strong>scritas sucintamente nos parágrafos<br />

seguintes.<br />

3.7.1 Variáveis <strong>de</strong> optimização<br />

Diâmetro<br />

O rendimento do hélice aumenta o diâmetro do mesmo, estando no entanto a dimensão<br />

<strong>de</strong>ste limitada pela geometria da popa. Deve-se referir no entanto que o aumento do diâmetro<br />

<strong>de</strong> hélice provoca vibrações mais fortes e a redução do rendimento do casco. As socieda<strong>de</strong>s<br />

classificadoras têm normas próprias para <strong>de</strong>finir valores mínimos <strong>de</strong> folga entre o hélice e o<br />

casco do navio.<br />

O diâmetro máximo do hélice é normalmente consi<strong>de</strong>rado como uma fracção do calado<br />

máximo do navio,<br />

D max = a T (3.34)<br />

<strong>de</strong>pen<strong>de</strong>nte do tipo <strong>de</strong> navio, conforme indicado na Tab. 3.2.<br />

Para compensar a não uniformida<strong>de</strong> do escoamento <strong>de</strong> aproximação ao hélice quando este<br />

se encontra atrás da querena, o diâmetro equivalente em águas livres é consi<strong>de</strong>rado como:<br />

D 0 =<br />

D<br />

1 − b<br />

(3.35)<br />

em que b toma os valores constantes na Tab. 3.3.


3.7.<br />

SELECÇÃO DO HÉLICE 59<br />

Tipo <strong>de</strong> Navio a<br />

Graneleiros/Petroleiros


60<br />

CAPÍTULO 3. PROPULSÃO<br />

No entanto, a curvatura, o ângulo <strong>de</strong> ataque e a espessura das têm também uma gran<strong>de</strong><br />

importância no controle da cavitação. A maior espessura das pás favorece a cavitação nas costas<br />

das pás enquanto que as pás pouco espessas têm maior propensão para gerarem cavitação<br />

no bordo <strong>de</strong> ataque.<br />

Quanto ao rendimento, ele é favorecido pela diminuição da corda das pás, ou seja da sua<br />

área, mas por razões estruturais, esta redução tem que ser acompanhada por um aumento <strong>de</strong><br />

espessura que vai provocar um aumento da resistência <strong>de</strong> forma.<br />

A utilização apropriada do <strong>de</strong>svio circunferencial das pás do hélice (“skew”) permite controlar<br />

muito eficazmente a cavitação e a vibração induzida tendo apenas como contrapartida<br />

uma redução do rendimento do hélice em marcha a ré.<br />

3.7.2 Tipos <strong>de</strong> problema<br />

É possível obter uma boa estimativa das características <strong>de</strong> funcionamento do hélice utilizando<br />

uma das várias séries sistemáticas referenciadas. Uma vez <strong>de</strong>terminado o número e a área<br />

das pás, resta a <strong>de</strong>terminar a combinação do passo e do coeficiente <strong>de</strong> avanço que permite<br />

optimizar o rendimento do hélice. De acordo com o tipo <strong>de</strong> problema em causa, po<strong>de</strong>mos<br />

consi<strong>de</strong>rar várias situações. Quando a potência e a velocida<strong>de</strong> <strong>de</strong> rotação são conhecidas, da<br />

eliminação do diâmetro resulta a seguinte equação:<br />

K Q<br />

J 5 = P Dn 2<br />

2πρV 5 a<br />

(3.37)<br />

Quando a potência e o diâmetro do hélice estão <strong>de</strong>terminados, a eliminação da velocida<strong>de</strong><br />

<strong>de</strong> rotação permite estabelecer:<br />

K Q<br />

J 3 = P D<br />

2πρD 2 V 3 a<br />

(3.38)<br />

Sendo prescritas a força propulsiva e a velocida<strong>de</strong> <strong>de</strong> rotação, a eliminação do diâmetro<br />

conduz à equação:<br />

K T<br />

J 4<br />

= T n2<br />

ρV 4 a<br />

(3.39)<br />

Por fim, quando são conhecidos o diâmetro do hélice e a força propulsiva, a eliminação da<br />

velocida<strong>de</strong> <strong>de</strong> rotação permite estabelecer a seguinte relação:<br />

K T<br />

J 2 = T<br />

ρD 2 V 2 a<br />

3.8 Interacção entre casco e hélice<br />

(3.40)<br />

Os ensaios <strong>de</strong> hélices à escala reduzida em águas livres, conseguindo efectuar uma avaliação<br />

preliminar das características propulsivas <strong>de</strong> um hélice, não permitem uma previsão do seu<br />

<strong>de</strong>sempenho numa dada aplicação específica, porque, na realida<strong>de</strong>, o hélice não vai operar em<br />

águas livres mas sim atrás do navio.<br />

As características <strong>de</strong> um hélice trabalhando atrás <strong>de</strong> um navio a uma dada velocida<strong>de</strong><br />

diferem consi<strong>de</strong>ravelmente das características obtidas em ensaios com mo<strong>de</strong>los em águas livres,<br />

à velocida<strong>de</strong> correspon<strong>de</strong>nte, <strong>de</strong>vido aos seguintes factores:


3.8.<br />

INTERACÇÃO ENTRE CASCO E HÉLICE 61<br />

- a velocida<strong>de</strong> da água na esteira do navio é menor que a velocida<strong>de</strong> do navio;<br />

- a não-uniformida<strong>de</strong> da esteira do navio afecta a distribuição das forças aplicadas nas<br />

pás do hélice;<br />

- a aceleração da água pelo hélice reduz a pressão sobre o casco e, consequentemente<br />

aumentando a resistência efectiva da querena.<br />

3.8.1 Ensaios <strong>de</strong> propulsão<br />

Os ensaios <strong>de</strong> propulsão têm por objectivo <strong>de</strong>terminar, para cada velocida<strong>de</strong> <strong>de</strong> rotação, a<br />

potência propulsiva e a consequente velocida<strong>de</strong> do navio. Os resultados dos ensaios permitem<br />

também a <strong>de</strong>terminação dos coeficientes <strong>de</strong> <strong>de</strong>dução da força propulsiva e da velocida<strong>de</strong> da<br />

esteira necessários para a selecção ou projecto do hélice. O mo<strong>de</strong>lo é equipado com um<br />

hélice pré-seleccionado <strong>de</strong> acordo com as necessida<strong>de</strong>s operacionais previstas para o navio. A<br />

optimização a partir <strong>de</strong>ste hélice-base <strong>de</strong>correrá a partir dos resultados obtidos neste ensaio<br />

<strong>de</strong> auto-propulsão. O accionamento <strong>de</strong>ste hélice é normalmente realizado por um pequeno<br />

motor eléctrico, conforme representado esquematicamente na Fig. 3.20.<br />

Figura 3.20: Mo<strong>de</strong>lo para ensaios <strong>de</strong> propulsão.<br />

As condições <strong>de</strong> realização do ensaio <strong>de</strong> propulsão contemplam:<br />

- semelhança geométrica;<br />

- semelhança cinemática;<br />

- semelhança <strong>de</strong> Frou<strong>de</strong>;<br />

- igual número <strong>de</strong> cavitação.<br />

Pelas razões apontadas anteriormente, não é possível acumular com aquelas condicionantes<br />

a igualda<strong>de</strong> do número <strong>de</strong> Reynolds. Assim, existem efeitos <strong>de</strong> escala a consi<strong>de</strong>rar na<br />

extrapolação dos resultados para a escala do navio.<br />

O primeiro efeito <strong>de</strong> escala a consi<strong>de</strong>rar no ensaio <strong>de</strong> propulsão é o efeito <strong>de</strong> escala na<br />

resistência. O coeficiente <strong>de</strong> resistência total é superior no teste do mo<strong>de</strong>lo ao que se verificará<br />

no navio porque o coeficiente <strong>de</strong> resistência <strong>de</strong> atrito diminui com o aumento do número


62<br />

CAPÍTULO 3. PROPULSÃO<br />

<strong>de</strong> Reynolds. Este efeito resultante da variação do número <strong>de</strong> Reynolds é resolvido pela<br />

aplicação <strong>de</strong> uma força <strong>de</strong> compensação. A intensida<strong>de</strong> da força <strong>de</strong> compensação necessária<br />

F D é <strong>de</strong>terminada por,<br />

F D = 1 2 ρ · V 2 m · S m · ((1 + k) (c F m − c F s ) − c A − c AA ) (3.41)<br />

O hélice tem portanto que produzir uma força propulsiva igual à resistência total R T menos<br />

a força <strong>de</strong> compensação F D .<br />

Outro efeito <strong>de</strong> escala a consi<strong>de</strong>rar no ensaio <strong>de</strong> propulsão diz respeito à esteira. A<br />

espessura da camada limite e esteira do mo<strong>de</strong>lo é relativamente maior que a correspon<strong>de</strong>nte<br />

espessura no navio. Ou seja, o coeficiente <strong>de</strong> esteira do mo<strong>de</strong>lo é maior que o do navio. A<br />

velocida<strong>de</strong> média <strong>de</strong> aproximação ao hélice, adimensionalizada pela velocida<strong>de</strong> do mo<strong>de</strong>lo, é<br />

menor que a correspon<strong>de</strong>nte velocida<strong>de</strong> adimensionalizada do navio.<br />

Por último, <strong>de</strong>verá ser consi<strong>de</strong>rado o efeito <strong>de</strong> escala nas características propulsivas do<br />

hélice. De facto, o número <strong>de</strong> Reynolds do hélice no mo<strong>de</strong>lo é menor que no hélice do navio<br />

e os coeficientes <strong>de</strong> força propulsiva e <strong>de</strong> binário são diferentes.<br />

Na realização dos ensaios <strong>de</strong> propulsão é normalmente mantida a velocida<strong>de</strong> do “carro” <strong>de</strong><br />

reboque constante e é variada a velocida<strong>de</strong> <strong>de</strong> rotação do hélice até ser obtida uma condição<br />

<strong>de</strong> equilíbrio. São assim obtidos dados <strong>de</strong> força propulsiva e binário em função da velocida<strong>de</strong>.<br />

Adicionalmente, po<strong>de</strong>m ainda ser registados dados sobre o calado e o caimento do mo<strong>de</strong>lo<br />

durante o ensaio.<br />

O ponto <strong>de</strong> auto-propulsão do mo<strong>de</strong>lo é encontrado quando as forças exteriores sobre o<br />

mo<strong>de</strong>lo são nulas. O ensaio é realizado com o número <strong>de</strong> Frou<strong>de</strong> do navio, fazendo variar a<br />

velocida<strong>de</strong> <strong>de</strong> rotação do hélice até que a força <strong>de</strong> reboque se anule. Nesta situação, a força<br />

propulsiva iguala a resistência da querena, alterada pela presença <strong>de</strong> hélice. Para compensar<br />

a diferença no coeficiente <strong>de</strong> resistência do navio e do mo<strong>de</strong>lo, é aplicada a força adicional <strong>de</strong><br />

reboque F D <strong>de</strong>terminada pela Eq. (3.41). É portanto mais correcto afirmar que no ponto <strong>de</strong><br />

auto-propulsão do mo<strong>de</strong>lo, a única força exterior aplicada ao mo<strong>de</strong>lo é a força F D .<br />

Para além do chamado ensaio <strong>de</strong> auto-propulsão, realizam-se os ensaios em sobrecarga.<br />

Cada ensaio em sobrecarga realiza-se também com o hélice a operar atrás do mo<strong>de</strong>lo com este<br />

a ser rebocado a velocida<strong>de</strong> constante. Faz-se variar a velocida<strong>de</strong> <strong>de</strong> rotação do hélice e, para<br />

cada uma das velocida<strong>de</strong>s ensaiadas n m regista-se a força <strong>de</strong> reboque F m , a força propulsiva<br />

T m e o binário Q m . Po<strong>de</strong>-se encontrar também o ponto <strong>de</strong> auto-propulsão do mo<strong>de</strong>lo por<br />

interpolação nos resultados dos ensaios em sobrecarga, mais concretamente interpolando na<br />

curva da força <strong>de</strong> reboque em função da velocida<strong>de</strong> <strong>de</strong> rotação, para o valor requerido <strong>de</strong> F D .<br />

3.8.2 Potência e velocida<strong>de</strong><br />

A potência efectiva P E , potência necessária para rebocar a querena, sem os apêndices associados<br />

à propulsão, à velocida<strong>de</strong> V s , é obtida por<br />

em que:<br />

P E = R T · V s (3.42)<br />

- R T é a resistência total em águas livres excluindo a resistência adicional dos apêndices<br />

associados à propulsão;<br />

- e V s é a velocida<strong>de</strong> do navio.


3.8.<br />

INTERACÇÃO ENTRE CASCO E HÉLICE 63<br />

De forma análoga, a potência propulsiva P T po<strong>de</strong> ser obtida por<br />

em que:<br />

P T = T · V a<br />

- T é a força propulsiva calculada a partir dos ensaios <strong>de</strong> propulsão;<br />

- e V a é a velocida<strong>de</strong> <strong>de</strong> avanço do hélice.<br />

A força propulsiva T é superior à resistência R T avaliada a partir do ensaio <strong>de</strong> resistência<br />

realizado sem hélice. Isto significa, como referido antes, que a presença do hélice induz uma<br />

resistência adicional porque:<br />

- a presença do hélice aumenta a velocida<strong>de</strong> do escoamento na zona da popa do navio e,<br />

em consequência a resistência <strong>de</strong> atrito;<br />

- a presença do hélice provoca uma diminuição da pressão nos painéis da popa do navio.<br />

O segundo <strong>de</strong>stes factores é normalmente o mais significativo.<br />

O aumento da resistência <strong>de</strong>vido ao efeito da presença do hélice é usualmente representado<br />

por uma redução da força propulsora expressa como fracção <strong>de</strong>ssa força. O coeficiente <strong>de</strong><br />

<strong>de</strong>dução da força propulsiva t associa então a força propulsiva e a resistência,<br />

t = 1 − R T<br />

T<br />

(3.43)<br />

em que t é normalmente consi<strong>de</strong>rado igual no mo<strong>de</strong>lo e no navio.<br />

Depois <strong>de</strong> realizados os ensaios <strong>de</strong> propulsão e calculados os coeficientes <strong>de</strong> força propulsiva,<br />

K T m e K Qm , o coeficiente <strong>de</strong> <strong>de</strong>dução da força propulsiva é calculado por<br />

t m = T m + F D − R C<br />

T m<br />

(3.44)<br />

em que R C é a resistência corrigida para a diferença <strong>de</strong> temperatura entre os dois ensaios,<br />

resistência e propulsão. O valor <strong>de</strong> R C será,<br />

R C = (1 + k) c F mC + c R<br />

(1 + k) c F m + c R<br />

R T m (3.45)<br />

em que c F mC é o coeficiente da resistência <strong>de</strong> atrito avaliado à temperatura da água no ensaio<br />

<strong>de</strong> propulsão.<br />

Para corrigir o efeito da velocida<strong>de</strong> da esteira, <strong>de</strong>fine-se o coeficiente <strong>de</strong> <strong>de</strong>dução da esteira,<br />

w, que permite relacionar a velocida<strong>de</strong> <strong>de</strong> avanço V a com a velocida<strong>de</strong> do navio V ,<br />

w = 1 − V a<br />

V<br />

(3.46)<br />

Consi<strong>de</strong>rando o diagrama em águas livres do hélice, com o valor <strong>de</strong> K T m avaliado com a<br />

força propulsiva experimental do ensaio <strong>de</strong> propulsão, po<strong>de</strong> obter-se através daquele diagrama<br />

um valor para o coeficiente <strong>de</strong> avanço J 0m . O coeficiente <strong>de</strong> esteira do mo<strong>de</strong>lo será então dado<br />

por<br />

w m = 1 − J 0mD m n m<br />

V m<br />

(3.47)


64<br />

CAPÍTULO 3. PROPULSÃO<br />

Ou seja, a velocida<strong>de</strong> média axial no plano do hélice atrás do navio à velocida<strong>de</strong> V , no<br />

ensaio <strong>de</strong> resistência sem hélice, é a velocida<strong>de</strong> da esteira nominal,<br />

V a = (1 − w n ) V (3.48)<br />

e, com o hélice em operação atrás do navio, o escoamento <strong>de</strong>vido à presença da querena é<br />

modificado obtendo-se a velocida<strong>de</strong> da esteira efectiva,<br />

V e = (1 − w e ) V (3.49)<br />

A velocida<strong>de</strong> total será a soma da velocida<strong>de</strong> da esteira efectiva e da velocida<strong>de</strong> axial induzida<br />

pelo hélice.<br />

O rendimento rotativo relativo η R é calculado por<br />

η R = K Q0m<br />

K Qm<br />

(3.50)<br />

em que K Q0m é obtido a partir do diagrama em águas livres do hélice e o coeficiente <strong>de</strong> binário<br />

K Qm é calculado com base nos resultados experimentais do ensaio <strong>de</strong> propulsão.<br />

Designa-se por rendimento do casco a razão entre a potência efectiva e a potência propulsiva,<br />

ou seja,<br />

η H = P E<br />

P T<br />

= R T · V s<br />

T · V a<br />

= 1 − t<br />

1 − w<br />

(3.51)<br />

A <strong>de</strong>terminação <strong>de</strong> w, t e η H é feita preferencialmente através <strong>de</strong> ensaios <strong>de</strong> mo<strong>de</strong>los em<br />

ensaios <strong>de</strong> auto-propulsão utilizando um hélice <strong>de</strong> “stock” com características conhecidas, tão<br />

aproximadas quanto possível do hélice óptimo. Se não for possível utilizar um mo<strong>de</strong>lo, aqueles<br />

parâmetros po<strong>de</strong>rão ser estimados com base em dados estatísticos. Para navios com um ou<br />

dois hélices, o diagrama <strong>de</strong> Harvald permite estimar os valores <strong>de</strong> w, t e η H em função do<br />

coeficiente <strong>de</strong> finura total e da razão B/L, com correcções associadas ao tipo <strong>de</strong> popa, cota do<br />

veio e diâmetro do hélice. Outros autores propuseram algumas expressões para a estimativa<br />

daqueles parâmetros. Destas, <strong>de</strong>stacam-se as <strong>de</strong> Taylor, Schoenherr e Luke, para navios com<br />

um hélice,<br />

e,<br />

w = 0, 5C b + 0, 025 (3.52)<br />

t = 0, 5w (3.53)<br />

com η H = 1, 02. Para navios com dois hélices,<br />

e,<br />

w = 0, 4533C b − 0, 114 (3.54)<br />

t = 0, 7w + 0, 01 (3.55)<br />

com η H = 0, 985. Po<strong>de</strong>rão aqui ser referidas as expressões mais complexas apresentadas por<br />

Holtrop, com base em mais <strong>de</strong> duzentos ensaios <strong>de</strong> auto-propulsão em mo<strong>de</strong>los <strong>de</strong> navios <strong>de</strong><br />

diversos tipos.


3.8.<br />

INTERACÇÃO ENTRE CASCO E HÉLICE 65<br />

A potência absorvida pelo hélice po<strong>de</strong> ser expressa em termos da velocida<strong>de</strong> <strong>de</strong> rotação n<br />

(em rps) e do binário Q por<br />

P D = 2π · n · Q (3.56)<br />

Devido às perdas mecânicas no veio e chumaceiras, a potência recebida pelo hélice P D é<br />

inferior à potência efectiva do motor (’brake power’) P B ,<br />

P D = η s · P B (3.57)<br />

em que η s é o rendimento da linha <strong>de</strong> veios. A eficiência do propulsor atrás do navio, avalia<br />

as perdas <strong>de</strong>s<strong>de</strong> a potência recebida pelo hélice P D e a potência propulsiva P T ,<br />

P T = η B · P D (3.58)<br />

Esta eficiência do propulsor atrás do navio η B é diferente da eficiência em águas livres η 0<br />

verificada experimentalmente. O rendimento rotativo relativo η R avalia as perdas associadas<br />

à diferença entre o escoamento em águas livres e o escoamento tridimensional não-uniforme<br />

no plano do propulsor,<br />

η B = η R · η 0 (3.59)<br />

Em resumo, verifica-se sempre a relação,<br />

P B > P D > P T > P E<br />

em que os valores daquelas potências são calculadas por<br />

P E = η H · P T = η H · η B · P D = η H · η 0 · η R · P D = η H · η 0 · η R · η S · P B<br />

Se o rendimento quase-propulsivo η D espressar o conjunto <strong>de</strong> eficiências hidrodinâmicas<br />

consi<strong>de</strong>radas,<br />

η D = η H · η 0 · η R (3.60)<br />

então, a potência efectiva po<strong>de</strong> ser dada por<br />

P E = η D · η S · P B<br />

As leis <strong>de</strong> semelhança permitem a extrapolação das medições efectuadas para a escala do<br />

navio,<br />

V s = √ λV m , (3.61)<br />

n s = n m / √ λ , (3.62)<br />

e,<br />

T s = T m · (ρ s /ρ m ) · λ 3 (3.63)<br />

Q s = Q m · (ρ s /ρ m ) · λ 4 (3.64)


66<br />

CAPÍTULO 3. PROPULSÃO<br />

3.8.3 Extrapolação dos resultados do ensaio <strong>de</strong> propulsão<br />

O procedimento recomendado pela ITTC para o tratamento dos dados experimentais resultantes<br />

dos ensaios <strong>de</strong> resistência e <strong>de</strong> propulsão para a previsão do <strong>de</strong>sempenho do navio está<br />

incluído no Apêndice A. Para além dos já referidos ensaios <strong>de</strong> reboque e propulsão, são ainda<br />

necessários testes do hélice em águas livres. De uma forma sucinta, o referido procedimento<br />

envolve os seguintes passos:<br />

- prever a resistência total do navio a partir da resistência avaliada no mo<strong>de</strong>lo, corrigindo<br />

<strong>de</strong> acordo com as resistências adicionais que <strong>de</strong>vam ser consi<strong>de</strong>radas;<br />

- estimar as características do hélice propulsor com base nos coeficientes propulsivos <strong>de</strong>terminados<br />

para o mo<strong>de</strong>lo;<br />

- estimar a esteira do navio e as condições <strong>de</strong> funcionamento do hélice;<br />

- estimar a velocida<strong>de</strong> <strong>de</strong> rotação do hélice e potência necessária com base em factores <strong>de</strong><br />

correlação entre o mo<strong>de</strong>lo e o navio.<br />

Os <strong>de</strong>talhes <strong>de</strong> cada um <strong>de</strong>stes passos, bem como o formulário <strong>de</strong> cálculo, <strong>de</strong>vem ser<br />

consultados no referido Apêndice A.<br />

As várias condições consi<strong>de</strong>radas nos ensaios do mo<strong>de</strong>lo servirão para fazer uma previsão<br />

do <strong>de</strong>sempenho do navio numa gama <strong>de</strong> velocida<strong>de</strong>s para as condições <strong>de</strong> lastro e carregado,<br />

conforme representado na Fig. 3.21.<br />

Figura 3.21: Resultados dos ensaios <strong>de</strong> propulsão.


Capítulo 4<br />

Instalações Propulsoras<br />

4.1 Introdução<br />

A escolha <strong>de</strong> uma máquina propulsora ou da configuração mais apropriada para a instalação<br />

propulsora num projecto <strong>de</strong> nova construção ou reconversão não é actualmente uma <strong>de</strong>cisão<br />

simples. É imperioso que esta <strong>de</strong>cisão seja precedida <strong>de</strong> uma análise rigorosa das várias opções<br />

disponíveis para o perfil <strong>de</strong> operação futura <strong>de</strong>finido para o navio.<br />

Uma vez <strong>de</strong>terminada a potência absorvida pelo hélice, torna-se necessário i<strong>de</strong>ntificar as<br />

soluções que satisfazem os requisitos <strong>de</strong> potência, velocida<strong>de</strong> <strong>de</strong> rotação, consumo e dimensões.<br />

A sua avaliação técnico-financeira será então realizada por critérios baseados nos seguintes<br />

factores:<br />

- o investimento inicial;<br />

- a fiabilida<strong>de</strong>;<br />

- os custos <strong>de</strong> manutenção previstos;<br />

- os custos <strong>de</strong> operação previstos;<br />

- a margem do motor, relacionada com a diferença entre a potência máxima e a potência<br />

<strong>de</strong> serviço do motor.<br />

Este processo <strong>de</strong> selecção terminará sempre numa solução <strong>de</strong> compromisso já que nenhum<br />

tipo <strong>de</strong> instalação apresentará apenas vantagens comparativas.<br />

No passado, o armador ou o projectista tinha como escolha imediata um motor diesel lento<br />

acoplado directamente a um hélice <strong>de</strong> passo fixo, ou um motor diesel <strong>de</strong> média velocida<strong>de</strong>,<br />

a quatro tempos, accionando através <strong>de</strong> engrenagens redutoras um hélice <strong>de</strong> passo fixo ou<br />

controlável.<br />

Actualmente, a propulsão dos navios que entram em serviço é obtida com o acoplamento<br />

directo, muito esporadicamente com engrenagens redutoras, <strong>de</strong> motores a dois tempos a hélices<br />

<strong>de</strong> passo fixo ou controlável, motores <strong>de</strong> média velocida<strong>de</strong> a quatro tempos e engrenagens<br />

redutoras ou ainda por instalações diesel-eléctricas com recurso a motores diesel, a quatro<br />

tempos, rápidos ou <strong>de</strong> média velocida<strong>de</strong>. Algumas variantes <strong>de</strong> instalações propulsoras estão<br />

representadas nas Fig. 4.1 e 4.2.<br />

67


68<br />

CAPÍTULO 4. INSTALAÇÕES PROPULSORAS<br />

Figura 4.1: Variantes <strong>de</strong> instalações propulsoras diesel-mecânicas lentas e<br />

<strong>de</strong> média velocida<strong>de</strong>.<br />

Os motores diesel lentos predominam no sector do transporte <strong>de</strong> granéis, líquidos e sólidos,<br />

e contentores <strong>de</strong> longo curso. Motores <strong>de</strong> média velocida<strong>de</strong> são preferidos em navios <strong>de</strong><br />

carga com menor dimensão, ferries, turismo <strong>de</strong> passageiros, RoRo’s, bem como em nichos <strong>de</strong><br />

mercado muito específicos como os quebra-gelos, navios <strong>de</strong> apoio a plataformas <strong>de</strong> exploração<br />

petrolífera, etc.<br />

No passado recente, estas tradicionais zonas <strong>de</strong> influência <strong>de</strong> cada um dos referidos tipos<br />

<strong>de</strong> motores têm-se sobreposto. As novas gerações <strong>de</strong> motores a quatro tempos, com cilindros<br />

<strong>de</strong> gran<strong>de</strong> diâmetro e média velocida<strong>de</strong> apresentam-se como soluções competitivas para navios<br />

a operar em viagens <strong>de</strong> longo curso. Em contrapartida, os motores lentos a dois tempos com<br />

cilindros <strong>de</strong> pequeno diâmetro também se apresentam como soluções válidas para os mercados<br />

costeiro e fluvial.<br />

Um aspecto fundamental a consi<strong>de</strong>rar no processo <strong>de</strong> <strong>de</strong>cisão na escolha da instalação<br />

propulsora será necessariamente o custo. Não só o custo inicial, o investimento a fazer na<br />

aquisição do motor, mas também os custos associados à operação do navio ou, <strong>de</strong> uma forma<br />

mais geral, os custos totais do ciclo <strong>de</strong> vida do navio. Naqueles custos <strong>de</strong> operação <strong>de</strong>verão<br />

ser tidos em conta, entre outros, os seguintes aspectos:<br />

- o tipo <strong>de</strong> combustível que a instalação vai permitir consumir;<br />

- uma previsão dos custos <strong>de</strong> manutenção;<br />

- os recursos humanos exigidos para a operação/condução da instalação;<br />

- a disponibilida<strong>de</strong> e quantida<strong>de</strong>/custo dos sobressalentes.


4.2.<br />

PROPULSÃO DIESEL-MECÂNICA 69<br />

Figura 4.2: Instalações propulsoras diesel-mecânica (em cima) e dieseleléctrica<br />

(em baixo).<br />

A avaliação dos custos <strong>de</strong> operação ao fim da vida <strong>de</strong> exploração do navio po<strong>de</strong> variar <strong>de</strong><br />

forma muito significativa com o tipo <strong>de</strong> motor escolhido, e com a configuração da instalação<br />

propulsora adoptada.<br />

A dimensão da casa da máquina, a cujo aumento correspon<strong>de</strong>rá uma redução do espaço<br />

<strong>de</strong> carga disponível para a exploração do navio, é essencialmente condicionada pela dimensão<br />

da máquina principal. A própria altura da casa da máquina é importante em alguns tipos <strong>de</strong><br />

navios como os ferries com convés para veículos.<br />

4.2 Propulsão diesel-mecânica<br />

Conforme já referido, a propulsão por um hélice <strong>de</strong> passo fixo accionado directamente por um<br />

motor diesel lento a dois tempos continua a ser o sistema mais frequentemente encontrado em<br />

navios <strong>de</strong> carga <strong>de</strong> longo curso. A ligeira redução no rendimento <strong>de</strong> propulsão reconhecida é<br />

admitida face à simplicida<strong>de</strong> da solução obtida e, a introdução <strong>de</strong> motores <strong>de</strong> longo, super-,<br />

e ultra-longo curso veio diminuir aquelas perdas. No entanto, a velocida<strong>de</strong> <strong>de</strong> 100/110 rpm<br />

não é necessariamente a mais a<strong>de</strong>quada para a propulsão <strong>de</strong> um gran<strong>de</strong> navio. Os motores<br />

actualmente disponíveis com maior curso <strong>de</strong>senvolvem a sua potência nominal a velocida<strong>de</strong>s<br />

tão baixas como 55 rpm até cerca <strong>de</strong> 250 rpm. Para um dado navio, é então possível prescrever<br />

uma solução <strong>de</strong> acoplamento directo motor/hélice que permita optimizar o rendimento <strong>de</strong><br />

propulsão.<br />

Um outro aspecto a consi<strong>de</strong>rar é o número <strong>de</strong> cilindros do motor. Os motores lentos actuais,<br />

com cilindros <strong>de</strong> gran<strong>de</strong> diâmetro, permitem extrair a potência necessária à propulsão <strong>de</strong><br />

um navio <strong>de</strong> um motor com um reduzido número <strong>de</strong> cilindros. Um motor com menos cilindros<br />

influencia naturalmente <strong>de</strong> forma favorável a dimensão da casa da máquina, o volume <strong>de</strong> trabalho<br />

afecto à sua manutenção e a quantida<strong>de</strong> <strong>de</strong> sobressalentes a manter no navio. Este tipo<br />

<strong>de</strong> solução é portanto bem acolhida <strong>de</strong>s<strong>de</strong> que daqui não resultem problemas <strong>de</strong> equilíbrio<br />

do motor e vibrações. Estes motores com cilindros <strong>de</strong> gran<strong>de</strong> diâmetro queimam bem combustíveis<br />

pesados <strong>de</strong> fraca qualida<strong>de</strong> e proporcionam um consumo específico <strong>de</strong> combustível


70<br />

CAPÍTULO 4. INSTALAÇÕES PROPULSORAS<br />

inferior ao obtido em motores com cilindros <strong>de</strong> menor diâmetro.<br />

Neste tipo <strong>de</strong> instalações, a energia eléctrica necessária ao funcionamento dos equipamentos<br />

auxiliares é normalmente fornecida por geradores accionados por motores diesel rápidos<br />

ou <strong>de</strong> média velocida<strong>de</strong>. A gran<strong>de</strong> parte dos fabricantes <strong>de</strong> motores diesel para accionamento<br />

<strong>de</strong> alternadores está já hoje em condições <strong>de</strong> oferecer soluções capazes <strong>de</strong> consumir o<br />

mesmo combustível que a máquina principal, ou “marine diesel-oil” ou ainda uma mistura<br />

(blen<strong>de</strong>d) <strong>de</strong> combustíveis pesado e <strong>de</strong>stilado. Actualmente, são já comuns instalações propulsoras<br />

“Unifuel”, nas quais máquina principal e motores auxiliares consomem o mesmo tipo<br />

<strong>de</strong> combustível.<br />

4.2.1 Accionamento <strong>de</strong> auxiliares<br />

Os custos associados à produção da energia eléctrica necessária ao funcionamento dos equipamentos<br />

auxiliares da instalação são também um factor importante na selecção da máquina<br />

principal. O <strong>de</strong>senvolvimento das máquinas tem tido como principais objectivos nesta área:<br />

- maximizar o aproveitamento <strong>de</strong> energia para permitir complementar a produção <strong>de</strong><br />

energia eléctrica durante as viagens;<br />

- permitir o uso <strong>de</strong> alternadores accionados pela máquina principal através <strong>de</strong> engrenagens<br />

multiplicadoras ou directamente montados na linha <strong>de</strong> veio;<br />

- possibilitar o accionamento <strong>de</strong> equipamentos auxiliares directamente pela máquina principal.<br />

A principal motivação para a produção <strong>de</strong> energia eléctrica a partir da máquina principal<br />

resulta do seu superior rendimento térmico, menor consumo específico <strong>de</strong> combustível e capacida<strong>de</strong><br />

para consumir combustíveis <strong>de</strong> inferior qualida<strong>de</strong> e custo. Outra vantagem resulta<br />

naturalmente do menor consumo <strong>de</strong> óleo lubrificante, <strong>de</strong> menos intervenções <strong>de</strong> manutenção e<br />

inferiores custos com sobressalentes resultantes da redução do tempo <strong>de</strong> funcionamento obtida<br />

com a paragem dos diesel-geradores durante a viagem.<br />

No caso <strong>de</strong> uma instalação com hélice <strong>de</strong> passo fixo, a utilização <strong>de</strong> um acoplamento por<br />

engrenagens, que permita manter constante a velocida<strong>de</strong> <strong>de</strong> rotação do alternador (Fig. 4.3),<br />

possibilita a utilização do gerador a plena carga numa gama <strong>de</strong> velocida<strong>de</strong>s da máquina<br />

principal que habitualmente ronda os 70 a 100% da sua velocida<strong>de</strong> nominal.<br />

A localização do alternador é também um aspecto importante para permitir a <strong>de</strong>sejável<br />

redução <strong>de</strong> espaço ocupado pela casa da máquina. São actualmente possíveis diversos arranjos<br />

que vão <strong>de</strong>s<strong>de</strong> a colocação lateral ao motor ou em qualquer uma das suas extremida<strong>de</strong>s.<br />

Em alternativa, quer no caso das instalações com hélice <strong>de</strong> passo fixo, quer no caso daquelas<br />

que dispõem <strong>de</strong> passo controlável, po<strong>de</strong>m ser utilizados sistemas baseados na conversão da<br />

frequência da energia eléctrica produzida (Fig. 4.4).<br />

Mais recentemente, as opções para a produção <strong>de</strong> energia eléctrica a bordo alargaramse<br />

à utilização <strong>de</strong> turbinas movimentadas pelos gases <strong>de</strong> evacuação do motor. O elevado<br />

rendimento dos sobrealimentadores mais mo<strong>de</strong>rnos torna exce<strong>de</strong>ntária uma fracção dos gases<br />

<strong>de</strong> evacuação. O aproveitamento <strong>de</strong>stes gases <strong>de</strong> evacuação em pequenas turbinas po<strong>de</strong>rá<br />

integrar-se em sistemas, que contemplando ainda grupos diesel-geradores, geradores-ao-veio e<br />

turbo-geradoras a vapor, <strong>de</strong> forma isolada ou combinada, permitirão a optimização dos custos<br />

<strong>de</strong> produção da energia eléctrica para os vários estados <strong>de</strong> operação do navio.


4.2.<br />

PROPULSÃO DIESEL-MECÂNICA 71<br />

Figura 4.3: Acoplamento com relação variável <strong>de</strong> velocida<strong>de</strong>s.<br />

4.2.2 Engrenagens redutoras<br />

Em muitas instalações propulsoras espera-se da caixa redutora:<br />

- a <strong>de</strong>terminação da velocida<strong>de</strong> e do sentido <strong>de</strong> rotação do hélice, e a capacida<strong>de</strong> <strong>de</strong><br />

inversão;<br />

- que proporcione uma forma <strong>de</strong> acoplamento, permitindo estabelecer e interromper a<br />

transmissão <strong>de</strong> potência entre o motor e o hélice;<br />

- que seja capaz <strong>de</strong> absorver o impulso recebido do hélice.<br />

O projecto <strong>de</strong> engrenagens, embraiagens ou outras formas <strong>de</strong> acoplamento usadas em instalações<br />

navais têm <strong>de</strong> satisfazer vários, e por vezes conflituantes, requisitos quanto à sua<br />

flexibilida<strong>de</strong> operacional, fiabilida<strong>de</strong>, ruído emitido e espaço ocupado. Os <strong>de</strong>senvolvimentos<br />

nas áreas do projecto, dos materiais e dos sistemas <strong>de</strong> controlo contribuíram para soluções<br />

inovadoras para instalações propulsoras versáteis com um ou mais motores, envolvendo tomadas<br />

<strong>de</strong> extração <strong>de</strong> potência (“Power Take-Off’s - PTO”) para accionamento <strong>de</strong> alternadores<br />

e tomadas para recepção <strong>de</strong> potência (“Power Take-In’s - PTI ”) para aumentar a potência<br />

<strong>de</strong> propulsão.<br />

A forma mais comum do accionamento indirecto do hélice passa pela utilização <strong>de</strong> um<br />

ou mais motores a quatro tempos <strong>de</strong> média velocida<strong>de</strong>, ligados através <strong>de</strong> embraiagens e<br />

acoplamentos a uma caixa redutora, para movimentar um hélice <strong>de</strong> passo fixo ou controlável<br />

(Fig. 4.5 e 4.6).<br />

A utilização <strong>de</strong> hélices <strong>de</strong> passo controlável permite eliminar a necessida<strong>de</strong> da reversibilida<strong>de</strong><br />

do motor. Por outro lado, a utilização da caixa redutora permite escolher a velocida<strong>de</strong><br />

<strong>de</strong> funcionamento do hélice mais apropriada. De uma forma geral, po<strong>de</strong>-se afirmar que as perdas<br />

mecânicas na transmissão são compensadas por um maior rendimento propulsivo, quando


72<br />

CAPÍTULO 4. INSTALAÇÕES PROPULSORAS<br />

Figura 4.4: Conversão da frequência da energia eléctrica.<br />

comparado com um caso <strong>de</strong> acoplamento directo para a mesma potência. Os custos adicionais<br />

da transmissão são também, pelo menos parcialmente, compensados pelo menor custo<br />

do motor a quatro tempos, quando comparado com um motor lento a dois tempos.<br />

São normalmente i<strong>de</strong>ntificadas como principais vantagens das instalações propulsoras com<br />

mais <strong>de</strong> um motor, rápido ou <strong>de</strong> média velocida<strong>de</strong>:<br />

- a redundância permite maior disponibilida<strong>de</strong> para a operação do navio:<br />

- no caso <strong>de</strong> avaria num motor, o outro ou os outros mantêm a navegabilida<strong>de</strong>;<br />

- o número <strong>de</strong> motores em serviço para a propulsão po<strong>de</strong> variar para garantir a forma<br />

mais económica para uma viagem:<br />

- quando o navio viaja em lastro, carga parcial ou a velocida<strong>de</strong> reduzida um<br />

dos motores po<strong>de</strong> ser utilizado à sua potência nominal, com bom rendimento,<br />

enquanto outro ou outros po<strong>de</strong>m ser parados;<br />

- pelo contrário, em condições operacionais semelhantes, um motor único, acoplado<br />

directamente ao hélice, funcionaria durante longos períodos a carga parcial<br />

com pouco rendimento;<br />

- A possibilida<strong>de</strong> <strong>de</strong> alterar o número <strong>de</strong> motores em serviço facilita o planeamento e a<br />

execução das tarefas <strong>de</strong> manutenção e reparação uma vez que estas po<strong>de</strong>rão ser realizadas<br />

em viagem.<br />

- Esta flexibilida<strong>de</strong> <strong>de</strong> operação é particularmente valorizada numa época em que se<br />

preten<strong>de</strong> uma exploração intensiva dos navios.<br />

- As operações <strong>de</strong> manutenção e reparação po<strong>de</strong>m ainda <strong>de</strong>correr em porto sem<br />

preocupações particulares relativas à necessida<strong>de</strong> <strong>de</strong> mudança <strong>de</strong> cais ou partida<br />

antecipada.<br />

- As instalações propulsoras <strong>de</strong> uma frota <strong>de</strong> navios po<strong>de</strong> ser baseada num só mo<strong>de</strong>lo<br />

<strong>de</strong> motor, ajustando o número <strong>de</strong> motores no navio e o número <strong>de</strong> cilindros por motor<br />

para as necessida<strong>de</strong>s <strong>de</strong> propulsão <strong>de</strong> cada um dos navios, com redução do custo <strong>de</strong>


4.2.<br />

PROPULSÃO DIESEL-MECÂNICA 73<br />

Figura 4.5: Instalação propulsora com quatro motores, engrenagens redutoras<br />

e dois hélices.<br />

sobressalentes e inventários, para além dos benefícios resultantes da familiarização das<br />

tripulações.<br />

Este conceito po<strong>de</strong> ainda ser alargado aos motores auxiliares (“uniform machinery installations<br />

”), em que os motores principais e auxiliares são do mesmo mo<strong>de</strong>lo.<br />

4.2.3 Configuração ”pai-e-filho”<br />

A flexibilida<strong>de</strong> <strong>de</strong> operação é potenciada pela adopção das instalações do tipo ”pai-e-filho”.<br />

Nestas instalações, motores a quatro tempos do mesmo mo<strong>de</strong>lo, ou <strong>de</strong> dois mo<strong>de</strong>los muito<br />

semelhantes, mas com diferente número <strong>de</strong> cilindros, fazem o accionamento do veio do hélice<br />

acoplados a uma caixa redutora comum. Cada um daqueles motores po<strong>de</strong> ser ainda acoplado<br />

a uma máquina eléctrica que po<strong>de</strong> funcionar como motor ou gerador.<br />

Numa configuração <strong>de</strong>ste tipo, a propulsão po<strong>de</strong> ser assegurada:<br />

- conjuntamente pelos dois motores diesel;<br />

- apenas por qualquer um dos motores diesel.<br />

Em qualquer dos casos, po<strong>de</strong>m ser ainda utilizados os, nesta situação, motores eléctricos<br />

acoplados ao veio como motores propulsores, alimentados com energia eléctrica produzida<br />

pelos geradores auxiliares.


74<br />

CAPÍTULO 4. INSTALAÇÕES PROPULSORAS<br />

Figura 4.6: Instalação com dois motores diesel diferentes, engrenagens redutoras,<br />

embraiagens e geradores acoplados aos veios.<br />

4.3 Propulsão diesel-eléctrica<br />

4.3.1 Propulsão por motor eléctrico<br />

A propulsão diesel-eléctrica, baseada em grupos electrogéneos <strong>de</strong> média velocida<strong>de</strong>, é uma<br />

forma <strong>de</strong> accionamento indirecto com crescente implantação no mercado. Após um período<br />

em que a utilização <strong>de</strong>ste tipo <strong>de</strong> sistemas esteve confinada a nichos <strong>de</strong> mercado <strong>de</strong> activida<strong>de</strong>s<br />

com elevada especificida<strong>de</strong>, como por exemplo os quebra-gelos, navios <strong>de</strong> investigação etc.,<br />

as mais recentes tecnologias para a conversão AC/DC alargaram o potencial <strong>de</strong> utilização da<br />

propulsão eléctrica ao mercado dos navios <strong>de</strong> passageiros, “shuttle tanker’s” no Mar do Norte.<br />

Estando já estabelecido como uma boa solução neste mercados, começam a surgir referências<br />

da aplicação <strong>de</strong>ste tipo <strong>de</strong> instalações propulsoras a navios <strong>de</strong> transporte <strong>de</strong> químicos<br />

(costeiro e longo curso), ferries e RoRo’s. Discute-se ainda as vantagens da sua aplicação<br />

pelo menos a algumas classes <strong>de</strong> porta-contentores. A propulsão diesel-eléctrica, combinada<br />

com motores “dual-fuel”, está também bem implantada no sector do transporte <strong>de</strong> LNG.<br />

A propulsão diesel-eléctrica exige gran<strong>de</strong>s motores eléctricos para accionamento dos hélices<br />

(Fig. 4.7) e grupos electrogéneos para fornecer a potência eléctrica. Po<strong>de</strong> parecer em<br />

primeira análise algo ilógico usar geradores eléctricos, conversores e motores eléctricos para o<br />

accionamento quando um acoplamento directo ou uma engrenagem redutora po<strong>de</strong> ser suficiente<br />

para cumprir aquela missão. As principais razões que justificam a complexida<strong>de</strong> e custo<br />

acrescidos daquele tipo <strong>de</strong> instalação são:<br />

- maior flexibilida<strong>de</strong> na distribuição dos equipamentos na casa da máquina;<br />

- maior diversida<strong>de</strong> <strong>de</strong> condições <strong>de</strong> fundionamento;<br />

- funcionamento mais económico a carga partial;<br />

- facilida<strong>de</strong> <strong>de</strong> controlo;<br />

- menor ruído;<br />

- maior segurança <strong>de</strong> operação e protecção ambiental.<br />

Estes aspectos serão abordados nos parágrafos seguintes.


4.3.<br />

PROPULSÃO DIESEL-ELÉCTRICA 75<br />

Figura 4.7: Motor eléctrico <strong>de</strong> propulsão.<br />

Flexibilida<strong>de</strong> na distribuição dos equipamentos<br />

A vantagem da transmissão eléctrica resulta <strong>de</strong> se po<strong>de</strong>r escolher a localização em cada<br />

caso mais apropriada para os grupos electrogéneos. É então possível colocar os motores, bem<br />

como os respectivos auxiliares, afastados do veio propulsor. Sempre que seja adoptado este<br />

tipo <strong>de</strong> instalação, a referida flexibilida<strong>de</strong> permite aos arquitectos navais criar navios com a<br />

casa da máquina muito compacta, libertando espaço para passageiros e/ou carga. O facto<br />

<strong>de</strong> a casa da máquina ser mais compacta permite reduzir ainda a cablagem e a tubagem, em<br />

particular a tubagem a instalar para a evacuação dos gases do motor (ver Fig. 4.8).<br />

A opção por uma instalação diesel-eléctrica facilita também ao estaleiro <strong>de</strong> construção a<br />

recepção <strong>de</strong> módulos <strong>de</strong> grupos electrogéneos pré-testados e prontos para serem incorporados<br />

na instalação.<br />

Deve aqui ser também referida a dificulda<strong>de</strong> <strong>de</strong> uma instalação diesel-eléctrica atingir o<br />

rendimento obtido com um motor lento, a dois tempos, acoplado directamente ao veio do<br />

hélice, quando a funcionar à sua carga i<strong>de</strong>al, tal como acontece numa viagem <strong>de</strong> longo curso<br />

<strong>de</strong> um navio petroleiro. No entanto, alguns navios <strong>de</strong>ste tipo têm um perfil <strong>de</strong> operação<br />

que inclui também largos períodos a carga parcial em lastro, navegação em águas restritas<br />

e manobras. Numa instalação diesel-eléctrica, a elevada disponibilida<strong>de</strong> para produção <strong>de</strong><br />

energia eléctrica po<strong>de</strong> ser aproveitada para movimentar as bombas <strong>de</strong> carga e impulsores <strong>de</strong><br />

proa/popa, conforme representado esquematicamente na Fig. 4.9.<br />

Varieda<strong>de</strong> <strong>de</strong> carga<br />

Alguns tipos <strong>de</strong> navios necessitam <strong>de</strong> quantida<strong>de</strong>s significativas <strong>de</strong> energia para auxiliares<br />

quando as necessida<strong>de</strong>s <strong>de</strong> propulsão são reduzidas. Uma gran<strong>de</strong> instalação <strong>de</strong> produção


76<br />

CAPÍTULO 4. INSTALAÇÕES PROPULSORAS<br />

Figura 4.8: Instalação diesel-eléctrica.<br />

<strong>de</strong> energia eléctrica nos navios <strong>de</strong> passageiros/cruzeiros é exigida pela carga dos serviços <strong>de</strong><br />

hotelaria e pelos propulsores tranversais <strong>de</strong> manobra. A potência eléctrica necessária nestes<br />

casos ronda os 30 a 40 % da potência <strong>de</strong> propulsão instalada e ainda há que contar com<br />

significativa redundância por motivos <strong>de</strong> segurança.<br />

Estes factores têm promovido um novo conceito <strong>de</strong> instalação, a diesel-eléctrica ”power<br />

station”, nas quais vários grupos electrogéneo movidos por motores diesel <strong>de</strong> média velocida<strong>de</strong><br />

satisfazem as necessida<strong>de</strong>s <strong>de</strong> energia para a propulsão, manobra e serviços <strong>de</strong> hotelaria nos<br />

gran<strong>de</strong>s navios <strong>de</strong> passageiros.<br />

Funcionamento económico a carga parcial<br />

Funcionamento económico a carga parcial é facilmente alcançado numa instalação dieseleléctrica<br />

”power station”. Uma instalação típica inclui quatro grupos electrogéneos, po<strong>de</strong>ndo<br />

ir no entanto até aos nove, e, através do funcionamento em paralelo dos grupos, é fácil ajustar<br />

a capacida<strong>de</strong> <strong>de</strong> produção às necessida<strong>de</strong>s <strong>de</strong> carga eléctrica. Por exemplo, no caso <strong>de</strong> quatro<br />

geradores, aumentar o número <strong>de</strong> grupos em funcionamento <strong>de</strong> dois, à carga máxima, para<br />

três a carga parcial resulta numa condição <strong>de</strong> carga a 67 % que, não sendo i<strong>de</strong>al também não<br />

é problemática.<br />

Os sistemas <strong>de</strong> redução instantânea da potência propulsora tornam <strong>de</strong>snecessário colocar<br />

em funcionamento geradores a carga parcial para prevenir a ocorrência súbita <strong>de</strong> avaria num<br />

grupo electrogéneo. O sistema <strong>de</strong> controlo monitoriza a capacida<strong>de</strong> <strong>de</strong> produção <strong>de</strong> energia<br />

eléctrica, e a sobrecarga <strong>de</strong> um gerador provoca um ajuste imediato no consumo dos motores<br />

<strong>de</strong> propulsão.


4.3.<br />

PROPULSÃO DIESEL-ELÉCTRICA 77<br />

Figura 4.9: Representação esquemática <strong>de</strong> uma instalação diesel-eléctrica.<br />

Facilida<strong>de</strong> <strong>de</strong> controlo<br />

Os accionamentos eléctricos permitem alcançar, com larga margem, as necessida<strong>de</strong>s <strong>de</strong><br />

controlo para um sistema <strong>de</strong> propulsão.<br />

Baixo ruído<br />

Um motor eléctrico proporciona um accionamento com vibrações reduzidas, característica<br />

particularmente valorizada nalguns tipos <strong>de</strong> navios como, por exemplo, os navios para cruzeiros,<br />

navios <strong>de</strong> investigação marinha e navios <strong>de</strong> guerra. A “transmissão eléctrica” permite<br />

procurar a melhor localização para os motores por forma a minimizar os efeitos da vibração<br />

transmitida à estrutura do navio. A emissão <strong>de</strong> vibrações po<strong>de</strong> ainda ser reduzida através do<br />

recurso à montagem <strong>de</strong> amortecedores <strong>de</strong> vibração.<br />

Protecção ambiental e segurança <strong>de</strong> operação<br />

O controlo das emissões <strong>de</strong> óxidos <strong>de</strong> azoto pelos motores diesel dos navios favorece também<br />

a especificação <strong>de</strong> instalações com “transmissão eléctrica”, uma vez que o funcionamento dos<br />

motores a velocida<strong>de</strong> constante e carga optimizada permite obter menores emissões.<br />

O aumento da segurança da navegação é também obtido nestas instalações pela redundância<br />

dos seus elementos constituintes. A redundância po<strong>de</strong> ser obtida não apenas pela<br />

existência <strong>de</strong> dois propulsores mas ainda po<strong>de</strong> ser acrescida colocando os dois, ou mais, motores<br />

<strong>de</strong> propulsão em diferentes compartimentos e ligando-os por uma engrenagem redutora.<br />

4.3.2 Propulsores azimutais<br />

As vantagens técnicas e económicas na concepção, construção e operação <strong>de</strong> navios com<br />

propulsão por “azipod’s”, inicialmente restritos a navios quebra-gelos e navios <strong>de</strong> passageiros,<br />

têm vindo a alargar o seu campo <strong>de</strong> aplicação a outro tipo <strong>de</strong> navios.<br />

Um propulsor azimutal incorpora o motor eléctrico num alojamento submerso <strong>de</strong> formas<br />

hidrodinâmicas optimizadas que, po<strong>de</strong>ndo rodar 360 ◦ no plano horizontal, permite extraor-


78<br />

CAPÍTULO 4. INSTALAÇÕES PROPULSORAS<br />

dinária capacida<strong>de</strong> <strong>de</strong> propulsão e manobra (ver Fig. 4.10). O motor eléctrico é acoplado<br />

directamente a um hélice <strong>de</strong> passo fixo. A energia eléctrica é provida pelos vários grupos<br />

electrogéneos do navio.<br />

Figura 4.10: Propulsores azimutais.<br />

Este tipo <strong>de</strong> propulsores, quando comparados com instalações diesel-eléctricas com linha(s)<br />

<strong>de</strong> veio(s) apresentam as seguintes vantagens:<br />

- maior liberda<strong>de</strong> para a concepção do casco e para o arranjo <strong>de</strong> máquinas no interior da<br />

casa da máquina;<br />

- o espaço no interior do casco <strong>de</strong>stinado aos motores po<strong>de</strong> ser libertado para outras<br />

finalida<strong>de</strong>s;<br />

- melhor capacida<strong>de</strong> <strong>de</strong> manobra quando comparado com o tradicional leme e possibida<strong>de</strong><br />

<strong>de</strong> eliminar propulsores transversais;<br />

- excelente reversibilida<strong>de</strong> e capacida<strong>de</strong> <strong>de</strong> manobra com propulsão a ré;<br />

- menor ruído e vibração, característicos da propulsão eléctrica, agora potenciados pela<br />

posição mais favorável dos hélices;<br />

- na construção do navio, as unida<strong>de</strong>s <strong>de</strong> propulsão po<strong>de</strong>m ser incorporadas mais tar<strong>de</strong><br />

reduzindo assim os custos <strong>de</strong> investimento;<br />

- menor custo <strong>de</strong> produção do navio.<br />

4.4 Selecção do motor<br />

Seleccionado o tipo <strong>de</strong> instalação pretendido para a propulsão do navio, chega-se finalmente<br />

à escolha do motor. Como as características <strong>de</strong> funcionamento das turbinas e dos motores


4.4.<br />

SELECÇÃO DO MOTOR 79<br />

eléctricos são bastante diferentes das características dos motores diesel, a abordagem terá <strong>de</strong><br />

ser também diferente.<br />

Em qualquer dos casos, <strong>de</strong>verá ser tida em conta a margem <strong>de</strong> serviço MS. A margem<br />

<strong>de</strong> serviço tem em conta a diferença entre a potência requerida para nas condições i<strong>de</strong>ais da<br />

prova <strong>de</strong> mar e a potência requerida pelas condições <strong>de</strong> serviço. É prática habitual <strong>de</strong>finir-se<br />

a margem <strong>de</strong> serviço como uma fracção da potência na prova <strong>de</strong> mar, ou seja,<br />

MS = P D serv<br />

− P Dtrial<br />

P Dtrial<br />

(4.1)<br />

O valor da margem <strong>de</strong> serviço está normalmente entre os 10 e os 25%, <strong>de</strong>pen<strong>de</strong>ndo das opções<br />

estratégicas do armador e da importância da pontualida<strong>de</strong> do serviço. Em princípio, a margem<br />

<strong>de</strong> serviço atribuída a um navio <strong>de</strong> linha será superior à margem consi<strong>de</strong>rada para um navio<br />

que vai operar no mercado do “tramping”. O valor estabelecido da margem <strong>de</strong> serviço <strong>de</strong>ve em<br />

conta uma estimativa da <strong>de</strong>gradação <strong>de</strong> velocida<strong>de</strong>, para as condições <strong>de</strong> operação do navio,<br />

bem com as condições habituais <strong>de</strong> mar e vento e a <strong>de</strong>gradação do casco.<br />

4.4.1 Turbinas e motores eléctricos<br />

No caso da turbinas, <strong>de</strong> vapor ou gás, a potência <strong>de</strong>senvolvida <strong>de</strong>pen<strong>de</strong> essencialmente do<br />

caudal <strong>de</strong> fluido em circulação, sendo portanto relativamente pouco sensível à velocida<strong>de</strong> <strong>de</strong><br />

rotação.<br />

As características dos sistemas com transmissão eléctrica são semelhantes às das turbinas,<br />

in<strong>de</strong>pen<strong>de</strong>ntemente <strong>de</strong> os geradores serem movidos por turbinas ou motores diesel, uma vez<br />

que a velocida<strong>de</strong> <strong>de</strong>stes po<strong>de</strong> ser mantida constante.<br />

Neste tipo <strong>de</strong> situação, em que a máquina propulsora po<strong>de</strong> trabalhar próximo da potência<br />

máxima em qualquer condição <strong>de</strong> serviço, a potência instalada (P I ) po<strong>de</strong> ser próxima da<br />

potência <strong>de</strong> serviço. Na prática, a turbina é ajustada para operar com o máximo rendimento<br />

a uma potência 10% inferior à máxima potência em contínuo (MCR, Maximum Continuous<br />

Rating). Assim, a potência instalada será<br />

P I (MCR) = P D serv<br />

0, 9η s<br />

= P Dtrial<br />

1 + MS<br />

0, 9η s<br />

(4.2)<br />

em que P Dserv e P Dtrial são as potências absorvidas pelo hélice nas condições <strong>de</strong> serviço e na<br />

prova <strong>de</strong> mar, respectivamente, para a velocida<strong>de</strong> <strong>de</strong> serviço e MS é a margem <strong>de</strong> serviço.<br />

4.4.2 Motores diesel<br />

Ao contrário das turbinas e dos motores eléctricos, em que a potência disponível é pouco<br />

sensível à velocida<strong>de</strong>, os motores diesel caracterizam-se por ter uma curva do binário bastante<br />

plana. Esta característica faz com que a potência varie <strong>de</strong> forma aproximadamente linear com<br />

a velocida<strong>de</strong> <strong>de</strong> rotação.<br />

Para além dos principais critérios consi<strong>de</strong>rados na avaliação dos projectos, outros aspectos<br />

que não <strong>de</strong>vem ser <strong>de</strong>scurados na escolha do motor são:<br />

- a possibilida<strong>de</strong> <strong>de</strong> queimar combustível pesado <strong>de</strong> baixa qualida<strong>de</strong> sem impacto nos<br />

componentes do motor e consequentemente nos custos previstos para sobressalentes e<br />

operações <strong>de</strong> manutenção;


80<br />

CAPÍTULO 4. INSTALAÇÕES PROPULSORAS<br />

- o volume <strong>de</strong> trabalho <strong>de</strong> manutenção, o número <strong>de</strong> cilindros, válvulas, camisas, aros<br />

e chumaceiras a necessitar <strong>de</strong> atenção periódica em relação ao número <strong>de</strong> tripulantes<br />

embarcados;<br />

- a a<strong>de</strong>quabilida<strong>de</strong> para operação não assistida explorando sistemas <strong>de</strong> controlo automático<br />

e sistemas <strong>de</strong> monitorização;<br />

- a dimensão e o peso da instalação propulsora.<br />

O valor máximo da potência <strong>de</strong>senvolvida por um motor diesel é condicionada pela carga<br />

térmica. Este limite é normalmente expresso em termos da pressão média efectiva. Depen<strong>de</strong>ndo<br />

das características do hélice seleccionado e das condições operacionais, assim o valor<br />

limite da pressão média efectiva será atingido, ou não, antes <strong>de</strong> o motor atingir a velocida<strong>de</strong><br />

<strong>de</strong> rotação correspon<strong>de</strong>nte às condições MCR.<br />

Figura 4.11: Diagrama <strong>de</strong> carga <strong>de</strong> um motor diesel<br />

Os fabricantes <strong>de</strong> motores diesel incluem diagramas <strong>de</strong> carga nos guias <strong>de</strong> selecção <strong>de</strong><br />

motores para auxiliar a escolha do ponto <strong>de</strong> funcionamento. Nestes diagramas, como o representado<br />

na Fig. 4.11, estão marcados:<br />

- o ponto L 1 , que correspon<strong>de</strong> ao MCR do motor;<br />

- a linha vertical L 1 − L 2 , velocida<strong>de</strong> <strong>de</strong> rotação máxima do motor, que limita a zona <strong>de</strong><br />

funcionamento do motor;<br />

No Apêndice D incluiu-se documentação da ”Burmeister & Wain” que permite ilustrar a<br />

forma <strong>de</strong> selecção do motor para uma aplicação concreta, consi<strong>de</strong>rando várias hipóteses: com<br />

ou sem gerador acoplado ao veio, com hélice <strong>de</strong> passo fixo ou <strong>de</strong> passo controlável.


4.4.<br />

SELECÇÃO DO MOTOR 81<br />

Alguns fabricantes anunciam um valor <strong>de</strong> “Normal Continuous Rating” (NCR) cerca <strong>de</strong><br />

10% inferior ao valor MCR e a uma velocida<strong>de</strong> inferior, ao qual correspon<strong>de</strong> um <strong>de</strong>sempenho<br />

optimizado do motor em termos <strong>de</strong> consumo e <strong>de</strong> necessida<strong>de</strong>s <strong>de</strong> manutenção. Po<strong>de</strong> ainda<br />

<strong>de</strong>finir-se uma “Service Continuous Rating” (SCR) que, <strong>de</strong>pen<strong>de</strong>ndo da política do armador,<br />

po<strong>de</strong>rá ser igual ou não do NCR indicado pelo fabricante do motor.<br />

A diferença entre a MCR e a SCR, ou, caso não esteja <strong>de</strong>finida, a NCR, dá origem à<br />

chamada margem do motor (MM). A margem do motor é avaliada por,<br />

MM =<br />

MCR − SCR<br />

MCR<br />

(4.3)<br />

Valores típicos <strong>de</strong>sta margem <strong>de</strong> motor rondam os 10 a 15%. De notar que as margens <strong>de</strong><br />

serviço e <strong>de</strong> motor surgem frequentemente combinadas numa só, a margem <strong>de</strong> serviço, apesar<br />

<strong>de</strong> as suas origens serem bem distintas.<br />

Uma vez atribuídas as margens <strong>de</strong> serviço e <strong>de</strong> motor, a potência instalada é calculada<br />

por<br />

1 + MS<br />

P I (MCR) = P Dtrial<br />

(4.4)<br />

(1 − MM) η s<br />

Nas provas <strong>de</strong> mar, nas condições <strong>de</strong> imersão e caimento contratuais, a potência absorvida<br />

pelo hélice, à velocida<strong>de</strong> <strong>de</strong> rotação correspon<strong>de</strong>nte ao MCR, <strong>de</strong>ve ser igual à potência SCR,<br />

<strong>de</strong>duzida das perdas na linha <strong>de</strong> veios. Como objectivo das provas, <strong>de</strong>verá garantir-se que a<br />

combinação motor e hélice permite que o anvio atinja a velocida<strong>de</strong> requerida sem ultrapassar<br />

os limites impostos pelo diagrama <strong>de</strong> carga.<br />

Sem prejuízo do exposto, o forte aumento do preço dos combustíveis nos anos mais recentes<br />

faz com que os custos operacionais dos navios sejam cada vez mais dominados por este<br />

factor. Neste contexto, po<strong>de</strong> ser uma hipótese <strong>de</strong> trabalho interessante a opção por um motor<br />

com a mesma potência, a potência calculada como necessária para a propulsão nas condições<br />

contratuais, mas com um cilindro extra. Esta técnica, o chamado ”<strong>de</strong>rating” do motor,<br />

exigindo maior valor <strong>de</strong> investimento inicial, po<strong>de</strong> apresentar um período <strong>de</strong> retorno atractivo.<br />

Wettstein e Brown apresentam as principais motivações para aplicação <strong>de</strong>sta técnica e<br />

discutem quatro casos <strong>de</strong> aplicação numa publicação da Wärtsillä, incluída no Apêndice E.


82<br />

CAPÍTULO 4. INSTALAÇÕES PROPULSORAS


Bibliografia<br />

[1] José P. Saraiva Cabral. Arquitectura Naval, estabilida<strong>de</strong>, cálculos, avaria e bordo livre.<br />

Centro do Livro Brasileiro, 1979.<br />

[2] Eric C. Tupper. Introduction to Naval Arquitecture. Elsevier, 2004.<br />

[3] Volker Bertram. Practical Ship Hydrodynamics. Butterworth-Heinemann, 2000.<br />

[4] Jorge d’Almeida. Arquitectura Naval - o dimensionamento do navio. Prime Books, 2009.<br />

[5] Editor Doug Woodyard. Poun<strong>de</strong>rs Marine Diesel Engines and Gas Turbines. Butterworth-<br />

Heinemann, 2004.<br />

[6] H. Schneekluth and V. Bertram. Ship Design for Efficiency and Economy. Butterworth-<br />

Heinemann, 1998.<br />

83


Índice Remissivo<br />

Auto-propulsão, 62<br />

Boca, 3<br />

Bolbo <strong>de</strong> proa, 22<br />

Bordo livre, 3<br />

Calado, 3<br />

Camada limite, 24<br />

Cavitação, 37, 53, 60<br />

Coeficiente<br />

<strong>de</strong> avanço, 46<br />

<strong>de</strong> binário, 46<br />

<strong>de</strong> Burrill, 55<br />

<strong>de</strong> carga do hélice, 44<br />

<strong>de</strong> <strong>de</strong>dução da esteira, 63<br />

<strong>de</strong> <strong>de</strong>dução da força propulsiva, 63<br />

<strong>de</strong> força propulsiva, 46<br />

<strong>de</strong> resistência, 28<br />

<strong>de</strong> resistência total, 13<br />

Comprimento<br />

entre perpendiculares, 3<br />

fora a fora, 3<br />

na linha <strong>de</strong> água, 3<br />

Consumo específico <strong>de</strong> combustível, 69<br />

Custos<br />

<strong>de</strong> manutenção, 68<br />

<strong>de</strong> operação, 68, 69<br />

totais, 68<br />

Diagrama<br />

<strong>de</strong> Burrill, 55<br />

em águas livres, 45, 46<br />

Dual-fuel, 74<br />

Engrenagens redutoras, 71<br />

Ensaios<br />

<strong>de</strong> auto-propulsão, 62<br />

<strong>de</strong> cavitação, 56<br />

<strong>de</strong> hélices em águas livres, 45<br />

<strong>de</strong> propulsão, 61<br />

<strong>de</strong> resistência, 26<br />

em sobrecarga, 62<br />

Fórmula<br />

<strong>de</strong> Alexan<strong>de</strong>r, 5<br />

<strong>de</strong> atrito da ATTC, 25<br />

<strong>de</strong> atrito da ITTC, 25<br />

<strong>de</strong> Keller, 59<br />

do atrito <strong>de</strong> Frou<strong>de</strong>, 24<br />

do atrito <strong>de</strong> Hugues, 30<br />

Força<br />

<strong>de</strong> compensação, 62<br />

<strong>de</strong> inércia, 15<br />

<strong>de</strong> origem hidrodinâmica, 16<br />

gravítica, 16<br />

propulsiva, 42<br />

Hélice, 35<br />

rendimento i<strong>de</strong>al, 45<br />

a ponto fixo, 57<br />

bloqueado, 57<br />

com tubeira, 36<br />

contrarotativo, 37<br />

<strong>de</strong> passo controlável, 37, 67, 70, 71<br />

<strong>de</strong> passo fixo, 37, 67, 70, 71, 78<br />

diâmetro do, 58<br />

distribuição radial <strong>de</strong> pressão, 59<br />

geometria do, 40, 59<br />

índice <strong>de</strong> qualida<strong>de</strong> do, 47<br />

interacção com o casco, 60<br />

número <strong>de</strong> pás do, 59<br />

projecto do, 40<br />

razão <strong>de</strong> área expandida, 41<br />

supercavitante, 37<br />

Método<br />

<strong>de</strong> Hughes/Prohaska, 28<br />

84


ÍNDICE REMISSIVO 85<br />

Geosim, 28, 31<br />

Hughes-Prohaska, 29<br />

ITTC 1957, 28<br />

ITTC 1978, 28, 30<br />

Margem<br />

<strong>de</strong> serviço, 79<br />

do motor, 81<br />

Maximum Continuous Rating, 79<br />

Número<br />

<strong>de</strong> cavitação, 54<br />

<strong>de</strong> Frou<strong>de</strong>, 17, 23<br />

<strong>de</strong> Reynolds, 18, 27, 46<br />

Navio<br />

coeficientes <strong>de</strong> forma, 3<br />

<strong>de</strong> passageiros, 68, 74, 76, 77<br />

<strong>de</strong>slocamento do, 3<br />

dimensões do, 3<br />

linhas <strong>de</strong> bordo livre do, 3<br />

planos do, 1<br />

quebra-gelos, 68, 77<br />

tipo ferry, 37, 38, 40, 68, 69, 74<br />

tipo RoRo, 68, 74<br />

tipo shuttle tanker, 74<br />

Normal Continuous Rating, 81<br />

PC-cluster, 10<br />

Pontal, 3<br />

Potência<br />

absorvida, 65<br />

<strong>de</strong> reboque, 13<br />

efectiva, 13, 62<br />

efectiva do motor, 65<br />

propulsiva, 63<br />

Power Take Off/In, 71<br />

Profundida<strong>de</strong> restrita, 23, 32<br />

Propulsão<br />

azimutal, 35, 38, 77<br />

cicloidal, 35, 39<br />

diesel-eléctrica, 74<br />

diesel-mecânica, 69<br />

por jacto <strong>de</strong> água, 35, 37<br />

por motor eléctrico, 74<br />

Provas<br />

<strong>de</strong> mar, 34<br />

<strong>de</strong> potência, 121, 133<br />

<strong>de</strong> velocida<strong>de</strong>, 121, 133<br />

Rendimento<br />

águas livres, 46<br />

da linha <strong>de</strong> veios, 65<br />

do casco, 64<br />

do hélice, 46<br />

rotativo relativo, 64<br />

Resistência, 13<br />

adicional, 31<br />

aerodinâmica, 19<br />

<strong>de</strong> atrito, 24<br />

<strong>de</strong> onda, 19<br />

<strong>de</strong>composição, 18<br />

dos apêndices, 32<br />

viscosa <strong>de</strong> pressão, 25<br />

Rugosida<strong>de</strong> do casco, 28, 30, 31<br />

Série sistemática<br />

60, 33<br />

<strong>de</strong> hélices, 47, 58<br />

<strong>de</strong> querenas, 32<br />

<strong>de</strong> Taylor, 33<br />

<strong>de</strong> Wageningen, 48<br />

Semelhança<br />

cinemática, 15<br />

dinâmica, 15<br />

geométrica, 14<br />

leis da, 14<br />

Service Continuous Rating, 81<br />

Sobrealimentadores, 70<br />

Tanque<br />

<strong>de</strong> cavitação, 56<br />

<strong>de</strong> Frou<strong>de</strong>, 7<br />

<strong>de</strong> reboque, 26<br />

Unifuel, 70<br />

Velocida<strong>de</strong><br />

da querena, 22<br />

<strong>de</strong> aproximação, 42<br />

<strong>de</strong> rotação do hélice, 59<br />

económica, 22<br />

Vibrações, 42, 53, 58–60, 77


86 ÍNDICE REMISSIVO


Apêndice<br />

A<br />

Procedimento Recomendado pela<br />

ITTC para a Previsão do<br />

Desempenho <strong>de</strong> Navios Baseada nos<br />

Ensaios <strong>de</strong> Propulsão em Mo<strong>de</strong>los<br />

87


88<br />

APÊNDICE A. PREVISÃO BASEADA NOS ENSAIOS DE PROPULSÃO


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 1 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

CONTENTS<br />

1. PURPOSE OF PROCEDURE<br />

2. DESCRIPTION OF PROCEDURE<br />

2.1.1 Introduction for the Original 1978 ITTC Performance Prediction Method<br />

for Single Screw Ships<br />

2.1.2 Introduction for the 1978 ITTC Performance Prediction Method as Modified<br />

in 1984 and 1987<br />

2.2 Mo<strong>de</strong>l Tests<br />

2.3 Analysis of the Mo<strong>de</strong>l Test Results<br />

2.4 Full Scale Predictions<br />

2.4.1 Total Resistance of Ship<br />

2.4.2 Scale Effect Corrections for Propeller Characteristics.<br />

2.4.3 Full Scale Wake and Operating Condition of Propeller<br />

2.4.4 Mo<strong>de</strong>l-Ship Correlation Factors<br />

2.5 Analysis of Speed Trial Results<br />

2.6 Input Data<br />

2.7 Output Data<br />

2.8 Test Example<br />

3. PARAMETERS<br />

3.1 Parameters to be Taken into Account<br />

3.2 Recommendations of ITTC for Parameters<br />

3.3 Input Data<br />

4. VALIDATION<br />

4.1 Uncertainty Analysis<br />

4.2 Comparison With Full Scale Results<br />

5. ITTC- 1978 PERFORMANCE PREDICTION METHOD (COMPUTER CODE)<br />

COMMENTS OF PROPULSION COMMITTE OF 22 nd ITTC<br />

In its original form the ITTC 1978 Performance Prediction Method offers a valuable and reasonably<br />

accurate prediction tool for reference purposes and conventional ships.<br />

Edited by 22 nd ITTC QS Group 1999<br />

15 th ITTC 1978 pp388 – 402<br />

17 th ITTC 1984 pp326 - 333<br />

18 th ITTC 1987 pp266 - 273<br />

Date<br />

Approved<br />

Date<br />

15 th ITTC 1978, 17 th ITTC 1984<br />

and 18 th ITTC 1987


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 2 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

1978 ITTC Performance Prediction Method<br />

1. PURPOSE OF PROCEDURE<br />

The method predicts rate of revolution and<br />

<strong>de</strong>livered power of a ship from mo<strong>de</strong>l results.<br />

2. DESCRIPTION OF PROCEDURE<br />

2.1.1 Introduction for the Original 1978<br />

ITTC Performance Prediction Method<br />

for Single Screw Ships<br />

The method predicts rate of revolution and<br />

<strong>de</strong>livered power of a ship from mo<strong>de</strong>l results.<br />

The procedure used can be <strong>de</strong>scribed as follows:<br />

The viscous and the residuary resistance of the<br />

ship are calculated from the mo<strong>de</strong>l resistance<br />

tests assuming the form factor to be in<strong>de</strong>pen<strong>de</strong>nt<br />

of scale and speed.<br />

The ITTC standard predictions of rate of revolutions<br />

and <strong>de</strong>livered power are obtained fromthe<br />

full scale propeller characteristics. These<br />

characteristics have been <strong>de</strong>termined by correcting<br />

the mo<strong>de</strong>l values for drag scale effects<br />

according to a simple formula. Individual<br />

corrections then give the final predictions.<br />

more convenient use of the program. These<br />

extensions are summarized as follows.<br />

(1) Inclusion of prediction of propeller revolutions<br />

on the basis of power i<strong>de</strong>ntity.<br />

(2) Temporary measure for w TS > w TM<br />

(3) Extension to twin screw ships<br />

(4) Addition of speed trial data<br />

(5) Extension for the case of a stock propeller<br />

in the self-propulsion test<br />

(6) Adaptation to the input of the nondimensional<br />

resistance coefficient and<br />

self-propulsion factors.<br />

In recent years, many member organizations<br />

have been asked by their customers for a general<br />

<strong>de</strong>scription of the method, viz., mo<strong>de</strong>l test<br />

and analysis of their results, calculation of fullscale<br />

power and rate of propeller revolutions,<br />

and the mo<strong>de</strong>l-ship correlation factors used.<br />

Consi<strong>de</strong>ring the above, it was <strong>de</strong>ci<strong>de</strong>d to prepare<br />

a user's manual of the 1978 ITTC method<br />

which inclu<strong>de</strong>s all of the extensions and modifications<br />

ma<strong>de</strong>.<br />

2.1.2 Introduction for the 1978 ITTC Performance<br />

Prediction Method as<br />

Modified in 1984 and 1987<br />

The 1978 ITTC Method <strong>de</strong>veloped to predict<br />

the rate of propeller revolutions and <strong>de</strong>livered<br />

power of a single screw ship from the<br />

mo<strong>de</strong>l test results has been exten<strong>de</strong>d during the<br />

last two terms of the ITTC for a better and<br />

2.2 Mo<strong>de</strong>l Tests<br />

Mo<strong>de</strong>l tests required for a full scale comprise<br />

the resistance test, the self-propulsion test<br />

and the propeller open-water test.<br />

In the resistance test the mo<strong>de</strong>l is towed at<br />

speeds giving the same Frou<strong>de</strong> numbers as for<br />

the full scale ship, and the total resistance of<br />

the mo<strong>de</strong>l R TM is measured. The computer pro-


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 3 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

gram accepts either R TM in Newton, or in a nondimensional<br />

form of residuary resistance coefficient<br />

C R assuming the form factor 1 + k. In<br />

the latter case, the friction formula used can<br />

then be either of the ITTC 1957, Hughes,<br />

Prandtl-Schlichting or Schönherr's formulae.<br />

The form factor 1 + k is usually <strong>de</strong>termined<br />

from the resistance tests at low speed range or<br />

by Prohaska’s plot of C FM against Fn 4<br />

The ship mo<strong>de</strong>l is not in general fitted with<br />

bilge keels. In this case the total wetted surface<br />

area of them is recor<strong>de</strong>d and their frictional<br />

resistance is ad<strong>de</strong>d in calculating the full-scale<br />

resistance of the ship.<br />

In the self-propulsion test the mo<strong>de</strong>l is<br />

towed at speeds giving the same Frou<strong>de</strong> numbers<br />

as for the full-scale ship. Generally a towing<br />

force F D is applied to compensate for the<br />

difference between the mo<strong>de</strong>l and the full-scale<br />

resistance coefficient.<br />

During the test, propeller thrust (T M ), torque<br />

(O M ) and rate of propeller rotation (n M ) are<br />

measured.<br />

In many cases, stock propellers are used<br />

which are selected in view of the similarity in<br />

diameter pitch and bla<strong>de</strong> area to the full-scale<br />

propeller. Then the diameter and the openwater<br />

characteristics of the stock propeller<br />

have to be given as input data in the program.<br />

In the open-water test, thrust, torque and rate of<br />

revolutions are measured, keeping the rate of<br />

revolutions constant whilst the speed of advance<br />

is varied so that a loading range of the<br />

propeller is examined.<br />

In the case when a stock propeller is used in<br />

the self-propulsion test, both the stock propeller<br />

and the mo<strong>de</strong>l similar to the full-scale propeller<br />

should be tested in open water.<br />

2.3 Analysis of the Mo<strong>de</strong>l Test Results<br />

Resistance R TM measured in the resistance<br />

tests is expressed in the non-dimensional form<br />

R<br />

TM<br />

CTM<br />

=<br />

1 SV 2<br />

ρ<br />

2<br />

This is reduced to residual resistance coefficient<br />

C R by use of form factor k,<br />

viz.,<br />

C R = C TM - C FM (1 + k)<br />

Thrust, T, and torque Q, measured in the<br />

self-propulsion tests are expressed in the nondimensional<br />

forms<br />

T<br />

K TM<br />

= and K 4 n 2<br />

QM<br />

=<br />

2<br />

ρD<br />

Q<br />

ρD 5 n<br />

With K TM as input data, J TM and K QTM are read<br />

off from the mo<strong>de</strong>l propeller characteristics,<br />

and the wake fraction<br />

w<br />

TM<br />

= 1 −<br />

J<br />

D<br />

V<br />

TM<br />

and the relative rotative efficiency<br />

KQTM<br />

η<br />

R<br />

=<br />

KQM<br />

are calculated. V is mo<strong>de</strong>l speed.<br />

The thrust <strong>de</strong>duction is obtained from<br />

T F<br />

t =<br />

+<br />

T<br />

D −<br />

R<br />

C<br />

M


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 4 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

with<br />

F<br />

D<br />

1<br />

= ρ<br />

2<br />

M<br />

S<br />

M<br />

V<br />

2<br />

M<br />

[ C − ( C + ∆C<br />

)]<br />

FM<br />

FS<br />

F<br />

∆C<br />

F<br />

⎡<br />

⎢ ⎛ k<br />

= 105<br />

⎢<br />

⎜<br />

⎢<br />

⎝ L<br />

⎣<br />

S<br />

WL<br />

⎞<br />

⎟<br />

⎠<br />

1<br />

3<br />

⎤<br />

− 0.64⎥10<br />

⎥<br />

⎥⎦<br />

−3<br />

where R C is the resistance corrected for differences<br />

in temperature between resistance and<br />

self-propulsion tests:<br />

R<br />

C<br />

=<br />

( 1 + k)<br />

.<br />

( 1 + k)<br />

.<br />

C<br />

C<br />

FMC<br />

FM<br />

+ C<br />

+ C<br />

where C FMC is the frictional resistance coefficient<br />

at the temperature of the self-propulsion<br />

test.<br />

2.4 Full Scale Predictions<br />

2.4.1 Total Resistance of Ship<br />

The total resistance coefficient of a ship<br />

without bilge keels is<br />

C TS =(1+k)C FS +C R + ∆ C F +C AA<br />

Where<br />

- k is the form factor <strong>de</strong>termined from the<br />

resistance test<br />

- C FS is the frictional coefficient of the ship<br />

according to the ITTC-1957 ship-mo<strong>de</strong>l<br />

correlation line<br />

- C R is the residual resistance calculated from<br />

the total and frictional coefficients of the<br />

mo<strong>de</strong>l in the resistance tests:<br />

C = C − 1 + k C<br />

R<br />

TM<br />

-. ∆ C<br />

F<br />

is the roughness allowance<br />

R<br />

R<br />

R<br />

TM<br />

( )<br />

FM<br />

where the roughness k S =150.10 -6 m and<br />

- C AA , is the air resistance<br />

AT<br />

C<br />

AA<br />

= 0.001.<br />

S<br />

If the ship is fitted with bilge keels the total<br />

resistance is as follows:<br />

S + S<br />

= 1<br />

S<br />

[( + k)<br />

C<br />

FS<br />

+ ∆C<br />

F<br />

] + C<br />

R<br />

C<br />

AA<br />

BK<br />

C<br />

TS<br />

+<br />

2.4.2 Scale Effect Corrections for Propeller<br />

Characteristics.<br />

The characteristics of the full scale propeller<br />

are calculated from the mo<strong>de</strong>l characteristics<br />

as follows<br />

K<br />

TS<br />

K<br />

where<br />

∆ K<br />

∆ K<br />

∆ C<br />

QS<br />

T<br />

Q<br />

= K<br />

= K<br />

TM<br />

QM<br />

= −∆C<br />

= −∆C<br />

− ∆K<br />

D<br />

D<br />

T<br />

− ∆K<br />

.0.3.<br />

Q<br />

P<br />

D<br />

c.<br />

Z<br />

D<br />

c.<br />

Z<br />

.0.25.<br />

D<br />

The difference in drag coefficient<br />

D<br />

where<br />

= C<br />

DM<br />

− C<br />

DS<br />

∆ C<br />

D<br />

is


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 5 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

DM<br />

and<br />

C<br />

DS<br />

⎡<br />

( ) ( )<br />

⎥ ⎥ ⎤<br />

⎞<br />

⎜<br />

⎛ t<br />

⎟⎢<br />

0.04 5<br />

= 2 1 + 2 −<br />

1<br />

2<br />

⎝ c ⎠⎢<br />

6<br />

3<br />

⎣ Rnco<br />

Rnco<br />

⎦<br />

⎛ t ⎞⎛<br />

⎞<br />

2 1 2 ⎜<br />

c<br />

⎜ + ⎟ 1.89 + 1.62.log ⎟<br />

⎝ c ⎠<br />

⎝<br />

k ⎠<br />

= p<br />

−2.5<br />

In the formulae listed above c is the chord<br />

length, t is the maximum thickness, P/D is the<br />

pitch ratio and R nco is the local Reynolds number<br />

at x=0.75. The bla<strong>de</strong> roughness k p is put<br />

k p =30.10 -6 m. R nco must not be lower than 2.10 5<br />

at the open-water test.<br />

2.4.3 Full Scale Wake and Operating Condition<br />

of Propeller<br />

The full scale wake is calculated from the<br />

mo<strong>de</strong>l wake, w TM , and the thrust <strong>de</strong>duction, t:<br />

w<br />

TS<br />

=<br />

( ) ( ) ( 1 + k ) C FS<br />

t + 0.04 + wTM<br />

− t − 0.04<br />

( 1 + k) C FM<br />

+ ∆C<br />

where 0.04 is to take account of rud<strong>de</strong>r effect.<br />

The load of the full scale propeller is obtained<br />

from<br />

K<br />

J<br />

=<br />

S<br />

.<br />

C<br />

T<br />

TS<br />

2 2D<br />

2<br />

1<br />

TS<br />

( 1 − t)( − w ) 2<br />

2<br />

With this K T<br />

/ J as input value the full<br />

scale advance coefficient J TS and the torque<br />

coefficient K QTS are read off from the full scale<br />

propeller characteristics and the following<br />

quantities are calculated<br />

- the rate of revolutions:<br />

F<br />

n<br />

S<br />

( − w )<br />

TS<br />

VS<br />

= 1 (r/s)<br />

J D<br />

TS<br />

- the <strong>de</strong>livered power:<br />

K<br />

5 3 QTS −3<br />

PDS<br />

= 2πρ D nS<br />

10 (kW)<br />

η<br />

- the thrust of the propeller:<br />

K<br />

T 2 4 2<br />

TS<br />

= . J . .<br />

2 TS<br />

ρ D nS<br />

(N)<br />

J<br />

- the torque of the propeller:<br />

KQTS<br />

5 2<br />

QS<br />

= ρD<br />

nS<br />

: (Nm)<br />

η<br />

R<br />

- the effective power:<br />

3 −3<br />

PE = CTS1/<br />

2ρ . VS<br />

. S.10<br />

(kW)<br />

- the total efficiency:<br />

PDS<br />

η<br />

D<br />

=<br />

P<br />

- the hull efficiency:<br />

1 − t<br />

η<br />

H<br />

= 1 − w<br />

E<br />

TS<br />

2.4.4 Mo<strong>de</strong>l-Ship Correlation Factors<br />

Trial prediction of rate of revolutions and <strong>de</strong>livered<br />

power with C P - C N corrections<br />

if CHOICE=0 the final trial predictions will be<br />

calculated from<br />

n T = C N .n S<br />

R<br />

(r/s)<br />

for the rate of revolutions and<br />

P DT = C P .P DS (kW)


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 6 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

for the <strong>de</strong>livered power.<br />

Trial prediction with ∆C FC - ∆w C corrections<br />

If CHOICE=1 the final trial predictions are<br />

calculated as follows:<br />

K<br />

J<br />

=<br />

S<br />

.<br />

C<br />

T<br />

TS<br />

2 2D<br />

2<br />

1<br />

+ ∆C<br />

( 1 − t)( − w + ∆w<br />

) 2<br />

With this K T /J² as input value, J TS and K QTS<br />

are read off from the full scale propeller characteristics<br />

and<br />

n<br />

P<br />

T<br />

DT<br />

( 1 − w + ∆w<br />

)<br />

TS<br />

FC<br />

TS C<br />

VS<br />

= (r/s)<br />

J . D<br />

= 2<br />

TS<br />

K<br />

5 3 QTS −3<br />

π . ρ.<br />

D . nT<br />

. .10 (kW)<br />

η<br />

RM<br />

Trial prediction with C NP correction<br />

If CHOICE = 2 the shaft rate of rotation is predicted<br />

on the basis of power i<strong>de</strong>ntity as follows.<br />

⎛ KQ<br />

⎞<br />

⎜<br />

J ³<br />

⎟<br />

⎝ ⎠<br />

T<br />

1000. C<br />

P<br />

. PDS<br />

=<br />

3<br />

2π<br />

. ρ.<br />

D²<br />

V ( 1 − w )³<br />

S<br />

TS<br />

C<br />

2.5 Analysis of Speed Trial Results<br />

The analysis of trials data is performed in a<br />

way consistent with performance prediction but<br />

starting P D and n backwards, i.e. from<br />

K<br />

Q<br />

PD<br />

=<br />

2π<br />

. ρ.<br />

D<br />

. n<br />

. η<br />

5 3 RM<br />

.10³<br />

J S is obtained from the full-scale open-water<br />

characteristics K Q ≈ J S then<br />

w<br />

= 1 − J<br />

. n.<br />

D<br />

T S<br />

/<br />

Further from K T ≈ J S characteristics<br />

T = K<br />

T<br />

. ρ.<br />

n²<br />

D<br />

( 1 − t)<br />

T.<br />

C T<br />

=<br />

1<br />

. ρ.<br />

V ². S<br />

2<br />

Then we obtain<br />

∆ C = C − C<br />

∆ w<br />

FC<br />

C<br />

= w<br />

2.6 Input Data<br />

T<br />

TS<br />

4<br />

− w<br />

Input data sheets are given in ENCL.1<br />

TS<br />

T<br />

V<br />

K<br />

Q0<br />

J ³<br />

⎛ K<br />

=<br />

⎜<br />

⎝ J<br />

Q<br />

⎞<br />

⎟<br />

⎠<br />

T<br />

.η<br />

RM<br />

( 1 − w )/<br />

J D<br />

nS = VS<br />

TS TS<br />

.<br />

n = C<br />

T<br />

NP<br />

n<br />

S<br />

2.7 Output Data<br />

- Output data I gives ITTC Standard Prediction<br />

with C P = C N = 1.0, together with<br />

mo<strong>de</strong>l and full scale propulsive coefficients<br />

(ENCL. 4).<br />

- Output data II gives the final ship prediction<br />

(ENCL. 5).


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 7 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

- Output data III gives the analysis of the<br />

speed trial results (ENCL. 6).<br />

2.8 Test Example<br />

To illustrate the program a prediction was<br />

ma<strong>de</strong> for a hypothetical ship with the following<br />

particulars:<br />

length between<br />

perpendiculars Lpp = 251.5m<br />

breadth B = 41.5m<br />

draft T = 16.5m<br />

propeller diameter D = 8.2m<br />

Calculations were carried out with the<br />

ITTC Trial Prediction Test Program with:<br />

C P = 1.01<br />

C N = 1.02<br />

The input data were taken as shown in<br />

ENCL. 1 and the printout of the input data and<br />

results are given in ENCL. 4 - 6.


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 8 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 9 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 10 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 11 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 12 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

3. PARAMETERS<br />

3.1 Parameters to be Taken into Account<br />

Frou<strong>de</strong> scaling law<br />

ship-mo<strong>de</strong>l correlation line ,friction line<br />

kinematic viscosity<br />

mass <strong>de</strong>nsity<br />

blockage<br />

form factor<br />

propeller loading<br />

hull roughness<br />

see also 3.3 Input Data<br />

3.2 Recommendations of ITTC for Parameters<br />

see 4.9-03-03-01.1 Propulsion Test<br />

1987 p.263 In using the 1978 ITTC Method<br />

it is recommen<strong>de</strong>d that the rud<strong>de</strong>r(s) be fitted<br />

in hull resistance experiments for barge type<br />

forms where inflow velocity is relatively<br />

large.<br />

3.3 Input Data<br />

All data are either non-dimensional or<br />

given in SI-units.<br />

Every data card <strong>de</strong>fines several parameters<br />

which are required by the program; each of<br />

these parameters must be input according to a<br />

specific format.<br />

"I" format means that the value is to be input<br />

without a <strong>de</strong>cimal point and packed to the<br />

right of the specified field.<br />

"F" format requires the data to be input with a<br />

<strong>de</strong>cimal point; the number can appear<br />

anywhere in the field indicated.<br />

"A" format indicates that alphanumeric characters<br />

must be entered in the appropriate<br />

card columns.<br />

The card or<strong>de</strong>r of the data <strong>de</strong>ck must follow<br />

the or<strong>de</strong>r in which they are <strong>de</strong>scribed<br />

below.<br />

Card No. 1 I<strong>de</strong>ntifications<br />

Card Form CC Definition<br />

column at Symbol<br />

1- 8 A - Project No.<br />

9-16 A - Ship mo<strong>de</strong>l No<br />

Propeller mo<strong>de</strong>l No.<br />

17-24 A -<br />

25-32 F SCALE Scale ratio<br />

Card No. 2 Ship particulars<br />

Card Format<br />

CC Definition<br />

column<br />

Symbol<br />

9-16 F LWL Length of waterline<br />

17-24 F TF Draft, forward<br />

25-32 F TA Draft, aft<br />

33-40 F B Breadth<br />

41-48 F S Wetted surface, without<br />

bilge keels<br />

49-56 F DISW Displacement<br />

157-64 F SBK Wetted surface of<br />

bilge keels<br />

65-72 F AT Transverse projected<br />

area of ship above<br />

waterline<br />

72-80 F C3 Form factor <strong>de</strong>termined<br />

at resistance<br />

tests


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 13 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

Card No. 3 Particulars of full scale<br />

Card Format<br />

CC Definition<br />

column<br />

Symbol<br />

8- 8 I NOPROP Number of propellers<br />

should be 1 since method<br />

is valid only for single<br />

screw ships<br />

15-16 I NPB Number of propeller<br />

bla<strong>de</strong>s<br />

17-24 F DP Diameter of propeller<br />

25-32 F PD075 Pitch ratio at x=0.75<br />

33-40 F CH075 Chord length of Propeller<br />

bla<strong>de</strong> at x=0.75<br />

41-48 F TMO75 Maximum bla<strong>de</strong> thickness<br />

of propeller at<br />

x=0.75<br />

49-56 F RNCHM Reynolds number at<br />

open-water test based on<br />

chord length and local<br />

velocity 2<br />

Card No. 4 General<br />

Card<br />

column<br />

Format<br />

CC Symbol<br />

at x-0.75.<br />

Definition<br />

V = V<br />

A<br />

⎛π<br />

.0.75 ⎞<br />

1 + ⎜ ⎟<br />

⎝ J ⎠<br />

2.- 4 I NOJ Number of J-values in the<br />

open-water characteristics<br />

(J ≤ NOJ ≤ 10)<br />

7- 8 I NOSP Number of speeds in the<br />

self- propulsion tests<br />

(NOSP max =10)<br />

9-16 F RHOM Density of tank water<br />

17-24 F RHOS Density of sea water<br />

25-30 F TEMM Temperature of resistance<br />

test<br />

31-36 F TEMP Temperature at selfpropulsion<br />

test -<br />

36-41 F TEMS Temperature of sea water<br />

48-48 I CHOICE CHOICE=0 C<br />

P<br />

− C<br />

N<br />

trial corr.<br />

CHOICE==1:<br />

∆ C − ∆ trial corr.<br />

FC<br />

w C<br />

49-56 F CP Trial correction for shaft<br />

power.<br />

57-64 F CN Trial correction for rpm<br />

65-72 F DELT<br />

CFC<br />

Trial correction for ∆ C<br />

72-80 F DELTWC Trial correction for ∆ w<br />

F<br />

Mean values of the trial correction figures,<br />

C p and C N can be obtained from the trial test<br />

material of the individual institutions by running<br />

the ITTC Trial Prediction Test Program.<br />

If an institution wishes to give predictions<br />

with a certain margin the input C P -C N -values<br />

must be somewhat higher than these mean<br />

values.<br />

Cards Nos. 5-14 Result of resistance and selfpropulsion<br />

tests and mo<strong>de</strong>l propeller characteristics.<br />

Card Format CC Definition<br />

column<br />

Symbol<br />

1- 8 F VS Ship speed in knots<br />

9-16 F RTM Resistance of ship<br />

mo<strong>de</strong>l<br />

17-24 F THM Thrust of propeller<br />

25-32 F QM Torque of propeller:Q<br />

M :100<br />

33-40 F NM Rate of revolution<br />

41-48 F FD Skin friction correction<br />

force<br />

49-56 F ADVC Advance coefficient,.<br />

open water<br />

57-64 F KT Thrust coefficient,<br />

open water<br />

65-72 F KQ Torque coefficient,<br />

open water<br />

The J-margin in the open-water characteristics<br />

must be large enough to cover the<br />

mo<strong>de</strong>l and full scale J-values with some margin.<br />

Input data sheets are given in ENCL. 1.


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 14 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

4. VALIDATION<br />

4.1 Uncertainty Analysis<br />

not yet available<br />

4.2 Comparison With Full Scale Results<br />

The data that led to t ITTC-78 method can<br />

be found in the following ITTC proceedings:<br />

1) Proposed Performance Prediction Factors<br />

for Single Screw Ocean Going Ships<br />

(13 th 1972 pp.155-180) Empirical Power<br />

Prediction Factor ( 1+X )<br />

2) Propeller Dynamics Comparative Tests<br />

(13 th 1972 pp.445-446 )<br />

3) Comparative Calculations with the ITTC<br />

Trial Prediction Test Programme<br />

(14 th 1975 Vol.3 pp.548-553)<br />

4) Factors Affecting Mo<strong>de</strong>l Ship Correlation<br />

(17 th 1984 Vol. 1, pp274-291)


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 15 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

5. ITTC- 1978 PERFORMANCE PREDICTION METHOD (COMPUTER CODE)<br />

C<br />

C ****************************************************************************************************<br />

C * *<br />

C * 1978 ITTC PERFORMANCE PREDICTION METHOD FOR SINGLE SCREW *<br />

C * SHIPS *<br />

C * (REVISED 1983 TO INCLUDE TRIAL ANALYSIS AND TWIN SCREW SHIPS* *<br />

C * *<br />

C ****************************************************************************************************<br />

C<br />

C DECLARATIONS<br />

C<br />

COMMON /A/ FILE(2),MODELS(2), MODELP(2), LPP,LWL,TF,TA,B,S,<br />

* SCALE,RNCHM,DISW,NOPROP,NPB,DP,PD075,CH075.<br />

* TM075,C3,SBK,AT,CP,CN,DELCF,DELWC,KSI,KPI,<br />

* RHOM,RHOS,TEMM,TEMP,TEMS,VS(10),RTM(10),THM(10),<br />

* QM(10),NM(10),ADVC(10),KT(10),KQ(10),THD(10),<br />

* FD(10),IC,NOJ,NOSP,PI<br />

C<br />

COMMON /B/ ETARM(10),ETAO(10),ETAH(10),ETAD(10),AWTM(10),<br />

* AWTS(10),ACFM(10),ACTM(10),AVS(10),AVM(10),<br />

* ATS(10),AQS(10),APDS(10),APE(10),APDT(10),<br />

* ANS(10),ANT(10),BPDT(10),BNT(10),KTSJ2(10),<br />

* KQS(10),KTS(10),ACTS(10)<br />

DIMENSION FILE1(2),MODLS1(2),MODLP1(2)<br />

C<br />

REAL LPP, LWL, KS1, KS, KP1, KP, NM1, NM, KT, KQ, KTM, KQ0, JTM,<br />

* KTSJ2, JTS, NS, KQTS, KTS, KQS, KQM<br />

DATA TRIAL /‘TRIA‘/<br />

500 FORMAT(6A4,F8.0)<br />

501 FORMAT(10F8.0)<br />

502 FORMAT(2I4,9F8.0)<br />

503 FORMAT(2I4,2F8.0,3F6.0,I6,4F8.0)<br />

504 FORMAT(9F8.0)<br />

600 FORMAT(/5X,’NUMBER OF ADV,KT AND KQ POINTS =’,15/<br />

* 5X,’NUMBER OF SPEEDS =’,15/<br />

* 5X,’NUMBER OF SPEEDS OR ADVC POINTS >10’/)


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 16 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

C<br />

C<br />

CONSTANTS<br />

G=9.81<br />

PI=3.14159<br />

KP1=30.0<br />

KS1=150.0<br />

KS=1.5E-4<br />

KP=0.3E-4<br />

C<br />

C READ INPUT DATA<br />

C<br />

1000 CONTINUE<br />

READ(5,500,END=999) FILE,MODELS,MODELP,SCALE<br />

READ(5,501) LPP,LWL,TF,TA,B,S,DISW,SBK,AT,C3<br />

READ(5,502) NOPROP,NPB,DP,PD075,CH075,TM075,RNCHM<br />

READ(5,503) NOJ,NOSP,RHOM,RHOS,TEMM,TEMP,TEMS<br />

* IC,CP,CN,DELCF,DELWC<br />

NMAX=MAX0(NOJ,NOSP)<br />

IF(FILE(1).EQ.TRIAL) GOTO 100<br />

READ(5,504)(VS(I),RTM(I),THM(I),QM(I),NM(I),FD(I),<br />

* ADVC(I),KT(I),KQ(I);I=1,NMAX)<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

WRITE INPUT DATA<br />

CALL OUTPUT(1)<br />

CHECK<br />

IF(NOJ.LE.10.AND.NOSP.LE.10) GOTO 2<br />

WRITE(6,600) NOJ.NOSP<br />

GOTO 1000<br />

2 CONTINUE


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 17 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

C RECALCULATION OF INPUT DATA<br />

C<br />

DO 3 I=1,NOJ<br />

KT(I)=KT(I)*0.1<br />

KQ(I)=KQ(I)*0.01<br />

....3 CONTINUE<br />

DELCF=DELCF*0.001<br />

RNCHM=RNCHM*100000.<br />

VISCP=((0.585E-3*(TEMP-12.0)-0.03361)*(TEMP-12.0)+<br />

* 1.2350)*1.0E-6<br />

VISCM=((0.585E-3*(TEMM-12.0)-0.0361)*(TEMM-12.0)+<br />

* 1.2350)*1.0E-6<br />

VISCS=((0.659E-3*(TEMS-1.0)-0.05076)*(TEMS-1.0)+<br />

* 1.7688)*1.0E-6<br />

C<br />

C CORRECTION OF PROPELLER CHARACTERISTICS<br />

C<br />

CDM=2.0*(1.0+2.0*TM075/CH075)*(0.044/RNCHM**0.16667-<br />

* 5.0/RNCHM**0.66667)<br />

CDS=2.0*(1.0+2.0*TM075/CH075)/(1.89+1.62*ALOG10(CH075<br />

* /KP))**2.5<br />

DCD=CDM-CDS<br />

DKT=-0.3*DCD*PD075*CH075*NPB/DP<br />

DKQ=0.25*DCD*CH075*NPB/DP<br />

DO 4 I=1,NOJ<br />

KTS(I)=KT(I)-DKT<br />

KQS(I)=KQ(I)-DKQ<br />

KTSJ2(I)=KTS(I)/ADVC(I)**2<br />

4 CONTINUE<br />

DO 5 I=1,NOSP<br />

VS1=VS(I)*0.15444<br />

VM1=VS1/SQRT(SCALE)<br />

NM1=NM(I)<br />

C<br />

C


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 18 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

CALCULATE ROUGHNESS ALLOWANCE AND SHIP TOTAL RESISTANCE<br />

RNLP=LWL*VM1/(VISCP*SCALE)<br />

RNLM=LWL*VM1/(VISCM*SCALE)<br />

RNLS=LWL*VS1/VISCS<br />

CFMC=0.075/(ALOG10(RNLP)-2)**2<br />

CFM=0.075/(ALOG10(RNLM)-2)**2<br />

CFS=0.075/(ALOG10(RNLS)-2)**2<br />

CTM=RTM(I)*SCALE**3/(0.5*RHOM*VS1**2*S)<br />

CR=CTM-(1.0+C3)*CFM<br />

RTMC=RTM(I)*(1.0+C3)*CFMC+CR)/((1.0+C3)*CFM+CR)<br />

THD(I)=(THM(I)+FD(I)-RTMC)/THM(I)<br />

DELCF=(105.0*(KS/LWL)**0.33333-0.64)*0.001<br />

CAA=0.001*AT/S<br />

CTS=((1.0+C3)*CFS*DELCF)*(S+SBK)/S+CR+CAA<br />

MODEL PROPULSIVE COEFFICIENTS<br />

FNOP=NPROP<br />

KTM=(THM(I)/FNOP)/(RHOM*(DP/SCALE)**4*NM1*NM1)<br />

KQM=(QM(I)*0.01/FNOP)/(RHOM*(DP/SCALE)**5*NM1*NM1)<br />

JTM=APOL(0,KT,ADVC,NOJ,KTM,IX)<br />

KQ0=APOL(0,ADVC,KQ,NOJ,JTM,IX)<br />

WTM=1.0-JTM*DP*NM1/(VM1*SCALE)<br />

FULL SCALE WAKE<br />

IF(JRUDER) 6,5,6<br />

5 WTS=(THD(I)+0.04)+(WTM-THD(I)-0.04)*((1.0+C3)*CFS+DELCF)/<br />

* ((1.0+C3)*CFM)<br />

GOTO 7<br />

6 WTS=(THD(I) )+(WTM-THD(I) )*((1.0+C3)*CFS+DELCF)/<br />

* ((1.0+C3)*CFM)<br />

GOTO 7<br />

7 IF(WTS.GT.WTM) WTS=WTM<br />

ETARM(I)=KQ0/KQM<br />

SAVE AREAS<br />

ACTM(I)=CTM<br />

ACFM(I)=CFM<br />

AWTM(I)=WTM<br />

AWTS(I)=WTS<br />

ACTS(I)=CTS<br />

AVS(I)=VS1<br />

AVM(I)=VM1<br />

8 CONTINUE<br />

ITTC STANDARD PREDICTION


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 19 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

C<br />

C<br />

C<br />

CALL IP<br />

RETURN FOR NEW INPUT<br />

DO 20 I=1,2<br />

FILE1(I)=FILE(I)<br />

MODLS1(I)=MODELS(I)<br />

20 MODELP1(I)=MODELP(I)<br />

SCALE1=SCALE<br />

GOTO 1000<br />

C<br />

100 CONTINUE<br />

DO 110 I=1,2<br />

FILE(I)=FILE1(I)<br />

MODELS(I)=MODLS1(I)<br />

110 MODELP(I)=MODLP1(I)<br />

SCALE=SCALE1<br />

C<br />

CALL ANLSYS<br />

C<br />

C<br />

C<br />

C<br />

RETURN FOR NEW INPUT<br />

GOTO 1000<br />

999 STOP<br />

END<br />

C


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 20 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

C<br />

*****************************************************************************************************<br />

***<br />

C<br />

C OUTPUT IS USED FOR PRINTING INPUT DATA AND RESULTS<br />

C<br />

C IOUT= 1 INPUT DATA IS PRINTED<br />

C 2 RESULT PAGE 1<br />

C 3 RESULT PAGE 2<br />

C<br />

C<br />

*****************************************************************************************************<br />

***<br />

C<br />

SUBROUTINE OUTPUT(IOUT)<br />

C<br />

C<br />

COMMON /A/ FILE(2),MODELS(2),MODELP(2),LPP,LWL,TF,TA,B,S<br />

* SCALE,RNCHM,DISW,NOPROP,NPB,DP,PD075,CH075,<br />

* TM075,C3,SBK,AT,CP,CN,DELCFC,DELWC,KSI,KPI,<br />

* RHOM,RHOS,TEMM,TEMP,TEMS,VS(10),RTM(10);THM(10),<br />

* QM(10),NM(10),ADVC(10),KT(10),KQ(10),THD(10),<br />

* FD(10),IC,NOJ,NOSP,PI<br />

COMMON /B/ ETARM(10),ETA0(10),ETAH(10),ETAD(10),AWTM(10),<br />

* AWTS(10),ACFM(10),ACTM(10),AVS(10),AVM(10),<br />

* ATS(10),AQS(10),APDS(10),APE(10),APDT(10),<br />

* ANS(10),ANT(10),BPDT(10),BNT(10),KTSJ2(10),<br />

* KQS(10),KTS(10),ACTS(10)<br />

REAL LPP,LWL,KS1,KS,KP1,KP,NM1,NM,KT,KQ,KTM,KQ0,JTM,<br />

KTSJ2,JTS,NS,KQTS,KTS,KQS<br />

DIMENSION TEXT (16)<br />

DATA TEXT /’INPU’,’T DA’,’TA ‘,’ ‘,<br />

* ‘OUTP’,’UT D’,’ATA ‘,’1 ‘,<br />

* ‘OUTP’,’UT D’,’ATA..’,’2 ‘;<br />

* `TRIA`,`L AN`,ÀLYS`,ÌS `/<br />

600 FORMAT(‘1’,19X,’1978 ITTC PERFORMANCE PREDICTION’,10X,<br />

* ‘ENCL:’/<br />

C?? * 20X,’METHOD ‘,8X,<br />

* ‘REPORT:’/20X,4A4/)


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 21 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

601 FORMAT(5X,’IDENTIFICATION :’,18X,’SHIP:’//<br />

* 5X,‘PROJECT :’,2A4,<br />

* 10X,’LENGTH PP :’,F8.2,’ (M)’/<br />

* 5X,’SHIP MODEL’ :’,2A4,<br />

* 10X,’LENGTH WL :’,F8.2,’ (M)’/<br />

* 5X,’PROPELLER MODEL :’,2A4,<br />

* 10X,’DRAFT FWD :’,F8.2,’ (M)’/<br />

* 5X,’SCALE FACTOR :’,F8.2,<br />

* 10X,’DRAFT AFT :’,F8.2,’ (M)’/<br />

* 43X,’BREADTH :’,F8.2,’ (M)’/<br />

* 5X,’PROPELLER:’,<br />

* 28X,’WETTED SURFACE :’,F8.0,’ (M**2)’/<br />

* 43X,’DISPLACEMENT :’,F8.0,’ (M**3)’)<br />

602 FORMAT(5X,’NUMBER OF PROPELLERS:’,I8/<br />

* 5X,’NUMBER OF BLADES :’,I8,<br />

* 6X,’FRICTION COEFFICIENT CF’/<br />

* 5X,’DIAMETER :’,F8.3,’ (M)’,<br />

* 2X,’CALCULATED ACCORDING TO ITTC-57’/<br />

* 5X,’PITCH RATIO 0.75R :’,F8.4,<br />

* 6X,’FORM FACTOR :’,F6.3,’ (BASED ON ITTC-57)’/)<br />

603 FORMAT(5X,’HULL ROUGHN.*10**6 :’,F6.1,’ (M)’,<br />

* 2x,’BILGE KEEL AREA :’,F6.1,’ (M**2)’,<br />

* 5X,’PROPELLER BLADE ROUGHN.*10**6:’,F6.1,’ (M)’,<br />

* 2X,’PROJ.AREA ABOVE WL. :’,F6.1,’ (M**2)’/)<br />

604 FORMAT(5X,’CHORD LENGTH OF PROP.BLADE AT X=0.75:’,<br />

* F7.4,’ (M)’/<br />

* 5X,’THICKNESS OF PROP.BLADE AT X=0.75:’,<br />

* F7.4’ (M)’/)<br />

605 FORMAT(5X,’DENSITY OF WATER (TANK ) :’F7.1,<br />

* ‘ (KG/M**3)’/<br />

* ’DENSITY OF WATER (SEA ) :’F7.1,<br />

* ‘ (KG/M**3)’/<br />

* 5X,’TEMP. OF WATER (RESISTANCE TEST) :’F7.2,<br />

* ‘ (CENTIGRADES)’/<br />

* 5X,’TEMP. OF WATER (SELF PROP. TEST) :’F7.2,<br />

* ‘ (CENTIGRADES)’/<br />

* 5X,’TEMP. OF WATER (SEA ) :’F7.2,<br />

* ‘ (CENTIGRADES)’//<br />

* 5X,’MODEL TEST RESULTS:’,<br />

* 30X,’OPEN WATER CHARACT.;’/<br />

* 54X,’RNC :’’F5.2,’*10**5’/)


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 22 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

606 FORMAT(5X,’SHIP RESIS- FRICT. THRUST TORQUE RATE OF ‘,<br />

* 2X,’ADVANCE THRUST TORQUE’/<br />

* 20X,’REVS. RATIO COEFF. COEFF.’/<br />

* 5X,’KNOTS N N N NM RPS ’,<br />

* 7X,’J 10*KT 100*KQ’/)<br />

607 FORMAT(1X)<br />

608 FORMAT(‘+’,3X,F5.1,1X,F7.1,1X,F7.2,2X,2F7.1,F9.2)<br />

609 FORMAT(‘+’,49X,F10.3,F7.3,F8.3)<br />

610 FORMAT(5X,’SHIP MODEL:’//<br />

* 8X,’SPEED RES. COEFF. FRICT. COEFF. THRUST DED.’,<br />

* 2X,’MEAN REL.ROT.’/<br />

* 6X,’VS VM TOTAL’,32X, ‘WAKE EFFIC.’/<br />

* 5X,’KNOTS M/S CTM*1000 CFM*1000’,8X,’TM’,<br />

* 7X,’WTM ETARM’/)<br />

611 FORMAT(4X,F5.1,F7.3,F8.3,6X,F7.3,7X,F7.3,3X,F7.3,F8.3)<br />

612 FORMAT(/5x,’ITTC STANDARD PREDICTION CP=CN=1.0 :’//<br />

* 5X,’SPEED EFF. POWER DELIV. POWER RSATE OF REVS’,<br />

* 2X,’ THRUST TORQUE’/<br />

* 6X,’VS’,7X,’PE’,10X,’PD’,12X,’N’,10X,’T’,8X,’Q’/<br />

* 5X,’KNOTS’,5X,’KW’,10X,’KW’,11X,’RPS’,9X,’KN’,<br />

* 6X,’KNM’/)<br />

613 FORMAT(4X,F5.1,F10.0,3X,F9.0,4X,F9.3,3X,F9.0,F8.0)<br />

614 (FORMAT(/5X,’SPEED TOT. EFF. PROP.EFF. HULL EFF. SHIP WAKE’,<br />

* 3X,’OPEN WATER CHAR. FULL SCALE:’/<br />

* 5X,’KNOTS ETAD ETA0 ETAH’,/X,’WTS’,<br />

* 9X,’J 10*KT 100*KQ’/)<br />

615 FORMAT(‘+’,3X,F5.1,F8.3,3(3X,F7.3))<br />

616 FORMAT(‘+’,50X,3F7.3)<br />

617 FORMAT(/5X,’SHIP DELIVERED POWER RATE OF REVS.’/<br />

* 5X, ‘SPEED --------------------------- ---------------------‘/<br />

* 5X,’KNOTS KW HP RPS RPM’/)<br />

618 FORMAT(4X,F5.1,2X,2F8.0,3X,F7.3,F8.2)<br />

619 FORMAT(/5X,’SHIP TRIALS PREDICTION CP=’,F7.3,’ CN=,F7.3)<br />

620 FORMAT(/5X,’SHIP TRIALS PREDICTION DELCFC*1000=’,<br />

* F6.3,’ DELCW=’,F6.3)<br />

ITEX=ICUT*4-4<br />

WRITE(6,600) (TEXT(ITEX+1),I=1,4)<br />

WRITE(6,601) FILE,LPP,MODELS,LWL,MODELP,TF,SCALE,TA,B,S,DISW<br />

WRITE(6,602) NOPROP,NPB,DP,PD075,C3<br />

C<br />

GOTO(10,20,30,40) , IOUT


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 23 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

C<br />

C<br />

INPUT DATA IS LISTED<br />

10 CONTINUE<br />

WRITE(6,603) KS1,SBK,KP1,AT<br />

WRITE(6,604) CH075,TM075<br />

WRITE(6,605) RHOM,RHOS,TEMM,TEMP,TEMS,RNCHM<br />

WRITE(6,606)<br />

NMAX=MAX0(NOJ,NOSP)<br />

DO 1 I=1,NMAX<br />

WRITE(6,607)<br />

IF(I. LE. NOSP) WRITE(6,608) VS(I);RTM(I);FD(I),THM(I),<br />

QM(I),NM(I)<br />

IF(I. LE.NOJ) WRITE(6,609) ADVC(I),KT(I),KQ(I)<br />

1 CONTINUE<br />

RETURN<br />

C<br />

C RESULTS PAGE 1<br />

C<br />

20 CONTINUE<br />

WRITE(6,610)<br />

DO 21 I=1,NOSP<br />

CFM=ACFM(I)*1000.0<br />

CTM=ACTM(I)*1000.0<br />

WRITE(6,611) VS(I),AVM(I),CTM,CFM,THD(I),AWTM(I),ETARM(I)<br />

21 CONTINUE<br />

WRITE(6,612)<br />

DO 22 i=1,NOSP<br />

WRITE(6,613) VS(I),APE(I),APDS(I),ANS(I),ATS(I),AQS(I)<br />

22 CONTINUE<br />

WRITE(6,614)<br />

DO 23 i=1,NMAX<br />

WRITE(6,607)<br />

IF(I.LE.NOSP) WRITE(6,615) VS(I),ETAD(I),ETA0(I),ETAH(I);<br />

XKTS=KTS(I)*10.0<br />

XKQS=KQS(I)*100.0<br />

IF(I.LE.NOSP) WRITE(6,616)<br />

23 CONTINUE<br />

RETURN<br />

AWTS(I)<br />

ADVC(I),XKTS,XKQS


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 24 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

C RESULTS PAGE 3<br />

C<br />

30 CONTINUE<br />

DCFC=DELCFC*1000.0<br />

IF(IC.EQ.1) WRITE(6,620) DCFC,DELWC<br />

IF(IC.NE.1) WRITE (6,619) CP,CN<br />

WRITE(6,617)<br />

DO 31 I=1,NOSP<br />

WRITE(6,618) VS(I),APDT(I),BPDT(I),ANT(I),BNT(I)<br />

31 CONTINUE<br />

....40 RETURN<br />

END<br />

C<br />

C<br />

*****************************************************************************************************<br />

***<br />

C<br />

C IRAT= 0 INTERPOLATION WITH A 2:ND DEGREE POLYNOMIAL<br />

C = 1 INTERPOLATION WITH A RATIONAL FUNCTION OF 2:ND DEGREE<br />

C X = ARGUMENT ARRAY<br />

C Y = VALUE ARRAY<br />

C N = NUMBER OF ARGUMENTS<br />

C EX = ARGUMENT<br />

C IFEL = ERROR RETURN CODE<br />

C<br />

C<br />

*****************************************************************************************************<br />

***<br />

C<br />

REAL FUNCTION APOL(IRAT,X,Y,N,EX,IFEL)<br />

DIMENSION X(1),Y(1)<br />

C<br />

C CHECK NUMBER OF POINTS > 2<br />

C<br />

IFEL=0<br />

IF(X(1).GT.X(N)) GOTO 2<br />

IF(X(1).GT.EX.OR.X(N).LT.EX) GOTO 7<br />

DO 1 I=1,N<br />

L=1<br />

IF(EX-X(I)) 4,4,1<br />

1 CONTINUE<br />

GOTO 4<br />

2 CONTINUE<br />

IF(X(1).LT.EX.OR.X(N).GT.EX) GOTO 7<br />

DO 3 I=1,N<br />

L=I<br />

IF(EX-X(I)) 3,4,4


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 25 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

3 CONTINUE<br />

4 CONTINUE<br />

M=2<br />

IF(L.EQ.1) M=1<br />

IF(L.EQ.3) M=3<br />

LM=L-M<br />

X1=X(LM+1)<br />

X2=X(LM+2)<br />

X3=X(LM+3)<br />

Y1=Y(LM+1)<br />

Y2=Y(LM+2)<br />

Y3=Y(LM+3)<br />

INTERPOL. 2:ND DEGREE POLYNOMIAL<br />

X21=X2-X1<br />

X31=X3-X1<br />

X32=X3-X2<br />

IF(IRAT.EQ.1) GOTO 6<br />

C1=Y1<br />

C2=(Y2-C1)/X21<br />

C3=(Y3-C1-C2*X31)/(X31*X32)<br />

APOL=C1+(EX-X1)*(C2+C3*(EX-X2))<br />

RETURN<br />

6 CONTINUE<br />

INTERPOL. RAT. FUNCTION<br />

Y21=Y2*X2*X2-Y1*X1*X1<br />

Y32=Y3*X3*X3-Y2*X2*X2<br />

A0=(Y32-X32*Y21/X21)/(X32*X31)<br />

B0=(Y21/X21-A0*(X1+X2)<br />

C0=((Y1-A0)*X1-B0)*X1<br />

APOL=(C0/EX+B0)/EX+A0<br />

RETURN<br />

7 CONTINUE<br />

WRITE(6,8)<br />

8 FORMAT(/5X,’INCREASE THE J-RANGE’)<br />

STOP<br />

END


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 26 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

C ********************************************************************<br />

C<br />

C ITTC PREDICTIONS<br />

C<br />

C ********************************************************************<br />

C<br />

SUBROUTINE IP<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

COMMON /A/ FILE(2),MODELS(2),MODELP(2),LPP,LWL,TF,TA,B,S,<br />

* SCALE,RNCHM,DISW,NOPROP,NPB,DP,PD075,CH075,<br />

* TM075,C3,SBK,AT,CP,CN,DELCFC,DELWC,KSI,KPI,<br />

* RHOM,RHOS,TEMM,TEMP,TEMS,VS(10),RTM(10),THM(10),<br />

* QM(10),NM(10),ADVC(10),KT(10),KQ(10),THD(10),<br />

* FD(10),IC,NOJ,NOSP,PI<br />

COMMON /B/ ETARM(10),ETA0(10),ETAR(10),ETAD(10),AWTM(10),<br />

* AWTS(10),ACFM(10),ACTM(10),AVS(10),AVM(10),<br />

* ATS(10),AQS(10),APDS(10),APE(10),APDT(10),<br />

* ANS(10),ANT(10),BPDT(10),BNT(10),KTSJ2(10),<br />

* KQS(10),KTS(10),ACTS(10)<br />

REAL LPP,LWL,KS1,KS,KPI,KP,NM1,NM,KT,KQ,KTM,KQD,JTM,<br />

* KTSJ2,JTS,NS,KQTS,KTJT2,KQOS,KQS,KTS<br />

DO 3 I=1,NOSP<br />

VS1=AVS(I)<br />

CTS=ACTS(I)<br />

WTS=AWTS(I)<br />

CALCULATE THE FULL SCALE LOAD ADVANCE COEFF: AND<br />

TORQUE COEFF.<br />

FNOP=NOPROP<br />

KTJT2=S*CTS*0.5/((DP*(1.0-WTS))**2*(1.0-THD(I))) /FNOP<br />

JTS=APOL(1,KTSJ2,ADVC,NOJ,KT,KTJT2,IX)<br />

KQOS=APOL(0,ADVC,KQS,NOJ,JTS,IX)<br />

THE RATE OF REV. AND THE DELIVERED POWER<br />

NS=(1.0-WTS)*VS1/(JTS*DP)<br />

APDS(I)=2.0*PI*RHOS*DP**5*NS**3*KQOS/ETARM(I)*0.001<br />

ANS(I)=NS


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 27 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

THE THRUST AND TORQUE OF THE PROPELLER<br />

ATS(I)=KTJT2*JTS**2*RHOS*DP**4*NS*NS*0.001<br />

AQS(I)=KQOS*RHOS*DP**5*NS*NS/ETARM(I)*0.001<br />

THE EFFECTIVE POWER, TOTAL AND HULL EFFICIENCY<br />

APE(I)=CTS*0.5*RHOS*VS1**3*S*0.001<br />

ETAD(I)=APE(I)/APDS(I)<br />

ETAH(I)=(1.0-THD(I))/(1.0-WTS)<br />

IF(IC.EQ.1) GOTO 1<br />

IC1=IC-1<br />

IF(IC1)10,11,12<br />

TRIAL PREDICTION WITH CP-CN CORRECTIONS (ITTC1978 ORIGINAL)<br />

10 ANT(I)=CN*NS<br />

BNT(I)=ANT(I)*60.0<br />

APDT(I)=CP*APDS(I)<br />

BPDT(I)=1.36*APDT(I)<br />

GOTO 100<br />

TRIAL PREDICTION WITH CP-CN CORRECTIONS<br />

CN BASED ON POWER IDENTITY<br />

12 APDT(I)=CP*APDS(I)<br />

BPDT(I)=1.36*APDT(I)<br />

KQJ3T=1000.0*APDT(I)/(2.0*PI*RHOS*DP**2) /FNOP<br />

KQJ3T=KQJ3T/(VS1**3*(1.0-WTS)**3)<br />

KQ0J3=KQJ3T*ETARM(I)<br />

JTS=APOL(1,KQSJ3,ADVC,NOJ,KQ0J3,IX)<br />

NS=(1.0-WTS)*VS1/(JTS*DP)<br />

ANT(I)=CN*NS<br />

BNT(I)=ANT(I)*60.0<br />

GOTO 100<br />

11 CONTINUE


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 28 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

C TRIAL PREDICTION WITH DELCF-DELWC CORRECTIONS<br />

C<br />

KTJT2=S*(CTS+DELCFC)/(2.0*(1.0-THD(I))*(DP*<br />

* (1.0-(WTS-DELWC)))**2)<br />

JTS=APOL(1,KTSJ2,ADVC,NOJ,KTJT2,IX)<br />

KQOS=APOL(0,ADVC,KQS,NOJ,JTS,IX)<br />

ANT(I)=(1.0-WTS+DELWC)*VS1/(JTS*DP)<br />

BNT(I)=ANT(I)*60.0<br />

APDT(I)=2.0*PI*RHOS*DP**5*ANT(I)**3*KQOS/ETARM(I)*0.001<br />

BPDT(I)=1.36*APDT(I)<br />

2 CONTINUE<br />

ETAD(I)=KTJT2*JTS**3/(2.0*PI*KQOS)<br />

3 CONTINUE<br />

C<br />

C WRITE OUTPUT<br />

C<br />

CALL OUTPUT(2)<br />

CALL OUTPUT(3)<br />

RETURN<br />

SUBROUTINE ANLSYS<br />

C<br />

C***********************************************************************************************************<br />

****<br />

C * *<br />

C * ANALYSIS ACCORD1NG TO 1978 ITTC PREDICTION METHOD *<br />

C * *<br />

C***********************************************************************************************************<br />

****<br />

C<br />

C<br />

DIMENSION VST(10),XNT(10),XPD(10),<br />

* THDT(10),WTMT(10),WTST(10),ETART(10),CRWT(10),<br />

* YNT(10),YPD(10),CPT(10),CNT(10),CNPT(10),ZNT(10)<br />

* DCFT(10),WTSS(10),DWT(10),DCFM(10),DWM(I0),<br />

* KQJ3(10)<br />

C<br />

COMMON /A/ FILE(2),MODELS(2),MODELP(2),LPP,LWL,TF,TA,B,S,<br />

* SCALE,RNCHM,DISW,NOPROP,NPB,DP,PD075,CH075,<br />

* TM075,C3,SBK,AT,CP,CN,DELCFC,DELWC,KS1,KP1,<br />

* RHOM, RHOS,TEMM,TEMP,TEMS,VS(10),RTM(10),THM(10),<br />

* QM(10),NM(10),ADVC(10),KT(10),KQ(10),THD(10),<br />

* RA(10),IC,NOJ,NOSP,PI


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 29 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

COMMON /B/ ETARM(10), ETA0(10),ETAH(10),ETAD(10),AWTM(10),<br />

* AWTS(10),ACFM(10),ACTM(10),AVS(10),AVM(10),<br />

* ATS(10),AQS(10),APDS(10),APE(10),APDT(10),<br />

* ANS(10),ANT(10),BPDT(10),BNT(10),KTSJ2(10),<br />

* KQS(10),KTS(10),ACTS(10)<br />

C<br />

C<br />

C<br />

REAL LPP,LWL,KS1,KS,KP1,KP,NM1,NM,KT,KQ,KTM,KQ0,JTM,<br />

* KTSJ2,JTS,NS,KQTS,KTJT2,KQOS,KTS,KQS,KQM,<br />

* KQJ3,KQJ3T<br />

DO 5 I = 1,NOJ<br />

5 KQJ3(I) = KQS(I) /ADVC(I)**3<br />

C<br />

NOST=10<br />

READ(5,510) (VST(I), I=1,NOST)<br />

READ(5,510) (XNT(I), I=1,NOST)<br />

READ(5,510) (XPD(I), .I=1,NOST)<br />

510 FORMAT (10F8.0)<br />

C<br />

C<br />

COUNT NO. OF TRIAL RUNS<br />

NOST = 0<br />

DO 8 I = 1, 10<br />

IF (VST(I).GT.0. ) NOST=NOST+1<br />

8 CONTINUE<br />

IF(XNT(1).GT.20.) GOTO 20<br />

DO 10 I=1, NOST<br />

XNT(I) = XNT(I)*60.0<br />

10 XPD(I) = XPD(I)*1.36<br />

20 CONTINUE<br />

DO 50 I=1, NOST<br />

VST1=VST(I)*1852.0/3600.0<br />

CTST = APOL(0,AVS, ACTS, NOSP,VST1, IX)<br />

THDT(I)= APOL(0,AVS, THD, NOSP,VST1, IX)<br />

WTMT(I)= APOL(0,AVS, AWTM, NOSP,VST1, IX)<br />

WTST(I)= APOL(0,AVS, AWTS, NOSP,VST1, IX)<br />

ETART(I)= APOL(0,AVS, ETARM,NOSP,VST1, IX)<br />

CF =APOL(0,AVS, ACFM, NOSP,VST1, IX)<br />

CT =APOL(0,AVS, ACTM, NOSP,VST1, X)


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 30 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

C<br />

C<br />

CRWT(I)= CT - (1.0+C3)*CF<br />

FNOP =NOPROP<br />

KTJT2 =S*(CTST/FNOP )*0.5 / ((DP*(1.0-WTST(I)))**2*(1.0-THDT(I)))<br />

JTS =APOL(1, KTSJ2, ADVC, NOJ, KTJT2, IX)<br />

KQOS=APOL (0, ADVC, KQS, NOJ, JTS, IX)<br />

NS=(1.0-WTST(I))*VST1/(JTS*DP)<br />

PDS = 2.0*PI*RHOS*DP**5*NS**3*KQ0S/ETART(I)*0.001*FNOP<br />

YNT(I)= NS*60.0<br />

YPD(I) = PDS*1.36<br />

CPT(I)= XPD(I)/YPD(I)<br />

CNT(l)=XNT(I)/YNT(I)<br />

PDT1 = XPD(I) /1.36<br />

XNT1 = XNT(I) / 60.0<br />

FKQ = PDT1*START(I)*1000.0 / (2.0*PI*RHOS*DP**5*XNT1**3) / FNOP<br />

FJT = APOL(0,KQS,ADVC,NOJ,FKQ,IX)<br />

FKT = APOL(0,ADVC, KTS,NOJ,FJT,IX)<br />

KQJ3T=FKQ * (DP*XNT1)**3 / ((1-WTST(I))*VST1)**3<br />

FJQ= APOL( 1,KQJ3,ADVC,NOJ,KQJ3T,IX)<br />

ZNT(I)=(1.0 -WTST(I)) * VST1 / (FJQ*DP) * 60.0<br />

CNPT(I)=XNT(I) / ZNT(I)<br />

THS= FKT * RHOS * DP**4*XNT1**2<br />

CTS=THS*(1.0 - THDT(I)) / (0.5*RHOS*VST1**2*S) * FNOP<br />

DCFT(I)=(CTS - CTST)*1000.0<br />

WTSS(I)= 1.0 - FJT*DP*XNT1/VST1<br />

DWT(I) = WTST(I) - WTSS(I)<br />

DWM(I) = WTMT(I) - WTSS(I)<br />

CALCULATION OF FRICTIONAL RESISTANCE ~COEFF. OF SHIP<br />

T = TEMS<br />

FNU = ((0.659E-3*(T-l.0)-0.05076)*(T-1)+1.7688)*1.0E-6<br />

RNLS= ALOG10(LWL*VST1/FNU)<br />

CFS = 0.075 / (RNLS-2.0)**2<br />

C<br />

DCFM(I) = CTS - (l.0+C3)*CFS - ( CRWT(I)+0.001*AT / S )*S / (S+SBK)<br />

DCFM(I) = DCFM(I) * 1000.0<br />

CRWT(I) = CRWT(I) * 1000.0<br />

50 CONTINUE<br />

C<br />

CALL OUTPUT(4)<br />

WRITE(6,600)


ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 31 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

600 FORMAT(' ',19X,'TRIAL ANALYSIS ACCORDING TO ITTC 1978 METHOD',///)<br />

WRITE(6,610) ( VST(I), I=1, NOST)<br />

610 FORMAT(5X.. ' SHIP SPEED - TRTAL',7(F10.2, 2X) /)<br />

WRITE(6,620) ( XNT(I), I=1, NOST)<br />

620 FORMAT(5X, ‘ PROP, RPM –TRTAL ',7(F10.2, 2X) /)<br />

WRITE(6,630) ( XPD(I), I=1, NOST)<br />

630 FORMAT(4X, 'DELIV.POWER-TRIAL ',7(F11.0,1X) //)<br />

WRITE(6,640) ( YNT(I), I=1, NOST)<br />

640 FORMAT(/5X, ‘ PROP. RPM -CN=1 ',7(F10.2,2X) /)<br />

WRITE~(6,650) ( ~YPD(I), I=1,NOST)<br />

650 FORMAT(4X, ' DELIV. POWER -CP =1',7(F11.0,1X) /)<br />

WRITE(6,660) ( ZNT(I), I=1, NOST)<br />

660 FORMAT(5X, ‘ PROP. RPM -CNP=1 ',7(F10.2,2X), //)<br />

WRITE(6,670) ( CPT(I), I=1, NOST)<br />

670 FORMAT(/5X, ‘ CP ‘,7(F10.3,2X) /)<br />

WRITE(6,680) (CNT(I), I=1, NOST)<br />

680 FORMAT(5X, ‘CN ‘,7(F10.3,2X) /)<br />

WRITE(6,690) (CNPT(I), I=1,NOST)<br />

690 FORMAT(5X, ‘CNP ',7(F10.3,2X) //)<br />

WRITE(6,700) (DCFT(I), I=1,NOST)<br />

700 FORMAT(/5X, ‘DCFC*1000 -CP=CN=1’,7(F10.3,2x) /)<br />

WRITE(6,710) ( DWT(I), I=1, NOST)<br />

710 FORMAT(5X, ' DWC CP=CN=1’,7(F10.3,2X) //)<br />

WRITE(6,715) ( DCFM(I), I=1, NOST)<br />

715 FORMAT(/5X, 'DCF *1000 ITTC-57’,7(F10.3,2x) /)<br />

WRITE(6,717) ( DWM(I), I=1,NOST)<br />

717 FORMAT(5X, ‘DW = WM-WTRIAL ',7(F10.3,2X) //)<br />

WRITE(6,720) ( CRWT(I) ,I=1, NOST)<br />

720 FORMAT(/5X, ‘ CR*1000 ‘,7(F10.3,2X) /)<br />

WRITE (6,730) ( THDT(I), I=1, NOST)<br />

730 FORMAT(5X, ‘ THDM ',7(F10.3,2X) /)<br />

WRITE(6,740) ( WTMT(I), I=1, NOST)<br />

740 FORMAT(5X, ’ WTM ',7(F10.3,2X) /)<br />

WRITE(6,750) ( WTST(I), I=1, NOST)<br />

750 FORMAT(5X, ‘ WTS CP=CN=1 ’,7(F10.3,2x) /)<br />

WRITE(6,760) ( WTSS(I), I=1, NOST)<br />

760 FORMAT(5X, ’ WTS TRIAL ’,7(F10.3,2X) /)<br />

WRITE(6,770) ( ETART(I), I=1, NOST)<br />

770 FORMAT(5X, ‘ ETARM ‘ ,7(F10.3,2X) /)<br />

RETURN<br />

END


120<br />

APÊNDICE A. PREVISÃO BASEADA NOS ENSAIOS DE PROPULSÃO


Apêndice<br />

B<br />

Procedimentos Recomendados pela<br />

ITTC para a Preparação e<br />

Realização das Provas <strong>de</strong> Velocida<strong>de</strong><br />

e Potência<br />

121


122<br />

APÊNDICE B. PROVAS DE VELOCIDADE E POTÊNCIA


ITTC – Recommen<strong>de</strong>d<br />

7.5-04<br />

-01-01.1<br />

Procedures and Gui<strong>de</strong>lines Page 1 of 10<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Preparation and Conduct of<br />

Speed/Power Trials<br />

Effective Date<br />

2005<br />

Revision<br />

03<br />

Table of Contents<br />

1. PURPOSE ..............................................2<br />

2. DEFINITIONS.......................................2<br />

3. RESPONSIBILITIES............................3<br />

3.1 Shipbuil<strong>de</strong>rs Responsibilities............3<br />

3.2 The Trial Team ..................................4<br />

4. PROCEDURES......................................4<br />

4.1 Trial Preparation...............................4<br />

4.1.1 Shipbuil<strong>de</strong>r’s Support Requirement:4<br />

4.1.2 Space Requirements ........................4<br />

4.2 Ship Inspection...................................5<br />

4.2.1 Preparation for the trials ..................5<br />

4.2.2 Ship Inspection ................................5<br />

4.2.3 Reporting of Results and<br />

Distribution of Information .............5<br />

4.3 Hull- and Propulsor Survey..............5<br />

4.4 Instrumentation Installation and<br />

Calibration .........................................5<br />

4.4.1 Instrumentation Installation.............5<br />

4.4.2 Instrumentation Calibration Check .6<br />

4.5 Trial Conditions.................................6<br />

4.5.1 Wind:...............................................8<br />

4.5.2 Sea State: .........................................8<br />

4.5.3 Current:............................................8<br />

4.6 Trial Conduct: ...................................8<br />

5. REFERENCES ....................................10<br />

Updated / Edited by<br />

Approved<br />

Specialist Committee on Powering Performance<br />

of 24 th ITTC<br />

Date 2005 Date 2005<br />

24 th ITTC 2005


ITTC – Recommen<strong>de</strong>d<br />

7.5-04<br />

-01-01.1<br />

Procedures and Gui<strong>de</strong>lines Page 2 of 10<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Preparation and Conduct of<br />

Speed/Power Trials<br />

Effective Date<br />

2005<br />

Revision<br />

03<br />

Preparation and Conduct of Speed/Power Trials<br />

1. PURPOSE<br />

The general purpose of this procedure is to<br />

<strong>de</strong>fine basic requirements for the preparation<br />

and conduct of speed trials.<br />

The primary purpose of speed trials is to<br />

<strong>de</strong>termine ship performance in terms of speed,<br />

power and propeller revolutions un<strong>de</strong>r prescribed<br />

ship conditions, and thereby verify the<br />

satisfactory attainment of the contractually<br />

stipulated ship speed.<br />

The applicability of this procedure is limited<br />

to commercial ships of the displacement<br />

type.<br />

The procedure is<br />

• to provi<strong>de</strong> gui<strong>de</strong>lines to document the<br />

trial preparation prior to the conduct of<br />

a full scale Speed/Power trial,<br />

• to <strong>de</strong>fine the responsibility sharing<br />

among the parties who take part in the<br />

sea trial for the smooth preparation and<br />

execution of the speed trial<br />

• to establish a gui<strong>de</strong>line for conducting<br />

inspections for the purpose of installing<br />

instrumentation prior to the conduct of<br />

a full scale Speed/Power trial,<br />

• to establish a baseline of the ship hull<br />

and propulsor condition prior to the<br />

conduct of a full-scale Speed/Power<br />

trial;(hull and propulsor surveys are<br />

recommen<strong>de</strong>d to allow an evaluation of<br />

the trial results for scientific purposes),<br />

• to install and calibrate trial instrumentation<br />

for full scale Speed/Power trials,<br />

• to <strong>de</strong>fine acceptable limits for trial conditions<br />

nee<strong>de</strong>d to validate hydrodynamic<br />

<strong>de</strong>sign and/or satisfy contractual<br />

requirements,<br />

for acceptable conduct of each speed trial.<br />

2. DEFINITIONS<br />

• Ship Speed is that realized un<strong>de</strong>r the contractually<br />

stipulated conditions. I<strong>de</strong>al conditions<br />

to which the speed would be corrected<br />

would be<br />

• no wind (or maximum wind speed according<br />

to Beaufort 2)<br />

• no waves (or waves with maximum<br />

wave heights and wave periods according<br />

to Beaufort 1)<br />

• no current<br />

• <strong>de</strong>ep water<br />

• smooth hull and propeller surfaces<br />

• Docking Report: Report that documents<br />

the condition of the ship hull and propulsors<br />

(available from the most recent dry -<br />

docking).<br />

• Trial Agenda: Document outlining the<br />

scope of a particular Speed/Power trial.<br />

This document contains the procedures on


ITTC – Recommen<strong>de</strong>d<br />

7.5-04<br />

-01-01.1<br />

Procedures and Gui<strong>de</strong>lines Page 3 of 10<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Preparation and Conduct of<br />

Speed/Power Trials<br />

Effective Date<br />

2005<br />

Revision<br />

03<br />

how to conduct the trial and table(s) portraying<br />

the runs to be conducted.<br />

• Trial Log: For each run, the log contains<br />

the run number, type of maneuver, approach<br />

speed by log, approach shaft speed,<br />

times when the maneuvers start and stop,<br />

and any comments about the run.<br />

• Propeller Pitch: the <strong>de</strong>sign pitch also for<br />

controllable pitch propellers.<br />

• Running Pitch: the operating pitch of a<br />

CPP<br />

• Brake Power: Power <strong>de</strong>livered by the output<br />

coupling of the propulsion machinery<br />

before passing through any speed reducing<br />

and transmission <strong>de</strong>vices and with all continuously<br />

operating engine auxiliaries in<br />

use.<br />

• Shaft Power: Net power supplied by the<br />

propulsion machinery to the propulsion<br />

shafting after passing through all speedreducing<br />

and other transmission <strong>de</strong>vices<br />

and after power for all attached auxiliaries<br />

has been taken off.<br />

3. RESPONSIBILITIES<br />

3.1 Shipbuil<strong>de</strong>rs Responsibilities<br />

• The Shipbuil<strong>de</strong>r has the responsibility for<br />

planning, conducting and evaluating the trials.<br />

• Speed – Power - Trials may be conducted<br />

by institutions acknowledged as competent<br />

to perform those trials, as agreed between<br />

the Shipbuil<strong>de</strong>r and the Ship owner<br />

• The Shipbuil<strong>de</strong>r has to provi<strong>de</strong> all permits<br />

and certificates nee<strong>de</strong>d to go to sea.<br />

• The Shipbuil<strong>de</strong>r is responsible to ensure<br />

that all qualified personnel, nee<strong>de</strong>d for operating<br />

the ship and all engines, systems<br />

and equipment during the trials have been<br />

or<strong>de</strong>red.<br />

• The Shipbuil<strong>de</strong>r is responsible to ensure<br />

that all regulatory bodies, Classification<br />

Society, Ship Owner, ship agents, suppliers,<br />

subcontractors, harbor facilities, <strong>de</strong>livering<br />

<strong>de</strong>partments of provisions, fuel, water, towing,<br />

etc., nee<strong>de</strong>d for conducting the sea trials,<br />

have been informed and are available<br />

and on board, if required.<br />

• It is the Shipbuil<strong>de</strong>r’s responsibility that all<br />

safety measures have been checked and all<br />

fixed, portable and individual material (for<br />

crew, trial personnel and guests) is on<br />

board and operative.<br />

• It is the Shipbuil<strong>de</strong>r’s responsibility that<br />

dock trials of all systems have been executed<br />

as well as all alarms, warning and<br />

safety systems.<br />

• It is the Shipbuil<strong>de</strong>r’s responsibility that an<br />

inclining test has been performed and/or at<br />

least a preliminary stability booklet has<br />

been approved, covering the sea trial condition,<br />

in accordance with the 1974 SOLAS<br />

Convention.<br />

• The Shipbuil<strong>de</strong>r is responsible for the overall<br />

trial coordination between the ship's<br />

crew, trial personnel, and the owner representative.<br />

A pre-trial meeting between the<br />

trial team, owner and the ship’s crew will<br />

be held to discuss the various trial events<br />

and to resolve any outstanding issues.


ITTC – Recommen<strong>de</strong>d<br />

7.5-04<br />

-01-01.1<br />

Procedures and Gui<strong>de</strong>lines Page 4 of 10<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Preparation and Conduct of<br />

Speed/Power Trials<br />

Effective Date<br />

2005<br />

Revision<br />

03<br />

• The Shipbuil<strong>de</strong>r has, if necessary, to arrange<br />

for divers to inspect the ship’s hull<br />

and propellers.<br />

• The Trial Lea<strong>de</strong>r is the duly authorized<br />

(shipbuil<strong>de</strong>r’s representative) person responsible<br />

for the execution of all phases of<br />

the Speed/Power trials including the pretrial<br />

preparation.<br />

3.2 The Trial Team<br />

The trial team is responsible for correct<br />

measurements and analysis of the measured<br />

data according to the state of the art.<br />

The trial team is responsible for the following:<br />

a. Conduct ship inspection, if possible or<br />

necessary.<br />

b. Provi<strong>de</strong>, install and operate all required<br />

trial instrumentation and temporary cabling.<br />

c. If previously arranged, provi<strong>de</strong> the ship<br />

master and owner’s representative with<br />

a preliminary data package before <strong>de</strong>barking.<br />

The contents of the data package<br />

will be <strong>de</strong>termined in consultation<br />

with the owner’s representative at the<br />

initial pre-trial briefing.<br />

d. Provi<strong>de</strong> a final report after completion<br />

of the trials in accordance with any<br />

agreement between the shipbuil<strong>de</strong>r and<br />

the ship owner.<br />

4. PROCEDURES<br />

4.1 Trial Preparation<br />

4.1.1 Shipbuil<strong>de</strong>r’s Support Requirement:<br />

Prior to the trials the required instrumentation<br />

has to be installed. The assistance of the<br />

ship’s or shipbuil<strong>de</strong>r’s crew will be required<br />

when making electrical connections to the<br />

ship's systems and circuits such as heading,<br />

wind speed, wind direction, and rud<strong>de</strong>r angle<br />

synchronous repeaters. The following support<br />

is requested from the Shipbuil<strong>de</strong>r to properly<br />

prepare for the trials:<br />

a. Provi<strong>de</strong> access to the ship for trial instrumentation.<br />

b. Assistance is required for the following<br />

electrical connections:<br />

• Gyrocompass<br />

• Wind meter<br />

• Rud<strong>de</strong>r angle indicator<br />

• Log Speed<br />

• Propeller Pitch<br />

c. Vary the output level of each of the<br />

above measurement sources to ensure<br />

the proper operation and alignment of<br />

the test instrumentation<br />

4.1.2 Space Requirements<br />

Spaces and an electric supply a<strong>de</strong>quate for<br />

the trial equipment will be required for the trial<br />

instrumentation and computers.


ITTC – Recommen<strong>de</strong>d<br />

7.5-04<br />

-01-01.1<br />

Procedures and Gui<strong>de</strong>lines Page 5 of 10<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Preparation and Conduct of<br />

Speed/Power Trials<br />

Effective Date<br />

2005<br />

Revision<br />

03<br />

4.2 Ship Inspection<br />

There are three stages of a ship inspection:<br />

in-house preparation, the actual inspection, and<br />

the reporting of results and distribution of information<br />

to the various parties involved in the<br />

trial.<br />

4.2.1 Preparation for the trials<br />

• Review shafting dimensions, propulsion<br />

plant specifications, etc.<br />

• Review trials agenda, if available.<br />

4.2.2 Ship Inspection<br />

• Inspect hull- and propeller surface condition,<br />

if possible.<br />

• Inspect ship’s instrumentation for accessibility.<br />

• Determine routes for cable runs/data<br />

transfer conduits between trial room<br />

and bridge or control area.<br />

• Contact the Engineer on duty to discuss<br />

trial instrumentation requirements. Inspect<br />

machinery spaces as applicable.<br />

4.2.3 Reporting of Results and Distribution<br />

of Information<br />

Document all pertinent information related<br />

to the ship inspection<br />

a) Last date of cleaning.<br />

b) Means of cleaning.<br />

c) Propeller roughness measurement, if<br />

available, which should inclu<strong>de</strong> average,<br />

standard <strong>de</strong>viation, distribution<br />

along the bla<strong>de</strong>s, and existing physical<br />

damage.<br />

d) For a clean hull; documentation indicating<br />

manufacturer and kind of paint<br />

used, paint layer thickness and, if available,<br />

roughness measurements (average,<br />

standard <strong>de</strong>viation, and distribution<br />

along the hull) should be provi<strong>de</strong>d. The<br />

majority of this information may be<br />

contained in the docking report.<br />

e) For a dirty hull, documentation indicating<br />

visual observations of any fouling<br />

and date of last dry-docking should<br />

be provi<strong>de</strong>d.<br />

4.3 Hull- and Propulsor Survey<br />

A roughness survey is recommen<strong>de</strong>d to<br />

document the conditions of the ship hull, appendages,<br />

and propulsor(s) prior to the start of<br />

the full-scale speed/ power trial. Cleaning may<br />

be required if fouling is found to be such that it<br />

would bias the trial data.<br />

I<strong>de</strong>ally, roughness surveys should be conducted<br />

prior to the trials. The average hull<br />

roughness should not exceed 250 µm (µ =<br />

1x10 -6 m) (6.35 mils) and the average propulsor<br />

roughness level should not be greater than<br />

150 µm (3.81 mils).<br />

4.4 Instrumentation Installation and Calibration<br />

4.4.1 Instrumentation Installation<br />

The installation of instrumentation should<br />

be scheduled at a time of minimal conflict with<br />

ship operations.


ITTC – Recommen<strong>de</strong>d<br />

7.5-04<br />

-01-01.1<br />

Procedures and Gui<strong>de</strong>lines Page 6 of 10<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Preparation and Conduct of<br />

Speed/Power Trials<br />

Effective Date<br />

2005<br />

Revision<br />

03<br />

The bias limits of the instrumentation used<br />

for the measurements should be known and assessed.<br />

The instrumentation used for the on-boardmeasurements<br />

must be calibrated before application<br />

on board. If this is not possible, for some<br />

reason, the consequences of this should be<br />

highlighted in the final trial report. Electrical<br />

calibration is recommen<strong>de</strong>d for the torque<br />

measurement <strong>de</strong>vice and, in case of use during<br />

the sea trials, for the thrust measurement <strong>de</strong>vice.<br />

Further a calibration should be done for the<br />

pick ups and the respective amplifiers used for<br />

the measurement of the rate of revolutions. A<br />

“calibration” of a (differential) GPS-System is<br />

not possible without excessive measures, but at<br />

least the function of the <strong>de</strong>vice should be<br />

checked before use on board.<br />

If portable radar tracking or (differential)<br />

GPS is utilized, a Receiver/Transmitter (R/T)<br />

unit or GPS antenna is to be installed. In case<br />

the soft ware program used for the evaluation<br />

of the data received does not allow for varying<br />

positions on the uppermost <strong>de</strong>ck of the ship the<br />

antenna should be placed in a location along<br />

the ship’s centerline as close to the ship’s CG<br />

as possible. This location will i<strong>de</strong>ally be located<br />

on a mast or site that is clear of obstructions,<br />

such as the ship’s superstructure.<br />

4.4.2 Instrumentation Calibration Check<br />

All shipboard signals to be recor<strong>de</strong>d during<br />

the trials must be adjusted to zero or should<br />

have their zero value checked (e.g. for a (D)<br />

GPS-<strong>de</strong>vice) after the instrumentation installation<br />

is completed and prior to the trials. The<br />

zero values of the torsiometers, the thrust<br />

measurement <strong>de</strong>vices and the <strong>de</strong>vices for the<br />

measurement of the rates of revolutions must<br />

be checked before the trial runs start and after<br />

they have been finished.<br />

As part of the pre-trial calibration, the torsion<br />

meters zero torque readings must be <strong>de</strong>termined<br />

since there is a residual torque in the<br />

shaft, which is resting on the line shaft bearings.<br />

This might be done in different ways; one possible<br />

way is to use the jacking motors. The<br />

shaft is jacked both ahead and astern and the<br />

average of the readings noted. The zeroes are<br />

set at the midpoint of the torque required to<br />

jack each shaft ahead and the torque required to<br />

jack each shaft astern. An allowance is normally<br />

ma<strong>de</strong> for frictional losses in the stern<br />

tube bearings.<br />

As part of the pre-trial calibration for a ship<br />

equipped with controllable pitch propellers,<br />

maximum ahead pitch, the <strong>de</strong>sign pitch and the<br />

maximum astern pitch should be <strong>de</strong>termined<br />

and then the ship indicators should be adjusted<br />

to reflect the measurement.<br />

4.5 Trial Conditions<br />

Speed/Power trials require accurate position<br />

data. The use of (D) GPS provi<strong>de</strong>s great latitu<strong>de</strong><br />

in choosing a trial site. Regardless of the<br />

instrumentation utilized for obtaining positional<br />

data, the operational area should be free<br />

from substantial small boat traffic.<br />

The tracking range should be agreed between<br />

the Trial Director and the ship’s master.<br />

Draft, trim and displacement of the ship on<br />

trials should be obtained by averaging the ship<br />

draft mark readings. The ship should be<br />

brought into a condition that is as close as possible<br />

to the contract condition and/or the condi-


ITTC – Recommen<strong>de</strong>d<br />

7.5-04<br />

-01-01.1<br />

Procedures and Gui<strong>de</strong>lines Page 7 of 10<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Preparation and Conduct of<br />

Speed/Power Trials<br />

Effective Date<br />

2005<br />

Revision<br />

03<br />

tion on which mo<strong>de</strong>l tests have been carried out.<br />

This will allow for the correction of the displacement<br />

and trim with respect to the trials<br />

that were conducted and will be applicable to<br />

the suggestions outlined in the ITTC Procedure<br />

for the Analysis of Speed/Power Trial Data.<br />

Draft, trim and displacement should be obtained<br />

at the beginning and at the end of the<br />

trial. This may be accomplished using a loading<br />

computer or by taking a second draft reading.<br />

The accuracy of the draft readings and the<br />

method used to establish draft and displacement<br />

un<strong>de</strong>rway will be compared in port by direct<br />

draft readings both port and starboard in<br />

conjunction with a liquid load calculation.<br />

Displacement should be <strong>de</strong>rived from the<br />

hydrostatic curves by utilizing the draft data<br />

and the <strong>de</strong>nsity of the water.<br />

Environmental factors may significantly influence<br />

the data obtained during sea trials; consequently,<br />

these factors should be monitored<br />

and documented to the greatest extent possible:<br />

• High wind and sea states can force the<br />

use of excessive rud<strong>de</strong>r to maintain<br />

heading, and thus cause excessive fluctuations<br />

in shaft torque, shaft speed and<br />

ship speed.<br />

• Sea states of 3 or less and a true wind<br />

speed below Beaufort 6 (20 Kn) are the<br />

<strong>de</strong>sired conditions for sea trials. When<br />

working un<strong>de</strong>r the time constraints of a<br />

contract, corrections to the trials data<br />

can be ma<strong>de</strong> in accordance with the recommendations<br />

provi<strong>de</strong>d in the ITTC<br />

Procedure for the Analysis of<br />

Speed/Power Trial Data for sea states<br />

less than or equal to 5. For sea states<br />

greater than 5, corrections to the trials<br />

data can be applied but are not consi<strong>de</strong>red<br />

reliable from a scientific standpoint.<br />

• The local seawater temperature and specific<br />

gravity at the trial site are recor<strong>de</strong>d<br />

to enable the calculation of ship's displacement.<br />

• An acceptable minimum water <strong>de</strong>pth<br />

for the trials where the data do not need<br />

to be corrected for shallow water can be<br />

calculated using:<br />

h > 6.0(A m ) 0.5 and h > 0.5 V 2 (1)<br />

with<br />

A m = midship section area, [m 2 ]<br />

V= ship speed, [m/s]<br />

The larger of the 2 values obtained<br />

from the two equations should be used.<br />

• Current speed and direction should be<br />

<strong>de</strong>termined in the test area by prognostic<br />

analysis. When current speed and direction<br />

is unknown, the ship’s global<br />

drift (also including wind effect) in<br />

some cases might be <strong>de</strong>termined by a<br />

360° turning test conducted at low<br />

ahead speed to magnify any environmental<br />

effect.<br />

• The runs should be conducted into and<br />

against the waves; i.e., head and following<br />

seas, respectively. To ensure that<br />

tests are performed in comparable conditions,<br />

the data between reciprocal<br />

runs should be reviewed for consistency<br />

and/or anomalies. Individual speed runs<br />

conducted in the same conditions<br />

should be averaged with their reciprocal<br />

runs to take into account global drift.


ITTC – Recommen<strong>de</strong>d<br />

7.5-04<br />

-01-01.1<br />

Procedures and Gui<strong>de</strong>lines Page 8 of 10<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Preparation and Conduct of<br />

Speed/Power Trials<br />

Effective Date<br />

2005<br />

Revision<br />

03<br />

In accordance with ISO 15016 the following,<br />

general recommendations can be given:<br />

4.5.1 Wind:<br />

Wind speed and direction shall be measured<br />

as relative wind; continuous recording of relative<br />

wind during each run is recommen<strong>de</strong>d.<br />

Care has to be taken whether the data <strong>de</strong>rived<br />

from the wind indicator are reliable; checks,<br />

such as parallel measurements with a portable<br />

instrument, comparison of the data received<br />

from the wind indicator with wind speeds and<br />

directions received from local weather stations<br />

sufficiently close to the actual position of the<br />

ship or, if possible, calibration of the wind indicator<br />

(taking into consi<strong>de</strong>ration the effects of<br />

boundary layers of the superstructure on the<br />

measured values) in a wind tunnel are recommen<strong>de</strong>d.<br />

It is suggested that wind force during the<br />

trial runs un<strong>de</strong>r no conditions should be higher<br />

than<br />

• Beaufort 6 for ships with lengths equal<br />

or exceeding 100m and<br />

• Beaufort 5 for ships shorter than 100m.<br />

4.5.2 Sea State:<br />

If possible, instruments such as buoys or instruments<br />

onboard ships (e.g. seaway analysis<br />

radar) should be used to <strong>de</strong>termine the wave<br />

height, wave period and direction of seas and<br />

swell. Consi<strong>de</strong>ring usual practice the wave<br />

heights may be <strong>de</strong>termined from observations<br />

by multiple, experienced observers, including<br />

the nautical staff on board.<br />

During the trial runs the total wave height<br />

(double amplitu<strong>de</strong>), which allows for the wave<br />

heights of seas and swell (see ISO 15016),<br />

should not exceed<br />

• 3m for ships of 100m length and more<br />

and<br />

• 1,5m for ships with lengths smaller than<br />

100m<br />

4.5.3 Current:<br />

Current speed and direction shall be obtained<br />

either as part of the evaluation of run<br />

and counter-run of each double run, by direct<br />

measurement with a current gauge buoy or by<br />

use of nautical charts of the respective trial area.<br />

It is recommen<strong>de</strong>d to compare measured data<br />

with those inclu<strong>de</strong>d on the nautical charts.<br />

4.6 Trial Conduct:<br />

All speed trials shall be carried out using<br />

double runs, i.e. each run is followed by a return<br />

run in the opposite direction, performed<br />

with the same engine settings.<br />

The number of such double runs should not<br />

be less than three. This three runs should be at<br />

different engine settings.<br />

The time necessary for a speed run <strong>de</strong>pends<br />

on the ship’s speed, size and power. Steady<br />

state conditions should be achieved before the<br />

speed runs start. It is recommen<strong>de</strong>d that the<br />

time of one run should be as long as possible<br />

but should at least be 10 min.<br />

The i<strong>de</strong>al path of a ship in a typical<br />

speed/power maneuver is shown in Figure 1:


ITTC – Recommen<strong>de</strong>d<br />

7.5-04<br />

-01-01.1<br />

Procedures and Gui<strong>de</strong>lines Page 9 of 10<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Preparation and Conduct of<br />

Speed/Power Trials<br />

Effective Date<br />

2005<br />

Revision<br />

03<br />

Min. 10 min<br />

Steady Approach<br />

Steady Approach<br />

Min 10 min<br />

Figure 1<br />

Prior to the trial, the data specified below<br />

shall be recor<strong>de</strong>d, based on measurements<br />

where relevant:<br />

• Date<br />

• Trial area<br />

• Weather conditions<br />

• Air temperature<br />

• Mean water <strong>de</strong>pth in the trial area<br />

• Water temperature and <strong>de</strong>nsity<br />

• Draughts<br />

• Corresponding displacement<br />

• Propeller pitch in the case of a CPP<br />

It is recommen<strong>de</strong>d to retain a record of the<br />

following factors, which should prove useful<br />

for verifying the condition of the ship at the<br />

time of the speed trial:<br />

• Time elapsed since last hull and propeller<br />

cleaning<br />

• Surface condition of hull and propeller.<br />

The following data should be monitored<br />

and recor<strong>de</strong>d on each run:<br />

Clock time at commencement<br />

• Time elapsed over the measured distance<br />

• Ship heading<br />

• Ship’s speed over ground<br />

• Propeller rate of revolutions<br />

• Propeller shaft torque and/or brake<br />

power<br />

• Water <strong>de</strong>pth<br />

• Relative wind velocity and direction<br />

• Air temperature<br />

• Observed wave height (or: wave height<br />

corresponding to observed and/or<br />

agreed wind conditions)<br />

• Rud<strong>de</strong>r angle<br />

• Ship position and track


ITTC – Recommen<strong>de</strong>d<br />

7.5-04<br />

-01-01.1<br />

Procedures and Gui<strong>de</strong>lines Page 10 of 10<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Preparation and Conduct of<br />

Speed/Power Trials<br />

Effective Date<br />

2005<br />

Revision<br />

03<br />

Data such as ship’s speed, rate of revolutions<br />

of the propeller, torque, rud<strong>de</strong>r angle and<br />

drift angle to be used for the analyses shall be<br />

the average values <strong>de</strong>rived on the measured<br />

distance.<br />

5. REFERENCES<br />

(1) ISO 15016, Ships and marine technology –<br />

Gui<strong>de</strong>lines for the assessment of speed and<br />

power performance by analysis of speed<br />

trial data<br />

(2) ITTC Procedure for the Analysis of<br />

Speed/Power Trial Data<br />

(3) ISO 19019


Apêndice<br />

C<br />

Condições <strong>de</strong> Realização das Provas<br />

<strong>de</strong> Velocida<strong>de</strong> e Potência<br />

Recomendadas pela ITTC<br />

133


134<br />

APÊNDICE C. CONDIÇÕES DAS PROVAS DE VELOCIDADE E POTÊNCIA


ITTC –Recommen<strong>de</strong>d<br />

Procedures<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Trial Conditions<br />

7.5 – 0.4<br />

01 – 01.5<br />

Page 1 of 6<br />

Effective Date<br />

2002<br />

Revision<br />

01<br />

CONTENTS<br />

1. PURPOSE<br />

2. SCOPE<br />

3. RESPONSIBILITIES<br />

4. DEFINITIONS<br />

5. PROCEDURE<br />

6. REFERENCES<br />

7. RECORDS<br />

8. ATTACHMENTS<br />

Updated by<br />

Approved<br />

Specialist Committee of 23 rd ITTC on<br />

Speed and Powering<br />

Date Date 2002<br />

23 rd ITTC 2002


ITTC –Recommen<strong>de</strong>d<br />

Procedures<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Trial Conditions<br />

7.5 – 0.4<br />

01 – 01.5<br />

Page 2 of 6<br />

Effective Date<br />

2002<br />

Revision<br />

01<br />

Trial Conditions<br />

1. PURPOSE<br />

The purpose of this procedure is to establish<br />

gui<strong>de</strong>lines for the <strong>de</strong>finition of acceptable<br />

limits for trial conditions nee<strong>de</strong>d to validate<br />

hydrodynamic <strong>de</strong>sign and/or satisfy contractual<br />

requirements.<br />

b. Collect and record seawater temperature<br />

and specific gravity during trial,<br />

daily.<br />

4. DEFINITIONS<br />

None<br />

2. SCOPE<br />

This procedure applies to the documentation<br />

of trial conditions (environmental and<br />

ship) in which the full-scale Speed/Power trial<br />

are performed.<br />

3. RESPONSIBILITIES<br />

• The Trial Director is the duly authorized<br />

shipbuil<strong>de</strong>r’s representative responsible for<br />

the execution of all phases of the<br />

Speed/Power trials. When unforeseen problems,<br />

such as weather or technical difficulties<br />

require that the trial schedule or trial<br />

logistics be modified, the Trial Director<br />

shall make the final <strong>de</strong>cision, subject to the<br />

concurrence of the ship’s master and the<br />

owner’s representative.<br />

• The shipbuil<strong>de</strong>r is responsible for the overall<br />

trial coordination between the ship's<br />

crew, trial personnel, and the owner representative.<br />

A pre-trial meeting between the<br />

trial team, owner and the ship’s crew will<br />

be held to discuss the various trial events<br />

and to resolve any outstanding issues.<br />

• The trial team is responsible for the following:<br />

a. Operate and maintain all required trial<br />

instrumentation and temporary cabling.<br />

5. PROCEDURE<br />

1. Speed/Power trials require accurate position<br />

data and therefore will i<strong>de</strong>ally be conducted<br />

at an instrumented tracking range<br />

located in a sheltered body of water. Lacking<br />

availability of an instrumented tracking<br />

range, the use of DGPS provi<strong>de</strong>s great latitu<strong>de</strong><br />

in choosing a trial site. Regardless of<br />

the instrumentation utilized for obtaining<br />

positional data, the operational area should<br />

be free from substantial small boat traffic.<br />

2. If an instrumented tracking range is utilized,<br />

the ship’s master will receive a formal<br />

briefing on tracking range procedures by<br />

the Trial Director prior to the conduct of<br />

the trials. During the briefing, specific trial<br />

runs will be reviewed. The trial team will<br />

provi<strong>de</strong> an on-shore observer to monitor<br />

data collection by the tracking range facility.<br />

If DGPS is utilized, the Trial Director<br />

will brief the ship’s master on specific trial<br />

runs and procedures.<br />

3. Ship characteristics and environmental factors<br />

are carefully monitored and documented<br />

throughout the trials (see Table 1).<br />

Accurate quantification of these conditions<br />

is necessary because a ship's speed and<br />

powering characteristics are extremely sensitive<br />

to conditions such as ship and propeller<br />

condition, ship displacement, shallow<br />

water effects, sea state and wind velocity.


ITTC –Recommen<strong>de</strong>d<br />

Procedures<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Trial Conditions<br />

7.5 – 0.4<br />

01 – 01.5<br />

Page 3 of 6<br />

Effective Date<br />

2002<br />

Revision<br />

01<br />

4. Speed/Power Trials are normally scheduled<br />

within 30 days of undocking to minimize<br />

the adverse effects of hull and propulsor<br />

fouling and provi<strong>de</strong> a more "standard" condition<br />

for testing. In situations where the<br />

ship has become fouled after undocking, a<br />

hull cleaning, propeller polishing and hull<br />

and propeller roughness survey should be<br />

performed within 30 days of the<br />

Speed/Power trial date. Guidance may be<br />

found in Hull and Propulsor Survey Procedure<br />

7.5-04-01-01.3. At a minimum, the<br />

ship’s latest docking report and diver inspection<br />

should be provi<strong>de</strong>d to fulfill this<br />

requirement. Guidance may be found in<br />

Speed/Power Trial Ship Inspection Procedure<br />

7.5-04-01-01.2.<br />

5. Draft, trim and displacement of the trials<br />

must be obtained by averaging the ship<br />

draft mark readings. The ship should be<br />

brought into a condition that is as close as<br />

possible to the contract condition and/or the<br />

condition by which mo<strong>de</strong>l tests have been<br />

carried out. This will allow for the correction<br />

of the displacement and trim with respect<br />

to the trials that were conducted and<br />

will be applicable to the suggestions outlined<br />

in the 23rd ITTC Speed and Powering<br />

Trials Specialist Committee final report.<br />

a. Draft, trim and displacement must be<br />

obtained at the beginning and at the end<br />

of the trial. This may be accomplished<br />

using a loading computer or by taking a<br />

second draft reading. The accuracy of<br />

the ship's draft marks and the method<br />

used to calculate draft and displacement<br />

un<strong>de</strong>rway will be compared in port by<br />

direct draft readings both port and starboard<br />

in conjunction with a liquid load<br />

calculation. The trial team will verify<br />

and document the results prior to the<br />

Speed/Power trials.<br />

b. Displacement must be <strong>de</strong>rived from the<br />

hydrostatic curves by utilizing the draft<br />

data and the <strong>de</strong>nsity of the water. When<br />

<strong>de</strong>aling with Frou<strong>de</strong> numbers higher<br />

than 0.5 (e.g. a Fast Ferry with 100 m<br />

length and speed over 30 kn) intermediate<br />

ship loading conditions must be<br />

documented. This is better accomplished<br />

through tank soundings.<br />

6. Environmental factors can significantly influence<br />

the data obtained during sea trials.<br />

Consequently, these factors must be monitored<br />

and documented to the greatest extent<br />

possible.<br />

a. High wind and sea states can force the<br />

use of excessive rud<strong>de</strong>r to maintain<br />

heading, and thus cause excessive fluctuations<br />

in shaft torque, shaft speed and<br />

ship speed.<br />

b. Sea states of 3 or less and a true wind<br />

speed below Beaufort 6 (20 kn) are the<br />

<strong>de</strong>sired conditions for sea trials. When<br />

working un<strong>de</strong>r the time constraints of a<br />

contract, corrections to the trials data<br />

can be ma<strong>de</strong> in accordance with the recommendations<br />

provi<strong>de</strong>d in the 23rd<br />

ITTC Speed and Powering Trials Specialist<br />

Committee final report for sea<br />

states less than or equal to 5. For sea<br />

states greater than 5, corrections to the<br />

trials data can be applied but are not<br />

consi<strong>de</strong>red reliable from a scientific<br />

standpoint.<br />

c. The local seawater temperature and specific<br />

gravity at the trial site are recor<strong>de</strong>d<br />

to enable the calculation of ship's displacement.<br />

d. Air temperature and atmospheric pressure<br />

should be measured at the trial location<br />

using a calibrated thermometer<br />

and barometer.<br />

e. An acceptable minimum water <strong>de</strong>pth for the<br />

trials where the data do not need to be cor-


ITTC –Recommen<strong>de</strong>d<br />

Procedures<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Trial Conditions<br />

7.5 – 0.4<br />

01 – 01.5<br />

Page 4 of 6<br />

Effective Date<br />

2002<br />

Revision<br />

01<br />

rected for shallow water can be calculated<br />

using:<br />

h > 6.0(A m ) 0.5 and h > 0.5 V 2 (1)<br />

Use the larger of the 2 values obtained from<br />

the two equations.<br />

Other accepted formulae are:<br />

1. SNAME 1973/21st ITTC Powering<br />

Performance<br />

Committee<br />

d ≥ 10TV/(L) 0.5 (2)<br />

d = water <strong>de</strong>pth, ft<br />

T =´trial draft, ft<br />

V = speed, kn<br />

L = length between perpendiculars,<br />

ft<br />

2. SNAME 1989 from Det Norske<br />

Veritas<br />

Nautical Safety- Additional Classes<br />

NAUT-A, NAUT-B AND NAUT-<br />

C, July 1986<br />

h > 5.0(A m ) 0.5 and h > 0.4 V 2 (3)<br />

Use the larger of the 2 values obtained<br />

from the two equations.<br />

h = water <strong>de</strong>pth, m<br />

A m = midship section area, m 2<br />

V = ship speed, m/s<br />

or<br />

h > 5 (T) (4)<br />

T =<br />

Mean draft, m<br />

3. 22nd ITTC Trials & Monitoring<br />

Specialist Committee/12th ITTC<br />

based on ship section and Frou<strong>de</strong><br />

Number.<br />

h > 3.0(BT) 0.5 and h > 2.75 V 2 /g<br />

(5)<br />

Use the larger of the 2 values obtained<br />

from the two equations.<br />

h = <strong>de</strong>pth in appropriate length<br />

units<br />

B = beam in appropriate length<br />

units<br />

T = draft in appropriate length<br />

units<br />

V = speed in system of units consistent<br />

with the above dimension<br />

g = acceleration due to gravity in<br />

units consistent with the above dimension<br />

4. ISO/FDIS 15016:(E) based on Lackenby’s<br />

Formula<br />

∆V<br />

V = 0.1242 ⎛ A m<br />

− 0.05<br />

⎞ ⎛<br />

+1 − tanh(gh<br />

⎝ h 2 ⎠ V ) ⎞<br />

⎝<br />

2 ⎠<br />

for h ≤ (A m /0.05) 0.5 (6)<br />

∆V<br />

V ≤ 0.02<br />

h = water <strong>de</strong>pth, m<br />

A m = midship section area un<strong>de</strong>r<br />

water, m 2<br />

V = ship speed, m/s<br />

∆V = speed loss due to shallow water<br />

effect, m/s<br />

g = acceleration due to gravity,<br />

m/s 2<br />

0.5


ITTC –Recommen<strong>de</strong>d<br />

Procedures<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Trial Conditions<br />

7.5 – 0.4<br />

01 – 01.5<br />

Page 5 of 6<br />

Effective Date<br />

2002<br />

Revision<br />

01<br />

f. Current speed and direction should be<br />

<strong>de</strong>termined in the test area by prognostic<br />

analysis. When current speed is suspected<br />

to be varying and direction is<br />

unknown, the ship’s global drift (also<br />

including wind effect) should be <strong>de</strong>termined<br />

by a 360° turning test conducted<br />

at low ahead speed to magnify any environmental<br />

effect. Test runs should be<br />

conducted against and with global drift.<br />

It should be noted that this method of<br />

<strong>de</strong>termining the direction of the trial<br />

runs is extremely important in the case<br />

of small ships whose performance is<br />

strongly effected by environmental conditions.<br />

For large ships, such as ULCCs,<br />

performance is not impacted as greatly<br />

by environmental conditions. If time is<br />

a critical factor, then the runs can be<br />

conducted into and against the waves;<br />

i.e., head and following seas, respectively.<br />

To ensure that tests are performed<br />

in comparable conditions, the<br />

data between reciprocal runs should be<br />

reviewed for consistency and/or anomalies.<br />

Individual speed runs conducted in<br />

the same conditions should be averaged<br />

with their reciprocal runs to take into<br />

account global drift.<br />

2. 22nd ITTC Trials & Monitoring Specialist<br />

Committee Final Report<br />

3. Ships and marine technology – Gui<strong>de</strong>lines<br />

for the assessment of speed and power performance<br />

analysis of speed trial data, Final<br />

Draft International Standard ISO/FDIS<br />

15016: (E), ISO/TC 8/SC 9/WG 2 of 2001<br />

4. 23rd ITTC Speed and Powering Trials Specialist<br />

Committee Final Report<br />

5. Speed/Power Trial Ship Inspection Procedure<br />

7.5-04-01-01.2<br />

6. Hull and Propulsor Survey Procedure 7.5-<br />

04-01-01.3<br />

7. RECORDS<br />

1. Ship conditions – displacement, draft, propulsor<br />

and hull roughness<br />

2. Environmental conditions – water <strong>de</strong>pth,<br />

water temperature, wind direction and<br />

speed, sea state, specific gravity, air temperature,<br />

atmospheric pressure, current<br />

speed and direction<br />

8. ATTACHMENTS<br />

1. Table 1. Documented Ship and Trial Conditions<br />

Reported<br />

6. REFERENCES<br />

1. SNAME 1973/21st ITTC Powering Performance<br />

Committee Final Report


ITTC –Recommen<strong>de</strong>d<br />

Procedures<br />

Full Scale Measurements<br />

Speed and Power Trials<br />

Trial Conditions<br />

7.5 – 0.4<br />

01 – 01.5<br />

Page 6 of 6<br />

Effective Date<br />

2002<br />

Revision<br />

01<br />

Table 1. Documented Ship and Trial Conditions Reported<br />

Ship Hull<br />

Draft<br />

Trim<br />

Displacement and Load<br />

Description<br />

Hull Condition<br />

Roughness of shell and bottom paint<br />

Height of welding beads<br />

Waviness of hull<br />

Size, number and position of zinc ano<strong>de</strong>s<br />

Size, number and position of openings of sea water inlets and outlets<br />

Paint system<br />

Hull Appendages and Rud<strong>de</strong>r<br />

Geometry, <strong>de</strong>viations, roughness<br />

Type<br />

Rate of movement<br />

Propeller(s)<br />

Geometry, <strong>de</strong>viations, roughness<br />

Pitch<br />

Direction of rotation<br />

Number of bla<strong>de</strong>s<br />

Propeller Shaft(s)<br />

Geometry<br />

Material<br />

Trial Site<br />

Water <strong>de</strong>pth<br />

Water temperature<br />

Air temperature<br />

Sea State<br />

Specific gravity of water<br />

Environmental Conditions<br />

Wind<br />

Waves<br />

Current<br />

Atmospheric pressure


Apêndice<br />

D<br />

Utilização dos Diagramas na<br />

Selecção <strong>de</strong> Motores Propulsores<br />

141


142<br />

APÊNDICE D. SELECÇÃO DE MOTORES PROPULSORES


Basic Principles of Ship Propulsion<br />

Contents:<br />

Page<br />

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

Scope of this Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

Chapter 1<br />

Ship Definitions and Hull Resistance . . . . . . . . . . . . . . . . . . 4<br />

• Ship types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

• A ship’s load lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

• Indication of a ship’s size . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

• Description of hull forms . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

• Ship’s resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

Chapter 2<br />

Propeller Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . 10<br />

• Propeller types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10<br />

• Flow conditions around the propeller . . . . . . . . . . . . . . . . . . 11<br />

• Efficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . · · · · 11<br />

• Propeller dimensions . . . . . . . . . . . . . . . . . . . . . . · · · · 13<br />

• Operating conditions of a propeller . . . . . . . . . . . . . . . . . . . 15<br />

Chapter 3<br />

Engine Layout and Load Diagrams . . . . . . . . . . . . . . . . . . 20<br />

• Power functions and logarithmic scales . . . . . . . . . . . . . . . . . 20<br />

• Propulsion and engine running points . . . . . . . . . . . . . . . . . . 20<br />

• Engine layout diagram . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

• Load diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

• Use of layout and load diagrams – examples . . . . . . . . . . . . . . 25<br />

• Influence on engine running of different types<br />

of ship resistance – plant with FP-propeller . . . . . . . . . . . . . . . 27<br />

• Influence of ship resistance<br />

on combinator curves – plant with CP-propeller . . . . . . . . . . . . 29<br />

Closing Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30<br />

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30


Basic Principles of Ship Propulsion<br />

Introduction<br />

For the purpose of this paper, the term<br />

“ship” is used to <strong>de</strong>note a vehicle employed<br />

to transport goods and persons<br />

from one point to another over water.<br />

Ship propulsion normally occurs with<br />

the help of a propeller, which is the<br />

term most wi<strong>de</strong>ly used in English, although<br />

the word “screw” is sometimes<br />

seen, inter alia in combinations such as<br />

a “twin-screw” propulsion plant.<br />

Today, the primary source of propeller<br />

power is the diesel engine, and the power<br />

requirement and rate of revolution very<br />

much <strong>de</strong>pend on the ship’s hull form<br />

and the propeller <strong>de</strong>sign. Therefore, in<br />

or<strong>de</strong>r to arrive at a solution that is as<br />

optimal as possible, some general<br />

knowledge is essential as to the principal<br />

ship and diesel engine parameters<br />

that influence the propulsion system.<br />

This paper will, in particular, attempt to<br />

explain some of the most elementary<br />

terms used regarding ship types,<br />

ship’s dimensions and hull forms and<br />

clarify some of the parameters pertaining<br />

to hull resistance, propeller conditions<br />

and the diesel engine’s load<br />

diagram.<br />

On the other hand, it is consi<strong>de</strong>red beyond<br />

the scope of this publication to<br />

give an explanation of how propulsion<br />

calculations as such are carried out, as<br />

the calculation procedure is extremely<br />

complex. The rea<strong>de</strong>r is referred to the<br />

specialised literature on this subject, for<br />

example as stated in “References”.<br />

Scope of this Paper<br />

This paper is divi<strong>de</strong>d into three chapters<br />

which, in principle, may be consi<strong>de</strong>red as<br />

three separate papers but which also,<br />

with advantage, may be read in close<br />

connection to each other. Therefore,<br />

some important information mentioned in<br />

one chapter may well appear in another<br />

chapter, too.<br />

Chapter 1, <strong>de</strong>scribes the most elementary<br />

terms used to <strong>de</strong>fine ship sizes<br />

and hull forms such as, for example,<br />

the ship’s displacement, <strong>de</strong>adweight,<br />

<strong>de</strong>sign draught, length between perpendiculars,<br />

block coefficient, etc.<br />

Other ship terms <strong>de</strong>scribed inclu<strong>de</strong> the<br />

effective towing resistance, consisting<br />

of frictional, residual and air resistance,<br />

and the influence of these resistances<br />

in service.<br />

Chapter 2, <strong>de</strong>als with ship propulsion<br />

and the flow conditions around the propeller(s).<br />

In this connection, the wake<br />

fraction coefficient and thrust <strong>de</strong>duction<br />

coefficient, etc. are mentioned.<br />

The total power nee<strong>de</strong>d for the propeller<br />

is found based on the above effective<br />

towing resistance and various<br />

propeller and hull <strong>de</strong>pen<strong>de</strong>nt efficiencies<br />

which are also <strong>de</strong>scribed. A summary<br />

of the propulsion theory is shown<br />

in Fig. 6.<br />

The operating conditions of a propeller<br />

according to the propeller law valid for<br />

a propeller with fixed pitch are <strong>de</strong>scribed<br />

for free sailing in calm weather, and<br />

followed up by the relative heavy/light<br />

running conditions which apply when<br />

the ship is sailing and subject to different<br />

types of extra resistance, like fouling,<br />

heavy sea against, etc.<br />

Chapter 3, elucidates the importance<br />

of choosing the correct specified MCR<br />

and optimising point of the main engine,<br />

and thereby the engine’s load diagram<br />

in consi<strong>de</strong>ration to the propeller’s <strong>de</strong>sign<br />

point. The construction of the relevant<br />

load diagram lines is <strong>de</strong>scribed in <strong>de</strong>tail<br />

by means of several examples. Fig. 24<br />

shows, for a ship with fixed pitch propeller,<br />

by means of a load diagram, the<br />

important influence of different types of<br />

ship resistance on the engine’s continuous<br />

service rating.<br />

3


Category Class Type<br />

Ship Definitions and Hull<br />

Resistance<br />

Ship types<br />

Tanker<br />

Oil tanker<br />

Cru<strong>de</strong> (oil) Carrier<br />

Very Large Cru<strong>de</strong> Carrier<br />

Ultra Large Cru<strong>de</strong> Carrier<br />

Product Tanker<br />

CC<br />

VLCC<br />

ULCC<br />

Depending on the nature of their cargo,<br />

and sometimes also the way the cargo<br />

is loa<strong>de</strong>d/unloa<strong>de</strong>d, ships can be divi<strong>de</strong>d<br />

into different categories, classes, and<br />

types, some of which are mentioned in<br />

Table 1.<br />

The three largest categories of ships<br />

are container ships, bulk carriers (for<br />

bulk goods such as grain, coal, ores,<br />

etc.) and tankers, which again can be<br />

divi<strong>de</strong>d into more precisely <strong>de</strong>fined<br />

classes and types. Thus, tankers can<br />

be divi<strong>de</strong>d into oil tankers, gas tankers<br />

and chemical tankers, but there are<br />

also combinations, e.g. oil/chemical<br />

tankers.<br />

Bulk carrier<br />

Container ship<br />

Gas tanker<br />

Chemical tanker<br />

OBO<br />

Bulk carrier<br />

Container ship<br />

Liquefied Natural Gas carrier<br />

Liquefied Petroleum Gas carrier<br />

Oil/Bulk/Ore carrier<br />

Container carrier<br />

Roll On-Roll Off<br />

General cargo ship<br />

General cargo<br />

Coaster<br />

Reefer Reefer Refrigerated cargo vessel<br />

Passenger ship<br />

Ferry<br />

Cruise vessel<br />

Table 1: Examples of ship types<br />

LNG<br />

LPG<br />

OBO<br />

Ro-Ro<br />

Table 1 provi<strong>de</strong>s only a rough outline.<br />

In reality there are many other combinations,<br />

such as “Multi-purpose bulk<br />

container carriers”, to mention just one<br />

example.<br />

the risk of bad weather whereas, on the<br />

other hand, the freeboard draught for<br />

tropical seas is somewhat higher than<br />

the summer freeboard draught.<br />

A ship’s load lines<br />

Painted halfway along the ship’s si<strong>de</strong><br />

is the “Plimsoll Mark”, see Fig. 1. The<br />

lines and letters of the Plimsoll Mark,<br />

which conform to the freeboard rules<br />

laid down by the IMO (International<br />

Maritime Organisation) and local authorities,<br />

indicate the <strong>de</strong>pth to which<br />

the vessel may be safely loa<strong>de</strong>d (the<br />

<strong>de</strong>pth varies according to the season<br />

and the salinity of the water).<br />

Freeboard <strong>de</strong>ck<br />

D<br />

D: Freeboard draught<br />

There are, e.g. load lines for sailing in<br />

freshwater and seawater, respectively,<br />

with further divisions for tropical conditions<br />

and summer and winter sailing.<br />

According to the international freeboard<br />

rules, the summer freeboard draught<br />

for seawater is equal to the “Scantling<br />

draught”, which is the term applied to<br />

the ship’s draught when dimensioning<br />

the hull.<br />

TF<br />

D<br />

L<br />

F<br />

Danish load mark<br />

Freshwater<br />

T Tropical<br />

S Summer<br />

W Winter<br />

WNA Winter - the North Atlantic<br />

Seawater<br />

The winter freeboard draught is less<br />

than that valid for summer because of<br />

Fig. 1: Load lines – freeboard draught<br />

4


Indication of a ship’s size<br />

Displacement and <strong>de</strong>adweight<br />

When a ship in loa<strong>de</strong>d condition floats at<br />

an arbitrary water line, its displacement is<br />

equal to the relevant mass of water displaced<br />

by the ship. Displacement is thus<br />

equal to the total weight, all told, of the<br />

relevant loa<strong>de</strong>d ship, normally in seawater<br />

with a mass <strong>de</strong>nsity of 1.025 t/m 3 .<br />

A M<br />

D<br />

Displacement comprises the ship’s<br />

light weight and its <strong>de</strong>adweight, where<br />

the <strong>de</strong>adweight is equal to the ship’s<br />

loa<strong>de</strong>d capacity, including bunkers and<br />

other supplies necessary for the ship’s<br />

propulsion. The <strong>de</strong>adweight at any time<br />

thus represents the difference between<br />

the actual displacement and the ship’s<br />

light weight, all given in tons:<br />

<strong>de</strong>adweight = displacement – light weight.<br />

Inci<strong>de</strong>ntally, the word “ton” does not<br />

always express the same amount of<br />

weight. Besi<strong>de</strong>s the metric ton (1,000<br />

kg), there is the English ton (1,016 kg),<br />

which is also called the “long ton”. A<br />

“short ton” is approx. 907 kg.<br />

The light weight of a ship is not normally<br />

used to indicate the size of a ship,<br />

whereas the <strong>de</strong>adweight tonnage<br />

(dwt), based on the ship’s loading capacity,<br />

including fuel and lube oils etc.<br />

for operation of the ship, measured in<br />

tons at scantling draught, often is.<br />

Sometimes, the <strong>de</strong>adweight tonnage<br />

may also refer to the <strong>de</strong>sign draught of<br />

the ship but, if so, this will be mentioned.<br />

Table 2 indicates the rule-of-thumb relationship<br />

between the ship’s displacement,<br />

<strong>de</strong>adweight tonnage (summer freeboard/<br />

scantling draught) and light weight.<br />

A ship’s displacement can also be expressed<br />

as the volume of displaced<br />

water ∇, i.e. in m 3 .<br />

Gross register tons<br />

Without going into <strong>de</strong>tail, it should be<br />

mentioned that there are also such<br />

measurements as Gross Register Tons<br />

(GRT), and Net Register Tons (NRT)<br />

where 1 register ton = 100 English cubic<br />

feet, or 2.83 m 3 .<br />

D A<br />

B WL<br />

D F<br />

Fig. 2: Hull dimensions<br />

Ship type<br />

Tanker and<br />

Bulk carrier<br />

Length between perpendiculars: LPP<br />

Length on waterline:<br />

LWL<br />

Length o verall: LOA<br />

Breadth on waterline:<br />

BWL<br />

Draught: D = 1/2 (D F+D A)<br />

Midship section area:<br />

A<br />

dwt/light<br />

weight ratio<br />

These measurements express the size<br />

of the internal volume of the ship in accordance<br />

with the given rules for such<br />

measurements, and are extensively<br />

used for calculating harbour and canal<br />

dues/charges.<br />

Description of hull forms<br />

Displ./dwt<br />

ratio<br />

6 1.17<br />

Container ship 2.5-3.0 1.33-1.4<br />

Table 2: Examples of relationship between displacement,<br />

<strong>de</strong>adweight tonnage and light weight<br />

It is evi<strong>de</strong>nt that the part of the ship<br />

which is of significance for its propulsion<br />

L<br />

L<br />

L<br />

PP<br />

WL<br />

OA<br />

m<br />

is the part of the ship’s hull which is<br />

un<strong>de</strong>r the water line. The dimensions<br />

below <strong>de</strong>scribing the hull form refer<br />

to the <strong>de</strong>sign draught, which is less<br />

than, or equal to, the scantling<br />

draught. The choice of the <strong>de</strong>sign<br />

draught <strong>de</strong>pends on the <strong>de</strong>gree of<br />

load, i.e. whether, in service, the ship<br />

will be lightly or heavily loa<strong>de</strong>d. Generally,<br />

the most frequently occurring<br />

draught between the fully-loa<strong>de</strong>d and<br />

the ballast draught is used.<br />

Ship’s lengths L OA<br />

, L WL<br />

, and L PP<br />

The overall length of the ship L OA<br />

is<br />

normally of no consequence when<br />

calculating the hull’s water resistance.<br />

The factors used are the length of the<br />

waterline L WL<br />

and the so-called length<br />

between perpendiculars L PP<br />

. The dimensions<br />

referred to are shown in<br />

Fig. 2.<br />

5


The length between perpendiculars is<br />

the length between the foremost perpendicular,<br />

i.e. usually a vertical line<br />

through the stem’s intersection with<br />

the waterline, and the aftmost perpendicular<br />

which, normally, coinci<strong>de</strong>s with<br />

the rud<strong>de</strong>r axis. Generally, this length is<br />

slightly less than the waterline length,<br />

and is often expressed as:<br />

Waterline plane<br />

A WL<br />

A M<br />

LPP<br />

D<br />

B WL<br />

L PP<br />

= 0.97 × L WL<br />

L WL<br />

Draught D<br />

The ship’s draught D (often T is used in<br />

literature) is <strong>de</strong>fined as the vertical distance<br />

from the waterline to that point of<br />

the hull which is <strong>de</strong>epest in the water,<br />

see Figs. 2 and 3. The foremost draught<br />

D F<br />

and aftmost draught D A<br />

are normally<br />

the same when the ship is in the loa<strong>de</strong>d<br />

condition.<br />

Breadth on waterline B WL<br />

Another important factor is the hull’s<br />

largest breadth on the waterline B WL<br />

,<br />

see Figs. 2 and 3.<br />

Volume of displacement<br />

Waterline area<br />

Block coefficient,<br />

L based<br />

Midship section coefficient<br />

Longitudinal prismatic coefficient<br />

Waterplane area coefficient<br />

WL<br />

:<br />

: A<br />

WL<br />

: C =<br />

B<br />

: C =<br />

M<br />

: C =<br />

P<br />

: C =<br />

WL<br />

L<br />

WL x<br />

B<br />

B<br />

WL<br />

WL<br />

x D<br />

x D<br />

AM<br />

x LWL<br />

L<br />

WL<br />

A M<br />

A WL<br />

x B<br />

WL<br />

Block coefficient C B<br />

Various form coefficients are used to<br />

express the shape of the hull. The most<br />

important of these coefficients is the<br />

block coefficient C B<br />

, which is <strong>de</strong>fined<br />

as the ratio between the displacement<br />

volume ∇ and the volume of a box with<br />

dimensions L WL<br />

× B WL<br />

× D, see Fig. 3, i.e.:<br />

C<br />

B<br />

∇<br />

=<br />

L × B × D<br />

WL<br />

In the case cited above, the block coefficient<br />

refers to the length on waterline<br />

L WL<br />

. However, shipbuil<strong>de</strong>rs often use<br />

block coefficient C B, PP<br />

based on the<br />

length between perpendiculars, L PP<br />

,in<br />

which case the block coefficient will, as a<br />

rule, be slightly larger because, as previously<br />

mentioned, L PP<br />

is normally slightly<br />

less than L WL.<br />

∇<br />

C<br />

B, PP<br />

=<br />

L × B × D<br />

PP<br />

A small block coefficient means less resistance<br />

and, consequently, the possibility<br />

of attaining higher speeds.<br />

Table 3 shows some examples of block<br />

coefficient sizes, and the pertaining<br />

WL<br />

WL<br />

Fig. 3: Hull coefficients of a ship<br />

service speeds, on different types of<br />

ships. It shows that large block coefficients<br />

correspond to low speeds and<br />

vice versa.<br />

Ship type<br />

Block<br />

coefficient<br />

C B<br />

Approximate<br />

ship<br />

speed V<br />

in knots<br />

Lighter 0.90 5 – 10<br />

Bulk carrier 0.80 – 0.85 12 – 17<br />

Tanker 0.80 – 0.85 12 –16<br />

General cargo 0.55 – 0.75 13 – 22<br />

Container ship 0.50 – 0.70 14 – 26<br />

Ferry boat 0.50 – 0.70 15 – 26<br />

Table 3: Examples of block coefficients<br />

Water plane area coefficient C WL<br />

The water plane area coefficient C WL<br />

expresses the ratio between the vessel’s<br />

waterline area A WL<br />

and the product<br />

of the length L WL<br />

and the breadth B WL<br />

of<br />

the ship on the waterline, see Fig. 3, i.e.:<br />

C<br />

WL<br />

=<br />

L<br />

WL<br />

AWL<br />

× B<br />

Generally, the waterplane area coefficient<br />

is some 0.10 higher than the block<br />

coefficient, i.e.:<br />

WL<br />

C WL<br />

≅ C B<br />

+ 0.10.<br />

This difference will be slightly larger on<br />

fast vessels with small block coefficients<br />

where the stern is also partly immersed<br />

in the water and thus becomes part of<br />

the ”waterplane” area.<br />

Midship section coefficient C M<br />

A further <strong>de</strong>scription of the hull form is<br />

provi<strong>de</strong>d by the midship section coefficient<br />

C M<br />

, which expresses the ratio between<br />

the immersed midship section<br />

area A M<br />

(midway between the foremost<br />

and the aftmost perpendiculars) and the<br />

product of the ship’s breadth B WL<br />

and<br />

draught D, see Fig. 3, i.e.:<br />

C<br />

M<br />

AM<br />

=<br />

B × D<br />

WL<br />

6


For bulkers and tankers, this coefficient<br />

is in the or<strong>de</strong>r of 0.98-0.99, and for<br />

container ships in the or<strong>de</strong>r of 0.97-0.98.<br />

Longitudinal prismatic coefficient C P<br />

The longitudinal prismatic coefficient<br />

C P<br />

expresses the ratio between displacement<br />

volume ∇ and the product<br />

of the midship frame section area A M<br />

and the length of the waterline L WL<br />

,<br />

see also Fig. 3, i.e.:<br />

C<br />

p<br />

∇<br />

∇<br />

= =<br />

A × L C × B × D×<br />

L<br />

M WL M WL WL<br />

C<br />

=<br />

C<br />

As can be seen, C P<br />

is not an in<strong>de</strong>pen<strong>de</strong>nt<br />

form coefficient, but is entirely <strong>de</strong>pen<strong>de</strong>nt<br />

on the block coefficient C B<br />

and the midship section coefficient C M<br />

.<br />

Longitudinal Centre of Buoyancy LCB<br />

The Longitudinal Centre of Buoyancy<br />

(LCB) expresses the position of the<br />

centre of buoyancy and is <strong>de</strong>fined as<br />

the distance between the centre of<br />

buoyancy and the mid-point between<br />

the ship’s foremost and aftmost perpendiculars.<br />

The distance is normally stated<br />

as a percentage of the length between<br />

the perpendiculars, and is positive if<br />

the centre of buoyancy is located to<br />

the fore of the mid-point between the<br />

perpendiculars, and negative if located<br />

to the aft of the mid-point. For a ship<br />

<strong>de</strong>signed for high speeds, e.g. container<br />

ships, the LCB will, normally, be negative,<br />

whereas for slow-speed ships,<br />

such as tankers and bulk carriers, it will<br />

normally be positive. The LCB is generally<br />

between -3% and +3%.<br />

Fineness ratio C LD<br />

The length/displacement ratio or fineness<br />

ratio, C LD<br />

, is <strong>de</strong>fined as the ratio<br />

between the ship’s waterline length L WL<br />

,<br />

and the length of a cube with a volume<br />

equal to the displacement volume, i.e.:<br />

C<br />

LD<br />

Ship’s resistance<br />

LWL<br />

=<br />

3<br />

∇<br />

To move a ship, it is first necessary to<br />

overcome resistance, i.e. the force working<br />

against its propulsion. The calculation<br />

of this resistance R plays a significant role<br />

B<br />

M<br />

in the selection of the correct propeller and<br />

in the subsequent choice of main engine.<br />

General<br />

A ship’s resistance is particularly influenced<br />

by its speed, displacement, and<br />

hull form. The total resistance R T<br />

, consists<br />

of many source-resistances R<br />

which can be divi<strong>de</strong>d into three main<br />

groups, viz.:<br />

1) Frictional resistance<br />

2) Residual resistance<br />

3) Air resistance<br />

The influence of frictional and residual<br />

resistances <strong>de</strong>pends on how much of<br />

the hull is below the waterline, while the<br />

influence of air resistance <strong>de</strong>pends on<br />

how much of the ship is above the waterline.<br />

In view of this, air resistance will<br />

have a certain effect on container ships<br />

which carry a large number of containers<br />

on the <strong>de</strong>ck.<br />

Water with a speed of V and a <strong>de</strong>nsity<br />

of has a dynamic pressure of:<br />

½ × × V 2 (Bernoulli’s law)<br />

Thus, if water is being completely<br />

stopped by a body, the water will react<br />

on the surface of the body with the dynamic<br />

pressure, resulting in a dynamic<br />

force on the body.<br />

This relationship is used as a basis<br />

when calculating or measuring the<br />

source-resistances R of a ship’s hull,<br />

by means of dimensionless resistance<br />

coefficients C. Thus, C is related to the<br />

reference force K, <strong>de</strong>fined as the force<br />

which the dynamic pressure of water<br />

with the ship’s speed V exerts on a<br />

surface which is equal to the hull’s wetted<br />

area A S<br />

. The rud<strong>de</strong>r’s surface is<br />

also inclu<strong>de</strong>d in the wetted area. The<br />

general data for resistance calculations<br />

is thus:<br />

Reference force: K = ½ × × V 2 × A S<br />

and source resistances: R = C × K<br />

On the basis of many experimental<br />

tank tests, and with the help of pertaining<br />

dimensionless hull parameters,<br />

some of which have already been discussed,<br />

methods have been established<br />

for calculating all the necessary<br />

resistance coefficients C and, thus, the<br />

pertaining source-resistances R. In<br />

practice, the calculation of a particular<br />

ship’s resistance can be verified by<br />

testing a mo<strong>de</strong>l of the relevant ship in<br />

a towing tank.<br />

Frictional resistance R F<br />

The frictional resistance R F<br />

of the hull<br />

<strong>de</strong>pends on the size of the hull’s wetted<br />

area A S<br />

, and on the specific frictional<br />

resistance coefficient C F<br />

. The<br />

friction increases with fouling of the<br />

hull, i.e. by the growth of, i.a. algae,<br />

sea grass and barnacles.<br />

An attempt to avoid fouling is ma<strong>de</strong> by<br />

the use of anti-fouling hull paints to<br />

prevent the hull from becoming<br />

“long-haired”, i.e. these paints reduce<br />

the possibility of the hull becoming<br />

fouled by living organisms. The paints<br />

containing TBT (tributyl tin) as their<br />

principal bioci<strong>de</strong>, which is very toxic,<br />

have dominated the market for <strong>de</strong>ca<strong>de</strong>s,<br />

but the IMO ban of TBT for new applications<br />

from 1 January, 2003, and a<br />

full ban from 1 January, 2008, may involve<br />

the use of new (and maybe not<br />

as effective) alternatives, probably copper-based<br />

anti-fouling paints.<br />

When the ship is propelled through the<br />

water, the frictional resistance increases<br />

at a rate that is virtually equal to the<br />

square of the vessel’s speed.<br />

Frictional resistance represents a consi<strong>de</strong>rable<br />

part of the ship’s resistance,<br />

often some 70-90% of the ship’s total<br />

resistance for low-speed ships (bulk<br />

carriers and tankers), and sometimes<br />

less than 40% for high-speed ships<br />

(cruise liners and passenger ships) [1]. The<br />

frictional resistance is found as follows:<br />

R F<br />

= C F<br />

× K<br />

Residual resistance R R<br />

Residual resistance R R<br />

comprises wave<br />

resistance and eddy resistance. Wave<br />

resistance refers to the energy loss<br />

caused by waves created by the vessel<br />

during its propulsion through the water,<br />

while eddy resistance refers to the loss<br />

caused by flow separation which creates<br />

eddies, particularly at the aft end<br />

of the ship.<br />

7


Wave resistance at low speeds is proportional<br />

to the square of the speed,<br />

but increases much faster at higher<br />

speeds. In principle, this means that a<br />

speed barrier is imposed, so that a further<br />

increase of the ship’s propulsion<br />

power will not result in a higher speed<br />

as all the power will be converted into<br />

wave energy. The residual resistance<br />

normally represents 8-25% of the total<br />

resistance for low-speed ships, and up<br />

to 40-60% for high-speed ships [1].<br />

Inci<strong>de</strong>ntally, shallow waters can also<br />

have great influence on the residual<br />

resistance, as the displaced water un<strong>de</strong>r<br />

the ship will have greater difficulty<br />

in moving aftwards.<br />

The procedure for calculating the specific<br />

residual resistance coefficient C R<br />

is<br />

<strong>de</strong>scribed in specialised literature [2]<br />

and the residual resistance is found as<br />

follows:<br />

R R<br />

= C R<br />

× K<br />

Air resistance R A<br />

In calm weather, air resistance is, in principle,<br />

proportional to the square of the<br />

ship’s speed, and proportional to the<br />

cross-sectional area of the ship above the<br />

waterline. Air resistance normally represents<br />

about 2% of the total resistance.<br />

through the water, i.e. to tow the ship<br />

at the speed V, is then:<br />

P E<br />

= V × R T<br />

The power <strong>de</strong>livered to the propeller,<br />

P D<br />

, in or<strong>de</strong>r to move the ship at speed<br />

V is, however, somewhat larger. This is<br />

due, in particular, to the flow conditions<br />

around the propeller and the propeller<br />

efficiency itself, the influences of which<br />

are discussed in the next chapter<br />

which <strong>de</strong>als with Propeller Propulsion.<br />

Total ship resistance in general<br />

When dividing the residual resistance<br />

into wave and eddy resistance, as earlier<br />

<strong>de</strong>scribed, the distribution of the total ship<br />

towing resistance R T<br />

could also, as a<br />

gui<strong>de</strong>line, be stated as shown in Fig. 4.<br />

The right column is valid for low-speed<br />

ships like bulk carriers and tankers, and<br />

the left column is valid for very high-speed<br />

ships like cruise liners and ferries. Container<br />

ships may be placed in between<br />

the two columns.<br />

The main reason for the difference<br />

between the two columns is, as earlier<br />

mentioned, the wave resistance. Thus,<br />

in general all the resistances are proportional<br />

to the square of the speed,<br />

but for higher speeds the wave resistance<br />

increases much faster, involving<br />

a higher part of the total resistance.<br />

This ten<strong>de</strong>ncy is also shown in Fig. 5<br />

for a 600 teu container ship, originally<br />

<strong>de</strong>signed for the ship speed of 15 knots.<br />

Without any change to the hull <strong>de</strong>sign,<br />

Type of resistance<br />

R F<br />

R W<br />

R E<br />

R A<br />

= Friction<br />

= Wave<br />

= Eddy<br />

= Air<br />

% of R T<br />

High<br />

speed<br />

ship<br />

45 - 90<br />

40 - 5<br />

5 - 3<br />

10 - 2<br />

Low<br />

speed<br />

ship<br />

For container ships in head wind, the<br />

air resistance can be as much as 10%.<br />

The air resistance can, similar to the<br />

foregoing resistances, be expressed as<br />

R A<br />

= C A<br />

× K, but is sometimes based<br />

on 90% of the dynamic pressure of air<br />

with a speed of V, i.e.:<br />

R A<br />

V<br />

R A<br />

= 0.90 × ½ × air<br />

× V 2 × A air<br />

where air<br />

is the <strong>de</strong>nsity of the air, and<br />

A air<br />

is the cross-sectional area of the<br />

vessel above the water [1].<br />

Ship speed V<br />

R W<br />

Towing resistance R T<br />

and effective (towing) power P E<br />

The ship’s total towing resistance R T<br />

is<br />

thus found as:<br />

R E<br />

R F<br />

V<br />

R T<br />

= R F<br />

+ R R<br />

+ R A<br />

The corresponding effective (towing)<br />

power, P E<br />

, necessary to move the ship<br />

Fig. 4: Total ship towing resistance R T<br />

= R F<br />

+ R W<br />

+ R E<br />

+ R A<br />

8


kW<br />

8,000<br />

Propulsion power<br />

"Wave wall"<br />

Estimates of average increase in<br />

resistance for ships navigating the<br />

main routes:<br />

6,000<br />

New service point<br />

North Atlantic route,<br />

navigation westward 25-35%<br />

North Atlantic route,<br />

navigation eastward 20-25%<br />

4,000<br />

Europe-Australia 20-25%<br />

2,000<br />

Normal service point<br />

Europe-East Asia 20-25%<br />

The Pacific routes 20-30%<br />

Table 4: Main routes of ships<br />

0<br />

Power and speed relationship for a 600 TEU container ship<br />

Fig. 5: The “wave wall” ship speed barrier<br />

the ship speed for a sister ship was requested<br />

to be increased to about 17.6<br />

knots. However, this would lead to a<br />

relatively high wave resistance, requiring<br />

a doubling of the necessary propulsion<br />

power.<br />

A further increase of the propulsion<br />

power may only result in a minor ship<br />

speed increase, as most of the extra<br />

power will be converted into wave energy,<br />

i.e. a ship speed barrier valid for<br />

the given hull <strong>de</strong>sign is imposed by<br />

what we could call a “wave wall”, see<br />

Fig. 5. A modification of the hull lines,<br />

suiting the higher ship speed, is necessary.<br />

Increase of ship resistance in service,<br />

Ref. [3], page 244<br />

During the operation of the ship, the<br />

paint film on the hull will break down.<br />

Erosion will start, and marine plants<br />

and barnacles, etc. will grow on the<br />

surface of the hull. Bad weather, perhaps<br />

in connection with an inappropriate<br />

distribution of the cargo, can be a<br />

reason for buckled bottom plates. The<br />

hull has been fouled and will no longer<br />

have a “technically smooth” surface,<br />

10 15<br />

20 knots<br />

Ship speed<br />

which means that the frictional resistance<br />

will be greater. It must also be<br />

consi<strong>de</strong>red that the propeller surface<br />

can become rough and fouled. The total<br />

resistance, caused by fouling, may<br />

increase by 25-50% throughout the<br />

lifetime of a ship.<br />

Experience [4] shows that hull fouling<br />

with barnacles and tube worms may<br />

cause an increase in drag (ship resistance)<br />

of up to 40%, with a drastical<br />

reduction of the ship speed as the consequence.<br />

Furthermore, in general [4] for every 25<br />

µm (25/1000 mm) increase of the average<br />

hull roughness, the result will be a<br />

power increase of 2-3%, or a ship<br />

speed reduction of about 1%.<br />

Resistance will also increase because<br />

of sea, wind and current, as shown in<br />

Table 4 for different main routes of<br />

ships. The resistance when navigating<br />

in head-on sea could, in general, increase<br />

by as much as 50-100% of the<br />

total ship resistance in calm weather.<br />

On the North Atlantic routes, the first<br />

percentage corresponds to summer<br />

navigation and the second percentage<br />

to winter navigation.<br />

However, analysis of trading conditions<br />

for a typical 140,000 dwt bulk carrier<br />

shows that on some routes, especially<br />

Japan-Canada when loa<strong>de</strong>d, the increased<br />

resistance (sea margin) can<br />

reach extreme values up to 220%, with<br />

an average of about 100%.<br />

Unfortunately, no data have been published<br />

on increased resistance as a fun<br />

ction of type and size of vessel. The<br />

larger the ship, the less the relative increase<br />

of resistance due to the sea.<br />

On the other hand, the frictional resistance<br />

of the large, full-bodied ships will<br />

very easily be changed in the course of<br />

time because of fouling.<br />

In practice, the increase of resistance<br />

caused by heavy weather <strong>de</strong>pends on<br />

the current, the wind, as well as the<br />

wave size, where the latter factor may<br />

have great influence. Thus, if the wave<br />

size is relatively high, the ship speed<br />

will be somewhat reduced even when<br />

sailing in fair seas.<br />

In principle, the increased resistance<br />

caused by heavy weather could be<br />

related to:<br />

a) wind and current against, and<br />

b) heavy waves,<br />

but in practice it will be difficult to distinguish<br />

between these factors.<br />

9


Chapter 2<br />

Propeller Propulsion<br />

The traditional agent employed to<br />

move a ship is a propeller, sometimes<br />

two and, in very rare cases, more than<br />

two. The necessary propeller thrust T<br />

required to move the ship at speed V<br />

is normally greater than the pertaining<br />

towing resistance R T<br />

, and the flow-related<br />

reasons are, amongst other reasons,<br />

explained in this chapter. See also Fig. 6,<br />

where all relevant velocity, force, power<br />

and efficiency parameters are shown.<br />

Propeller types<br />

Propellers may be divi<strong>de</strong>d into the following<br />

two main groups, see also Fig. 7:<br />

Velocities<br />

Ship’s speed<br />

: V<br />

Arriving water velocity to propeller : VA<br />

(Speed of advance of propeller)<br />

Effective wake velocity<br />

: V = V _ W<br />

VA<br />

V _ V<br />

Wake fraction coefficient : w =<br />

V<br />

Forces<br />

Towing resistance<br />

: RT<br />

Thrust force<br />

: T<br />

Thrust <strong>de</strong>duction fraction : F = T _ RT<br />

Thrust <strong>de</strong>duction coefficient : t = T _ RT<br />

T<br />

V A<br />

V<br />

A<br />

Power<br />

Effective (Towing) power : P<br />

E<br />

= RT<br />

x V<br />

Thrust power <strong>de</strong>livered<br />

by the propeller to water : P<br />

T<br />

= P<br />

E<br />

/<br />

Power <strong>de</strong>livered to propeller : P<br />

D<br />

= P<br />

T<br />

/<br />

Brake power of main engine : P = P /<br />

Efficiencies<br />

1<br />

_<br />

t<br />

Hull efficiency : H =<br />

1<br />

_<br />

w<br />

Relative rotative efficiency : R<br />

Propeller efficiency - open water : 0<br />

Propeller efficiency - behind hull : B = 0 x R<br />

Propulsive efficiency : D = H x B<br />

Shaft efficiency : S<br />

Total efficiency : T<br />

T<br />

P P P P<br />

= = = =<br />

P P P P<br />

E E T D<br />

---- ---- x ---- x ---- H x B x S H x 0 x R x S<br />

B T D B<br />

B<br />

D<br />

H<br />

B<br />

S<br />

V W<br />

P D<br />

P E<br />

• Fixed pitch propeller (FP-propeller)<br />

• Controllable pitch propeller<br />

(CP-propeller)<br />

Propellers of the FP-type are cast in<br />

one block and normally ma<strong>de</strong> of a copper<br />

alloy. The position of the bla<strong>de</strong>s, and<br />

thereby the propeller pitch, is once and<br />

for all fixed, with a given pitch that cannot<br />

be changed in operation. This<br />

means that when operating in, for example,<br />

heavy weather conditions, the<br />

propeller performance curves, i.e. the<br />

combination of power and speed<br />

(r/min) points, will change according to<br />

the physical laws, and the actual propeller<br />

curve cannot be changed by the<br />

crew. Most ships which do not need a<br />

particularly good manoeuvrability are<br />

equipped with an FP-propeller.<br />

F<br />

T<br />

P T P B<br />

V<br />

Fig. 6: The propulsion of a ship – theory<br />

Fixed pitch propeller (FP-Propeller) Controllable pitch propeller (CP-Propeller)<br />

R T<br />

Propellers of the CP-type have a relatively<br />

larger hub compared with the<br />

FP-propellers because the hub has to<br />

have space for a hydraulically activated<br />

mechanism for control of the pitch (angle)<br />

of the bla<strong>de</strong>s. The CP-propeller is<br />

relatively expensive, maybe up to 3-4<br />

times as expensive as a corresponding<br />

FP-propeller. Furthermore, because of<br />

the relatively larger hub, the propeller<br />

efficiency is slightly lower.<br />

CP-propellers are mostly used for<br />

Ro-Ro ships, shuttle tankers and similar<br />

ships that require a high <strong>de</strong>gree of<br />

Monobloc with fixed<br />

propeller bla<strong>de</strong>s<br />

(copper alloy)<br />

Fig. 7: Propeller types<br />

Hub with a mechanism<br />

for control of the pitch<br />

of the bla<strong>de</strong>s<br />

(hydraulically activated)<br />

10


manoeuvrability. For ordinary ships like<br />

container ships, bulk carriers and cru<strong>de</strong><br />

oil tankers sailing for a long time in normal<br />

sea service at a given ship speed,<br />

it will, in general, be a waste of money<br />

to install an expensive CP-propeller instead<br />

of an FP-propeller. Furthermore, a<br />

CP-propeller is more complicated, involving<br />

a higher risk of problems in service.<br />

Flow conditions around the propeller<br />

Wake fraction coefficient w<br />

When the ship is moving, the friction of<br />

the hull will create a so-called friction<br />

belt or boundary layer of water around<br />

the hull. In this friction belt the velocity<br />

of the water on the surface of the hull is<br />

equal to that of the ship, but is reduced<br />

with its distance from the surface of the<br />

hull. At a certain distance from the hull<br />

and, per <strong>de</strong>finition, equal to the outer<br />

“surface” of the friction belt, the water<br />

velocity is equal to zero.<br />

The thickness of the friction belt increases<br />

with its distance from the fore end of<br />

the hull. The friction belt is therefore<br />

thickest at the aft end of the hull and<br />

this thickness is nearly proportional to<br />

the length of the ship, Ref. [5]. This<br />

means that there will be a certain wake<br />

velocity caused by the friction along the<br />

si<strong>de</strong>s of the hull. Additionally, the ship’s<br />

displacement of water will also cause<br />

wake waves both fore and aft. All this<br />

involves that the propeller behind the<br />

hull will be working in a wake field.<br />

Therefore, and mainly originating from<br />

the friction wake, the water at the propeller<br />

will have an effective wake velocity<br />

V w<br />

which has the same direction as<br />

the ship’s speed V, see Fig. 6. This<br />

means that the velocity of arriving water<br />

V A<br />

at the propeller, (equal to the speed<br />

of advance of the propeller) given as<br />

the average velocity over the propeller’s<br />

disk area is V w<br />

lower than the ship’s<br />

speed V.<br />

The effective wake velocity at the propeller<br />

is therefore equal to V w<br />

= V – V A<br />

and may be expressed in dimensionless<br />

form by means of the wake fraction<br />

coefficient w. The normally used wake<br />

fraction coefficient w given by Taylor is<br />

<strong>de</strong>fined as:<br />

w<br />

V V − V<br />

W<br />

A<br />

= =<br />

V V<br />

VA<br />

( you get = 1 − w)<br />

V<br />

The value of the wake fraction coefficient<br />

<strong>de</strong>pends largely on the shape of the<br />

hull, but also on the propeller’s location<br />

and size, and has great influence on<br />

the propeller’s efficiency.<br />

The propeller diameter or, even better,<br />

the ratio between the propeller diameter<br />

d and the ship’s length L WL<br />

has some<br />

influence on the wake fraction coefficient,<br />

as d/L WL<br />

gives a rough indication<br />

of the <strong>de</strong>gree to which the propeller<br />

works in the hull’s wake field. Thus, the<br />

larger the ratio d/L WL<br />

, the lower w will<br />

be. The wake fraction coefficient w increases<br />

when the hull is fouled.<br />

For ships with one propeller, the wake<br />

fraction coefficient w is normally in the<br />

region of 0.20 to 0.45, corresponding<br />

to a flow velocity to the propeller V A<br />

of<br />

0.80 to 0.55 of the ship’s speed V. The<br />

larger the block coefficient, the larger is<br />

the wake fraction coefficient. On ships<br />

with two propellers and a conventional<br />

aftbody form of the hull, the propellers<br />

will normally be positioned outsi<strong>de</strong> the<br />

friction belt, for which reason the wake<br />

fraction coefficient w will, in this case,<br />

be a great <strong>de</strong>al lower. However, for a<br />

twin-skeg ship with two propellers, the<br />

coefficient w will be almost unchanged<br />

(or maybe slightly lower) compared<br />

with the single-propeller case.<br />

Inci<strong>de</strong>ntally, a large wake fraction coefficient<br />

increases the risk of propeller<br />

cavitation, as the distribution of the<br />

water velocity around the propeller is<br />

generally very inhomogeneous un<strong>de</strong>r<br />

such conditions.<br />

A more homogeneous wake field for<br />

the propeller, also involving a higher<br />

speed of advance V A<br />

of the propeller,<br />

may sometimes be nee<strong>de</strong>d and can be<br />

obtained in several ways, e.g. by having<br />

the propellers arranged in nozzles,<br />

below shields, etc. Obviously, the best<br />

method is to ensure, already at the <strong>de</strong>sign<br />

stage, that the aft end of the hull is<br />

shaped in such a way that the optimum<br />

wake field is obtained.<br />

Thrust <strong>de</strong>duction coefficient t<br />

The rotation of the propeller causes the<br />

water in front of it to be “sucked” back<br />

towards the propeller. This results in an<br />

extra resistance on the hull normally<br />

called “augment of resistance” or, if related<br />

to the total required thrust force T<br />

on the propeller, “thrust <strong>de</strong>duction fraction”<br />

F, see Fig. 6. This means that the<br />

thrust force T on the propeller has to<br />

overcome both the ship’s resistance R T<br />

and this “loss of thrust” F.<br />

The thrust <strong>de</strong>duction fraction F may be<br />

expressed in dimensionless form by<br />

means of the thrust <strong>de</strong>duction coefficient<br />

t, which is <strong>de</strong>fined as:<br />

F T RT<br />

t = = − T T<br />

R<br />

T<br />

( you get = 1 − t)<br />

T<br />

The thrust <strong>de</strong>duction coefficient t can<br />

be calculated by using calculation<br />

mo<strong>de</strong>ls set up on the basis of research<br />

carried out on different mo<strong>de</strong>ls.<br />

In general, the size of the thrust <strong>de</strong>duction<br />

coefficient t increases when the<br />

wake fraction coefficient w increases.<br />

The shape of the hull may have a significant<br />

influence, e.g. a bulbous stem<br />

can, un<strong>de</strong>r certain circumstances (low<br />

ship speeds), reduce t.<br />

The size of the thrust <strong>de</strong>duction coefficient<br />

t for a ship with one propeller is,<br />

normally, in the range of 0.12 to 0.30,<br />

as a ship with a large block coefficient<br />

has a large thrust <strong>de</strong>duction coefficient.<br />

For ships with two propellers and a<br />

conventional aftbody form of the hull,<br />

the thrust <strong>de</strong>duction coefficient t will be<br />

much less as the propellers’ “sucking”<br />

occurs further away from the hull.<br />

However, for a twin-skeg ship with two<br />

propellers, the coefficient t will be almost<br />

unchanged (or maybe slightly lower)<br />

compared with the single-propeller case.<br />

Efficiencies<br />

Hull efficiency H<br />

The hull efficiency H<br />

is <strong>de</strong>fined as the<br />

ratio between the effective (towing)<br />

power P E<br />

= R T<br />

× V, and the thrust power<br />

11


which the propeller <strong>de</strong>livers to the water<br />

P T<br />

= T × V A<br />

, i.e.:<br />

P R × V<br />

E T RT<br />

/ T 1−<br />

t<br />

H<br />

= = = =<br />

P T × V V V<br />

T<br />

A A<br />

/<br />

1−<br />

w<br />

Propeller<br />

efficiency<br />

0.7<br />

o<br />

Large tankers<br />

>150,000 DWT<br />

Small tankers<br />

20,000 DWT<br />

Reefers<br />

Container ships<br />

For a ship with one propeller, the hull<br />

efficiency η H<br />

is usually in the range of<br />

1.1 to 1.4, with the high value for ships<br />

with high block coefficients. For ships<br />

with two propellers and a conventional<br />

aftbody form of the hull, the hull efficiency<br />

η H<br />

is approx. 0.95 to 1.05, again<br />

with the high value for a high block coefficient.<br />

However, for a twin-skeg ship<br />

with two propellers, the hull coefficient<br />

η H<br />

will be almost unchanged compared<br />

with the single-propeller case.<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

n ( revs./s )<br />

1.66<br />

2.00<br />

Open water propeller efficiency η O<br />

Propeller efficiency η O<br />

is related to<br />

working in open water, i.e. the propeller<br />

works in a homogeneous wake field<br />

with no hull in front of it.<br />

0.2<br />

0.1<br />

The propeller efficiency <strong>de</strong>pends, especially,<br />

on the speed of advance V A<br />

,<br />

thrust force T, rate of revolution n, diameter<br />

d and, moreover, i.a. on the <strong>de</strong>sign<br />

of the propeller, i.e. the number of<br />

bla<strong>de</strong>s, disk area ratio, and pitch/diameter<br />

ratio – which will be discussed<br />

later in this chapter. The propeller efficiency<br />

η O<br />

can vary between approx.<br />

0.35 and 0.75, with the high value being<br />

valid for propellers with a high<br />

speed of advance V A<br />

, Ref. [3].<br />

Fig. 8 shows the obtainable propeller<br />

efficiency η O<br />

shown as a function of the<br />

speed of advance V A<br />

, which is given in<br />

dimensionless form as:<br />

J =<br />

VA<br />

n×<br />

d<br />

where J is the advance number of the<br />

propeller.<br />

Relative rotative efficiency η R<br />

The actual velocity of the water flowing<br />

to the propeller behind the hull is neither<br />

constant nor at right angles to the<br />

propeller’s disk area, but has a kind of<br />

rotational flow. Therefore, compared<br />

with when the propeller is working in<br />

open water, the propeller’s efficiency is<br />

0<br />

0 0.1<br />

0.2 0.3<br />

affected by the η R<br />

factor – called the<br />

propeller’s relative rotative efficiency.<br />

On ships with a single propeller the<br />

rotative efficiency η R<br />

is, normally, around<br />

1.0 to 1.07, in other words, the rotation<br />

of the water has a beneficial effect. The<br />

rotative efficiency η R<br />

on a ship with a<br />

conventional hull shape and with two<br />

propellers will normally be less, approx.<br />

0.98, whereas for a twin-skeg ship with<br />

two propellers, the rotative efficiency η R<br />

will be almost unchanged.<br />

In combination with w and t, η R<br />

is probably<br />

often being used to adjust the results<br />

of mo<strong>de</strong>l tank tests to the theory.<br />

0.4 0.5 0.6 0.7<br />

Advance number J =<br />

Fig. 8: Obtainable propeller efficiency – open water, Ref. [3], page 213<br />

Propeller efficiency η B<br />

working behind<br />

the ship<br />

The ratio between the thrust power P T<br />

,<br />

which the propeller <strong>de</strong>livers to the water,<br />

and the power P D<br />

, which is <strong>de</strong>livered<br />

to the propeller, i.e. the propeller<br />

efficiency η B<br />

for a propeller working<br />

behind the ship, is <strong>de</strong>fined as:<br />

PT<br />

<br />

B<br />

= =<br />

o<br />

×<br />

P<br />

D<br />

Propulsive efficiency η D<br />

The propulsive efficiency η D<br />

, which<br />

must not be confused with the open<br />

water propeller efficiency η O<br />

, is equal to<br />

the ratio between the effective (towing)<br />

power P E<br />

and the necessary power<br />

<strong>de</strong>livered to the propeller P D<br />

, i.e.:<br />

<br />

D<br />

P<br />

P<br />

E E<br />

= = ×<br />

PD<br />

PT<br />

PT<br />

P<br />

= η H<br />

× η B<br />

= η H<br />

× η O<br />

× η R<br />

D<br />

VA<br />

n x d<br />

R<br />

12


As can be seen, the propulsive efficiency<br />

η D<br />

is equal to the product of the hull<br />

efficiency η H<br />

, the open water propeller<br />

efficiency η O<br />

, and the relative rotative<br />

efficiency η R<br />

, although the latter has<br />

less significance.<br />

Propeller diameter d<br />

With a view to obtaining the highest<br />

possible propulsive efficiency η D<br />

, the<br />

largest possible propeller diameter d<br />

will, normally, be preferred. There are,<br />

however, special conditions to be consi<strong>de</strong>red.<br />

For one thing, the aftbody form<br />

of the hull can vary greatly <strong>de</strong>pending on<br />

type of ship and ship <strong>de</strong>sign, for another,<br />

the necessary clearance between the<br />

tip of the propeller and the hull will <strong>de</strong>pend<br />

on the type of propeller.<br />

Propeller dimensions<br />

In this connection, one can be led to<br />

believe that a hull form giving a high<br />

wake fraction coefficient w, and hence<br />

a high hull efficiency η H<br />

, will also provi<strong>de</strong><br />

the best propulsive efficiency η D<br />

.<br />

However, as the open water propeller<br />

efficiency η O<br />

is also greatly <strong>de</strong>pen<strong>de</strong>nt<br />

on the speed of advance V A<br />

, cf. Fig. 8,<br />

that is <strong>de</strong>creasing with increased w,<br />

the propulsive efficiency η D<br />

will not,<br />

generally, improve with increasing w,<br />

quite often the opposite effect is obtained.<br />

Generally, the best propulsive efficiency<br />

is achieved when the propeller works in<br />

a homogeneous wake field.<br />

Shaft efficiency η S<br />

The shaft efficiency η S<br />

<strong>de</strong>pends, i.a. on<br />

the alignment and lubrication of the<br />

shaft bearings, and on the reduction<br />

gear, if installed.<br />

Shaft efficiency is equal to the ratio between<br />

the power P D<br />

<strong>de</strong>livered to the Bulk carrier and tanker:<br />

propeller and the brake power P B<br />

<strong>de</strong>livered<br />

by the main engine, i.e.<br />

P<br />

Container ship:<br />

D<br />

<br />

S<br />

<br />

PB<br />

The shaft efficiency is normally around<br />

0.985, but can vary between 0.96 and<br />

0.995.<br />

Total efficiency η T<br />

The total efficiency η T<br />

, which is equal to<br />

the ratio between the effective (towing)<br />

power P E<br />

, and the necessary brake<br />

power P B<br />

<strong>de</strong>livered by the main engine,<br />

can be expressed thus:<br />

P P P<br />

E E D<br />

= = ×<br />

T<br />

PB<br />

PD<br />

PB<br />

= η D<br />

×η S<br />

= η H<br />

×η O<br />

×η R<br />

×η S<br />

For bulkers and tankers, which are often<br />

sailing in ballast condition, there are<br />

frequent <strong>de</strong>mands that the propeller<br />

shall be fully immersed also in this condition,<br />

giving some limitation to the propeller<br />

size. This propeller size limitation<br />

is not particularly valid for container<br />

ships as they rarely sail in ballast condition.<br />

All the above factors mean that an<br />

exact propeller diameter/<strong>de</strong>sign draught<br />

ratio d/D cannot be given here but, as<br />

a rule-of-thumb, the below mentioned<br />

approximations of the diameter/<strong>de</strong>sign<br />

draught ratio d/D can be presented,<br />

and a large diameter d will, normally,<br />

result in a low rate of revolution n.<br />

d/D < approximately 0.65<br />

d/D < approximately 0.74<br />

For strength and production reasons,<br />

the propeller diameter will generally not<br />

exceed 10.0 metres and a power output<br />

of about 90,000 kW. The largestdiameter<br />

propeller manufactured so far<br />

is of 11.0 metres and has four propeller<br />

bla<strong>de</strong>s.<br />

Number of propeller bla<strong>de</strong>s<br />

Propellers can be manufactured with 2,<br />

3, 4, 5 or 6 bla<strong>de</strong>s. The fewer the number<br />

of bla<strong>de</strong>s, the higher the propeller<br />

efficiency will be. However, for reasons<br />

of strength, propellers which are to be<br />

subjected to heavy loads cannot be<br />

manufactured with only two or three<br />

bla<strong>de</strong>s.<br />

Two-bla<strong>de</strong>d propellers are used on<br />

small ships, and 4, 5 and 6-bla<strong>de</strong>d<br />

propellers are used on large ships.<br />

Ships using the MAN B&W two-stroke<br />

engines are normally large-type vessels<br />

which use 4-bla<strong>de</strong>d propellers. Ships<br />

with a relatively large power requirement<br />

and heavily loa<strong>de</strong>d propellers, e.g. container<br />

ships, may need 5 or 6-bla<strong>de</strong>d<br />

propellers. For vibrational reasons, propellers<br />

with certain numbers of bla<strong>de</strong>s<br />

may be avoi<strong>de</strong>d in individual cases in<br />

or<strong>de</strong>r not to give rise to the excitation<br />

of natural frequencies in the ship’s hull<br />

or superstructure, Ref. [5].<br />

Disk area coefficient<br />

The disk area coefficient – referred to in<br />

ol<strong>de</strong>r literature as expan<strong>de</strong>d bla<strong>de</strong> area<br />

ratio – <strong>de</strong>fines the <strong>de</strong>veloped surface<br />

area of the propeller in relation to its<br />

disk area. A factor of 0.55 is consi<strong>de</strong>red<br />

as being good. The disk area coefficient<br />

of traditional 4-bla<strong>de</strong>d propellers is of<br />

little significance, as a higher value will<br />

only lead to extra resistance on the<br />

propeller itself and, thus, have little effect<br />

on the final result.<br />

For ships with particularly heavy-loa<strong>de</strong>d<br />

propellers, often 5 and 6-bla<strong>de</strong>d propellers,<br />

the coefficient may have a<br />

higher value. On warships it can be as<br />

high as 1.2.<br />

Pitch diameter ratio p/d<br />

The pitch diameter ratio p/d, expresses<br />

the ratio between the propeller’s pitch<br />

p and its diameter d, see Fig. 10. The<br />

pitch p is the distance the propeller<br />

“screws” itself forward through the water<br />

per revolution, providing that there<br />

is no slip – see also the next section<br />

and Fig. 10. As the pitch can vary<br />

along the bla<strong>de</strong>’s radius, the ratio is<br />

normally related to the pitch at 0.7 × r,<br />

where r = d/2 is the propeller’s radius.<br />

To achieve the best propulsive efficiency<br />

for a given propeller diameter, an optimum<br />

pitch/diameter ratio is to be found,<br />

which again corresponds to a particular<br />

<strong>de</strong>sign rate of revolution. If, for<br />

instance, a lower <strong>de</strong>sign rate of revolution<br />

is <strong>de</strong>sired, the pitch/diameter ratio has<br />

to be increased, and vice versa, at the<br />

cost of efficiency. On the other hand, if<br />

a lower <strong>de</strong>sign rate of revolution is <strong>de</strong>sired,<br />

and the ship’s draught permits,<br />

the choice of a larger propeller diame-<br />

13


ter may permit such a lower <strong>de</strong>sign rate<br />

of revolution and even, at the same time,<br />

increase the propulsive efficiency.<br />

Propeller coefficients J, K T<br />

and K Q<br />

Propeller theory is based on mo<strong>de</strong>ls,<br />

but to facilitate the general use of this<br />

theory, certain dimensionless propeller<br />

coefficients have been introduced in relation<br />

to the diameter d, the rate of revolution<br />

n, and the water’s mass <strong>de</strong>nsity<br />

. The three most important of these<br />

coefficients are mentioned below.<br />

The advance number of the propeller J<br />

is, as earlier mentioned, a dimensionless<br />

expression of the propeller’s speed of<br />

advance V A<br />

.<br />

VA<br />

J =<br />

n × d<br />

The thrust force T, is expressed<br />

dimensionless, with the help of the<br />

thrust coefficient K T<br />

, as<br />

T<br />

K = T × n × d<br />

and the propeller torque<br />

2 4<br />

Class<br />

S<br />

I<br />

II<br />

III<br />

ISO 484/1 – 1981 (CE)<br />

Manufacturing<br />

accuracy<br />

Very high accuracy<br />

High accuracy<br />

Medium accuracy<br />

Wi<strong>de</strong> tolerances<br />

Mean pitch<br />

for propeller<br />

+/– 0.5 %<br />

+/– 0.75 %<br />

+/– 1.00 %<br />

+/– 3.00 %<br />

Table 5: Manufacturing accuracy classes<br />

of a propeller<br />

Manufacturing accuracy of the propeller<br />

Before the manufacturing of the propeller,<br />

the <strong>de</strong>sired accuracy class standard of<br />

the propeller must be chosen by the<br />

customer. Such a standard is, for example,<br />

ISO 484/1 – 1981 (CE), which<br />

has four different “Accuracy classes”,<br />

see Table 5.<br />

Each of the classes, among other <strong>de</strong>tails,<br />

specifies the maximum allowable<br />

tolerance on the mean <strong>de</strong>sign pitch of<br />

the manufactured propeller, and<br />

thereby the tolerance on the corresponding<br />

propeller speed (rate of revolution).<br />

The price of the propeller, of course,<br />

<strong>de</strong>pends on the selected accuracy<br />

class, with the lowest price for class III.<br />

However, it is not recommen<strong>de</strong>d to<br />

use class III, as this class has a too<br />

high tolerance. This again means that<br />

the mean pitch tolerance should normally<br />

be less than +/– 1.0 %.<br />

The manufacturing accuracy tolerance<br />

corresponds to a propeller speed tolerance<br />

of max. +/– 1.0 %. When also incorporating<br />

the influence of the tolerance<br />

on the wake field of the hull, the total<br />

propeller tolerance on the rate of revolution<br />

can be up to +/– 2.0 %. This tolerance<br />

has also to be borne in mind<br />

when consi<strong>de</strong>ring the operating conditions<br />

of the propeller in heavy weather.<br />

Influence of propeller diameter and<br />

pitch/diameter ratio on propulsive<br />

efficiency D<br />

.<br />

As already mentioned, the highest possible<br />

propulsive efficiency required to<br />

provi<strong>de</strong> a given ship speed is obtained<br />

with the largest possible propeller diameter<br />

d, in combination with the corresponding,<br />

optimum pitch/diameter ratio<br />

p/d.<br />

PD<br />

Q =<br />

2 × n<br />

is expressed dimensionless with the<br />

help of the torque coefficient K Q<br />

, as<br />

Q<br />

K = Q × n × d<br />

2 5<br />

The propeller efficiency O<br />

can be calculated<br />

with the help of the above-mentioned<br />

coefficients, because, as previously<br />

mentioned, the propeller efficiency O<br />

is<br />

<strong>de</strong>fined as:<br />

= P<br />

= T × V<br />

<br />

P × × = K<br />

T<br />

A<br />

T<br />

Q n K<br />

× J<br />

2 2<br />

D<br />

With the help of special and very complicated<br />

propeller diagrams, which<br />

contain, i.a. J, K T<br />

and K Q<br />

curves, it is<br />

possible to find/calculate the propeller’s<br />

dimensions, efficiency, thrust, power, etc.<br />

Q<br />

Shaft power<br />

kW<br />

9,500<br />

9,400<br />

9,300<br />

9,200<br />

9,100<br />

9,000<br />

8,900<br />

8,800<br />

8,700<br />

8,600<br />

8,500<br />

70<br />

p/d<br />

1.00<br />

0.95<br />

80 90<br />

80,000 dwt cru<strong>de</strong> oil tanker<br />

Design draught = 12.2 m<br />

Ship speed = 14.5 kn<br />

d =Propeller diameter<br />

p/d = Pitch/diameter ratio<br />

0.90<br />

7.0 m<br />

0.69<br />

0.85<br />

0.80 7.2 m<br />

0.75 0.70 0.65<br />

d<br />

7.4 m<br />

p/d<br />

0.71<br />

Fig. 9: Propeller <strong>de</strong>sign – influence of diameter and pitch<br />

6.8 m<br />

d<br />

6.6 m p/d<br />

0.67<br />

0.68<br />

0.60<br />

0.55<br />

p/d<br />

0.50<br />

Power and speed curve<br />

for the given propeller<br />

diameter d = 7.2 m with<br />

different p/d<br />

Power and speed curve<br />

for various propeller<br />

diameters d with<br />

optimum p/d<br />

Propeller speed<br />

100 110 120 130 r/min<br />

14


As an example for an 80,000 dwt cru<strong>de</strong><br />

oil tanker, with a service ship speed of<br />

14.5 knots and a maximum possible<br />

propeller diameter of 7.2 m, this influence<br />

is shown in Fig. 9.<br />

Pitch p<br />

Slip<br />

According to the blue curve, the maximum<br />

possible propeller diameter of 7.2<br />

m may have the optimum pitch/diameter<br />

ratio of 0.70, and the lowest possible<br />

shaft power of 8,820 kW at 100<br />

r/min. If the pitch for this diameter is<br />

changed, the propulsive efficiency will<br />

be reduced, i.e. the necessary shaft<br />

power will increase, see the red curve.<br />

d<br />

0.7 x r<br />

r<br />

n<br />

The blue curve shows that if a bigger<br />

propeller diameter of 7.4 m is possible,<br />

the necessary shaft power will be reduced<br />

to 8,690 kW at 94 r/min, i.e. the<br />

bigger the propeller, the lower the optimum<br />

propeller speed.<br />

The red curve also shows that propulsion-wise<br />

it will always be an advantage<br />

to choose the largest possible<br />

propeller diameter, even though the<br />

optimum pitch/diameter ratio would<br />

involve a too low propeller speed (in relation<br />

to the required main engine speed).<br />

Thus, when using a somewhat lower<br />

pitch/diameter ratio, compared with the<br />

optimum ratio, the propeller/ engine<br />

speed may be increased and will only<br />

cause a minor extra power increase.<br />

The apparent slip ratio S A<br />

, which is<br />

dimensionless, is <strong>de</strong>fined as:<br />

p n V<br />

S = × − V<br />

= 1−<br />

A<br />

p×<br />

n p×<br />

n<br />

V or V A<br />

p x n<br />

p x n _ V<br />

The apparent slip ratio : S<br />

A<br />

= = 1 _<br />

p x n<br />

p x n<br />

The real slip ratio : S<br />

R<br />

= _ VA<br />

= 1 _<br />

p x n<br />

Fig. 10: Movement of a ship´s propeller, with pitch p and slip ratio S<br />

S x p x n<br />

V<br />

p x n<br />

VA<br />

p x n<br />

The apparent slip ratio S A<br />

, which is calculated<br />

by the crew, provi<strong>de</strong>s useful<br />

knowledge as it gives an impression of<br />

the loads applied to the propeller un<strong>de</strong>r<br />

different operating conditions. The apparent<br />

slip ratio increases when the<br />

Operating conditions of a propeller<br />

Slip ratio S<br />

If the propeller had no slip, i.e. if the<br />

water which the propeller “screws”<br />

itself through did not yield (i.e. if the<br />

water did not accelerate aft), the propeller<br />

would move forward at a speed<br />

of V = p × n, where n is the propeller’s<br />

rate of revolution, see Fig. 10.<br />

Velocity of corkscrew: V = p x n<br />

Pitch p<br />

V<br />

The similar situation is shown in Fig. 11<br />

for a cork screw, and because the cork<br />

is a solid material, the slip is zero and,<br />

therefore, the cork screw always moves<br />

forward at a speed of V = p × n. However,<br />

as the water is a fluid and does<br />

yield (i.e. accelerate aft), the propeller’s<br />

apparent speed forward <strong>de</strong>creases<br />

with its slip and becomes equal to the<br />

ship’s speed V, and its apparent slip<br />

can thus be expressed as p × n – V.<br />

Corkscrew<br />

Cork<br />

Fig. 11: Movement of a corkscrew, without slip<br />

Wine bottle<br />

n<br />

15


vessel sails against the wind or waves,<br />

in shallow waters, when the hull is<br />

fouled, and when the ship accelerates.<br />

Un<strong>de</strong>r increased resistance, this involves<br />

that the propeller speed (rate of<br />

revolution) has to be increased in or<strong>de</strong>r<br />

to maintain the required ship speed.<br />

The real slip ratio will be greater than<br />

the apparent slip ratio because the real<br />

speed of advance V A<br />

of the propeller is,<br />

as previously mentioned, less than the<br />

ship’s speed V.<br />

The real slip ratio S R<br />

, which gives a truer<br />

picture of the propeller’s function, is:<br />

S<br />

R<br />

VA<br />

V w<br />

= −<br />

p× n<br />

= − × ( 1−<br />

)<br />

1 1<br />

p×<br />

n<br />

At quay trials where the ship’s speed is<br />

V = 0, both slip ratios are 1.0. Inci<strong>de</strong>ntally,<br />

slip ratios are often given in percentages.<br />

Propeller law in general<br />

As discussed in Chapter 1, the resistance<br />

R for lower ship speeds is proportional<br />

to the square of the ship’s<br />

speed V, i.e.:<br />

R=c × V 2<br />

where c is a constant. The necessary<br />

power requirement P is thus proportional<br />

to the speed V to the power of<br />

three, thus:<br />

P = R × V = c × V 3<br />

For a ship equipped with a fixed pitch<br />

propeller, i.e. a propeller with unchangeable<br />

pitch, the ship speed V will be proportional<br />

to the rate of revolution n, thus:<br />

P = c × n 3<br />

which precisely expresses the propeller<br />

law, which states that “the necessary<br />

power <strong>de</strong>livered to the propeller is proportional<br />

to the rate of revolution to the<br />

power of three”.<br />

Actual measurements show that the<br />

power and engine speed relationship<br />

for a given weather condition is fairly<br />

reasonable, whereas the power and<br />

ship speed relationship is often seen<br />

with a higher power than three. A reasonable<br />

relationship to be used for estimations<br />

in the normal ship speed range<br />

could be as follows:<br />

• For large high-speed ships like container<br />

vessels: P = c × V 4.5<br />

• For medium-sized, medium-speed<br />

ships like fee<strong>de</strong>r container ships,<br />

reefers, RoRo ships, etc.: P = c × V 4.0<br />

• For low-speed ships like tankers and<br />

bulk carriers, and small fee<strong>de</strong>r container<br />

ships, etc.: P = c × V 3.5<br />

Propeller law for heavy running propeller<br />

The propeller law, of course, can only<br />

be applied to i<strong>de</strong>ntical ship running<br />

conditions. When, for example, the<br />

ship’s hull after some time in service<br />

has become fouled and thus become<br />

more rough, the wake field will be different<br />

from that of the smooth ship (clean hull)<br />

valid at trial trip conditions.<br />

A ship with a fouled hull will, consequently,<br />

be subject to extra resistance<br />

which will give rise to a “heavy propeller<br />

condition”, i.e. at the same propeller<br />

power, the rate of revolution will be lower.<br />

The propeller law now applies to another<br />

and “heavier” propeller curve<br />

than that applying to the clean hull,<br />

propeller curve, Ref. [3], page 243.<br />

The same relative consi<strong>de</strong>rations apply<br />

when the ship is sailing in a heavy sea<br />

against the current, a strong wind, and<br />

heavy waves, where also the heavy<br />

waves in tail wind may give rise to a<br />

heavier propeller running than when<br />

running in calm weather. On the other<br />

hand, if the ship is sailing in ballast<br />

condition, i.e. with a lower displacement,<br />

the propeller law now applies to<br />

a “lighter” propeller curve, i.e. at the<br />

same propeller power, the propeller<br />

rate of revolution will be higher.<br />

As mentioned previously, for ships with<br />

a fixed pitch propeller, the propeller law<br />

is extensively used at part load running.<br />

It is therefore also used in MAN B&W<br />

Diesel’s engine layout and load diagrams<br />

to specify the engine’s operational<br />

curves for light running conditions (i.e.<br />

clean hull and calm weather) and heavy<br />

running conditions (i.e. for fouled hull<br />

and heavy weather). These diagrams using<br />

logarithmic scales and straight lines<br />

are <strong>de</strong>scribed in <strong>de</strong>tail in Chapter 3.<br />

Propeller performance in general at<br />

increased ship resistance<br />

The difference between the above-mentioned<br />

light and heavy running propeller<br />

curves may be explained by an example,<br />

see Fig. 12, for a ship using, as reference,<br />

15 knots and 100% propulsion<br />

power when running with a clean hull in<br />

calm weather conditions. With 15% more<br />

power, the corresponding ship speed<br />

may increase from 15.0 to 15.6 knots.<br />

As <strong>de</strong>scribed in Chapter 3, and compared<br />

with the calm weather conditions,<br />

it is normal to incorporate an extra<br />

power margin, the so-called sea margin,<br />

which is often chosen to be 15%.<br />

This power margin corresponds to extra<br />

resistance on the ship caused by<br />

the weather conditions. However, for<br />

very rough weather conditions the influence<br />

may be much greater, as <strong>de</strong>scribed<br />

in Chapter 1.<br />

In Fig. 12a, the propulsion power is<br />

shown as a function of the ship speed.<br />

When the resistance increases to a<br />

level which requires 15% extra power<br />

to maintain a ship speed of 15 knots,<br />

the operating point A will move towards<br />

point B.<br />

In Fig. 12b the propulsion power is<br />

now shown as a function of the propeller<br />

speed. As a first guess it will often be assumed<br />

that point A will move towards B’<br />

because an unchanged propeller speed<br />

implies that, with unchanged pitch, the<br />

propeller will move through the water<br />

at an unchanged speed.<br />

If the propeller was a corkscrew moving<br />

through cork, this assumption would<br />

be correct. However, water is not solid<br />

as cork but will yield, and the propeller<br />

will have a slip that will increase with increased<br />

thrust caused by increased<br />

hull resistance. Therefore, point A will<br />

move towards B which, in fact, is very<br />

close to the propeller curve through A.<br />

Point B will now be positioned on a<br />

propeller curve which is slightly heavy<br />

running compared with the clean hull<br />

and calm weather propeller curve.<br />

16


15.0 knots<br />

115% power<br />

B<br />

Power<br />

B´<br />

15.0 knots<br />

115% power<br />

Slip<br />

Power<br />

B<br />

12.3 knots<br />

100% power<br />

15.0 knots<br />

100% power<br />

Slip<br />

D´ D A<br />

Power<br />

15%<br />

Sea<br />

margin<br />

15.6 knots<br />

115% power<br />

Propeller curve for clean<br />

hull and calm weather<br />

15%<br />

Sea<br />

margin<br />

15.6 knots<br />

115% power<br />

Propeller curve for clean<br />

hull and calm weather<br />

Propeller<br />

curve for<br />

fouled hull<br />

and heavy<br />

seas<br />

10.0 knots<br />

50% power<br />

Propeller curve<br />

for clean hull and<br />

calm weather<br />

A<br />

(Logarithmic scales)<br />

15.0 knots<br />

100% power<br />

Ship speed<br />

A<br />

(Logarithmic scales)<br />

15.0 knots<br />

100% power<br />

Propeller speed<br />

C<br />

HR<br />

LR<br />

(Logarithmic scales)<br />

12.3 knots<br />

50% power<br />

HR = Heavy running<br />

LR = Light running<br />

Propeller speed<br />

Fig. 12a: Ship speed performance at 15%<br />

sea margin<br />

Fig. 12b: Propeller speed performance at<br />

15% sea margin<br />

Fig. 12c: Propeller speed performance at<br />

large extra ship resistance<br />

Sometimes, for instance when the hull<br />

is fouled and the ship is sailing in heavy<br />

seas in a head wind, the increase in<br />

resistance may be much greater, corresponding<br />

to an extra power <strong>de</strong>mand<br />

of the magnitu<strong>de</strong> of 100% or even higher.<br />

An example is shown in Fig. 12c.<br />

a ducted propeller, the opposite effect<br />

is obtained.<br />

Heavy waves and sea and wind against<br />

When sailing in heavy sea against, with<br />

heavy wave resistance, the propeller<br />

can be up to 7-8% heavier running<br />

than in calm weather, i.e. at the same<br />

propeller power, the rate of revolution<br />

may be 7-8% lower. An example valid<br />

for a smaller container ship is shown in<br />

Fig. 13. The service data is measured<br />

In this example, where 100% power<br />

will give a ship speed of 15.0 knots,<br />

point A, a ship speed of, for instance,<br />

12.3 knots at clean hull and in calm<br />

weather conditions, point C, will require<br />

about 50% propulsion power but, at<br />

the above-mentioned heavy running<br />

conditions, it might only be possible to<br />

obtain the 12.3 knots by 100% propulsion<br />

power, i.e. for 100% power going from<br />

point A to D. Running point D may now<br />

be placed relatively far to the left of point<br />

A, i.e. very heavy running. Such a situation<br />

must be consi<strong>de</strong>red when layingout<br />

the main engine in relation to the<br />

layout of the propeller, as <strong>de</strong>scribed in<br />

Chapter 3.<br />

A scewed propeller (with bent bla<strong>de</strong><br />

tips) is more sensitive to heavy running<br />

than a normal propeller, because the<br />

propeller is able to absorb a higher<br />

torque in heavy running conditions. For<br />

C<br />

B<br />

A<br />

Extremely bad weather 6%<br />

Average weather 3%<br />

Extremely good weather 0%<br />

Clean hull and draught D<br />

D MEAN = 6.50 m<br />

D F = 5.25 m<br />

D A = 7.75 m<br />

Source: Lloyd's Register<br />

BHP<br />

21,000<br />

Heavy<br />

running<br />

18,000<br />

15,000<br />

12,000<br />

9,000 13<br />

6,000<br />

Shaft power<br />

C<br />

B<br />

16 A<br />

19<br />

Ship speed<br />

knots<br />

10%<br />

Apparent slip<br />

6%<br />

2%<br />

-2%<br />

22<br />

76 80 84 88 92 96 100<br />

r/min<br />

Propeller speed<br />

Fig. 13: Service data over a period of a year returned from a single screw container ship<br />

17


Shaft power<br />

% SMCR<br />

105<br />

100<br />

95<br />

90<br />

85<br />

80<br />

4<br />

Engine "propeller curve"<br />

Propeller curve<br />

Propeller curve<br />

96 97 98 99 100 101 102 103 104 105 % SMCR<br />

(Logarithmic scales)<br />

Propeller/engine speed<br />

over a period of one year and only<br />

inclu<strong>de</strong>s the influence of weather conditions!<br />

The measuring points have<br />

been reduced to three average weather<br />

conditions and show, for extremely bad<br />

weather conditions, an average heavy<br />

running of 6%, and therefore, in practice,<br />

the heavy running has proved to<br />

be even greater.<br />

In or<strong>de</strong>r to avoid slamming of the ship,<br />

and thereby damage to the stem and<br />

racing of the propeller, the ship speed<br />

will normally be reduced by the navigating<br />

officer on watch.<br />

Another measured example is shown<br />

in Fig. 14, and is valid for a reefer ship<br />

during its sea trial. Even though the<br />

wind velocity is relatively low, only 2.5<br />

m/s, and the wave height is 4 m, the<br />

SMCR: 13,000 kW x 105 r/min<br />

Wind velocity : 2.5 m/s<br />

Head wind<br />

Wave height : 4 m<br />

Tail wind<br />

SMCR<br />

*22.0<br />

7<br />

5<br />

22.3 *<br />

1<br />

Propeller <strong>de</strong>sign<br />

light running Heavy<br />

running<br />

20.5 21.8<br />

** 20.5 *<br />

21.5<br />

*<br />

20.8*<br />

* 21.1 3<br />

21.1 *<br />

*21.2<br />

Fig. 14: Measured relationship between power, propeller and ship speed during seatrial of<br />

a reefer ship<br />

measurements indicate approx. 1.5%<br />

heavy running when sailing in head<br />

wind out, compared with when sailing<br />

in tail wind on return.<br />

Ship acceleration<br />

When the ship accelerates, the propeller<br />

will be subjected to an even larger<br />

load than during free sailing. The power<br />

required for the propeller, therefore, will<br />

be relatively higher than for free sailing,<br />

and the engine’s operating point will be<br />

heavy running, as it takes some time<br />

before the propeller speed has reached<br />

its new and higher level. An example<br />

with two different accelerations, for an<br />

engine without electronic governor and<br />

scavenge air pressure limiter, is shown<br />

in Fig. 15. The load diagram and scavenge<br />

air pressure limiter are is <strong>de</strong>scribed<br />

in Chapter 3.<br />

Shallow waters<br />

When sailing in shallow waters, the residual<br />

resistance of the ship may be increased<br />

and, in the same way as when<br />

the ship accelerates, the propeller will<br />

be subjected to a larger load than during<br />

free sailing, and the propeller will be<br />

heavy running.<br />

Influence of displacement<br />

When the ship is sailing in the loa<strong>de</strong>d<br />

condition, the ship’s displacement volume<br />

may, for example, be 10% higher<br />

or lower than for the displacement valid<br />

for the average loa<strong>de</strong>d condition. This,<br />

of course, has an influence on the ship’s<br />

resistance, and the required propeller<br />

power, but only a minor influence on<br />

the propeller curve.<br />

On the other hand, when the ship is<br />

sailing in the ballast condition, the displacement<br />

volume, compared to the<br />

loa<strong>de</strong>d condition, can be much lower,<br />

and the corresponding propeller curve<br />

may apply to, for example, a 2% “lighter”<br />

propeller curve, i.e. for the same power<br />

to the propeller, the rate of revolution<br />

will be 2% higher.<br />

Parameters causing heavy running<br />

propeller<br />

Together with the previously <strong>de</strong>scribed<br />

operating parameters which cause a<br />

heavy running propeller, the parameters<br />

summarised below may give an indication<br />

of the risk/sensitivity of getting<br />

a heavy running propeller when sailing<br />

in heavy weather and rough seas:<br />

1 Relatively small ships (


Engine shaft power, % A<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

A 100% reference point<br />

M Specified engine MCR<br />

O Optimising point<br />

mep<br />

110%<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

A=M<br />

60 65 70 75 80 85 90 95 100 105<br />

(Logarithmic scales)<br />

Engine speed, % A<br />

O<br />

power will be nee<strong>de</strong>d but, of course,<br />

this will be higher for running in heavy<br />

weather with increased resistance on<br />

the ship.<br />

Direction of propeller rotation (si<strong>de</strong> thrust)<br />

When a ship is sailing, the propeller<br />

bla<strong>de</strong>s bite more in their lowermost position<br />

than in their uppermost position.<br />

The resulting si<strong>de</strong>-thrust effect is larger<br />

the more shallow the water is as, for<br />

example, during harbour manoeuvres.<br />

Therefore, a clockwise (looking from aft<br />

to fore) rotating propeller will tend to<br />

push the ship’s stern in the starboard<br />

direction, i.e. pushing the ship’s stem<br />

to port, during normal ahead running.<br />

This has to be counteracted by the<br />

rud<strong>de</strong>r.<br />

When reversing the propeller to astern<br />

running as, for example, when berthing<br />

alongsi<strong>de</strong> the quay, the si<strong>de</strong>-thrust effect<br />

is also reversed and becomes further<br />

pronounced as the ship’s speed<br />

<strong>de</strong>creases. Awareness of this behaviour<br />

is very important in critical situations<br />

and during harbour manoeuvres.<br />

Fig. 15: Load diagram – acceleration<br />

larger force than on the slow-going<br />

ship.<br />

4 Ships with a “flat” stem<br />

may be slowed down faster by waves<br />

than a ship with a “sharp” stem.<br />

Thus an axe-shaped upper bow may<br />

better cut the waves and thereby<br />

reduce the heavy running ten<strong>de</strong>ncy.<br />

5 Fouling of the hull and propeller<br />

will increase both hull resistance and<br />

propeller torque. Polishing the propeller<br />

(especially the tips) as often as<br />

possible (also when in water) has a<br />

positive effect. The use of effective<br />

anti-fouling paints will prevent fouling<br />

caused by living organisms.<br />

6 Ship acceleration<br />

will increase the propeller torque,<br />

and thus give a temporarily heavy<br />

running propeller.<br />

7 Sailing in shallow waters<br />

increases the hull resistance and reduces<br />

the ship’s directional stability.<br />

8 Ships with scewed propeller<br />

are able to absorb a higher torque<br />

un<strong>de</strong>r heavy running conditions.<br />

Manoeuvring speed<br />

Below a certain ship speed, called the<br />

manoeuvring speed, the manoeuvrability<br />

of the rud<strong>de</strong>r is insufficient because<br />

of a too low velocity of the water<br />

arriving at the rud<strong>de</strong>r. It is rather difficult<br />

to give an exact figure for an a<strong>de</strong>quate<br />

manoeuvring speed of the ship as the<br />

velocity of the water arriving at the rud<strong>de</strong>r<br />

<strong>de</strong>pends on the propeller’s slip<br />

stream.<br />

Often a manoeuvring speed of the<br />

magnitu<strong>de</strong> of 3.5-4.5 knots is mentioned.<br />

According to the propeller law,<br />

a correspondingly low propulsion<br />

According to Ref. [5], page 15-3, the<br />

real reason for the appearance of the<br />

si<strong>de</strong> thrust during reversing of the propeller<br />

is that the upper part of the propeller’s<br />

slip stream, which is rotative,<br />

strikes the aftbody of the ship.<br />

Thus, also the pilot has to know precisely<br />

how the ship reacts in a given<br />

situation. It is therefore an unwritten<br />

law that on a ship fitted with a fixed<br />

pitch propeller, the propeller is always<br />

<strong>de</strong>signed for clockwise rotation when<br />

sailing ahead. A direct coupled main<br />

engine, of course, will have the same<br />

rotation.<br />

In or<strong>de</strong>r to obtain the same si<strong>de</strong>-thrust<br />

effect, when reversing to astern, on<br />

ships fitted with a controllable pitch<br />

propeller, CP-propellers are <strong>de</strong>signed<br />

for anti-clockwise rotation when sailing<br />

ahead.<br />

19


Engine Layout and<br />

Load Diagrams<br />

Power functions and logarithmic<br />

scales<br />

As is well-known, the effective brake<br />

power P B<br />

of a diesel engine is proportional<br />

to the mean effective pressure<br />

(mep) p e<br />

and engine speed (rate of revolution)<br />

n. When using c as a constant,<br />

P B<br />

may then be expressed as follows:<br />

P B<br />

= c × p e<br />

× n<br />

or, in other words, for constant mep<br />

the power is proportional to the speed:<br />

P B<br />

= c × n 1<br />

(for constant mep)<br />

As already mentioned – when running<br />

with a fixed pitch propeller – the power<br />

may, according to the propeller law, be<br />

expressed as:<br />

P B<br />

= c × n 3<br />

(propeller law)<br />

Thus, for the above examples, the brake<br />

power P B<br />

may be expressed as a function<br />

of the speed n to the power of i, i.e.<br />

P B<br />

= c × n i<br />

Fig. 16 shows the relationship between<br />

the linear functions, y = ax + b, see (A),<br />

using linear scales and the power functions<br />

P B<br />

= c × n i , see (B), using logarithmic<br />

scales.<br />

The power functions will be linear when<br />

using logarithmic scales, as:<br />

log (P B<br />

) = i × log (n) + log (c)<br />

which is equivalent to:<br />

y = ax + b<br />

Thus, propeller curves will be parallel to<br />

lines having the inclination i = 3, and<br />

lines with constant mep will be parallel<br />

to lines with the inclination i = 1.<br />

Therefore, in the layout and load diagrams<br />

for diesel engines, as <strong>de</strong>scribed in the<br />

following, logarithmic scales are used,<br />

making simple diagrams with straight<br />

lines.<br />

Propulsion and engine running<br />

points<br />

Propeller <strong>de</strong>sign point PD<br />

Normally, estimations of the necessary<br />

propeller power and speed are based<br />

on theoretical calculations for loa<strong>de</strong>d<br />

ship, and often experimental tank tests,<br />

both assuming optimum operating<br />

conditions, i.e. a clean hull and good<br />

weather. The combination of speed<br />

and power obtained may be called the<br />

ship’s propeller <strong>de</strong>sign point PD placed<br />

on the light running propeller curve 6,<br />

2<br />

1<br />

y<br />

a<br />

b<br />

y = ax + b<br />

0<br />

X<br />

0 1 2<br />

A. Straight lines in linear scales<br />

y = log (P )<br />

B<br />

i = 0<br />

i = 1<br />

i = 2<br />

i = 3<br />

i<br />

y = log (P<br />

B) = log (c x n )<br />

PB<br />

= engine brake power<br />

c = constant<br />

n = engine speed<br />

log( PB) = i x log(n) + log(c)<br />

P = c x n i<br />

B<br />

y = ax + b<br />

B. Power function curves<br />

in logarithmic scales<br />

x = log (n)<br />

Fig. 16: Relationship between linear functions<br />

using linear scales and power functions<br />

using logarithmic scales<br />

see Fig. 17. On the other hand, some<br />

shipyards and/or propeller manufacturers<br />

sometimes use a propeller <strong>de</strong>sign<br />

point PD´ that incorporates all or part of<br />

the so-called sea margin <strong>de</strong>scribed below.<br />

Fouled hull<br />

When the ship has been sailing for<br />

some time, the hull and propeller become<br />

fouled and the hull’s resistance<br />

will increase. Consequently, the ship<br />

speed will be reduced unless the engine<br />

<strong>de</strong>livers more power to the propeller, i.e.<br />

the propeller will be further loa<strong>de</strong>d and<br />

will become heavy running HR.<br />

Furthermore, newer high-efficiency ship<br />

types have a relatively high ship speed,<br />

and a very smooth hull and propeller<br />

surface (at sea trial) when the ship is<br />

<strong>de</strong>livered. This means that the inevitable<br />

build-up of the surface roughness on<br />

the hull and propeller during sea service<br />

after seatrial may result in a relatively<br />

heavier running propeller, compared<br />

with ol<strong>de</strong>r ships born with a more rough<br />

hull surface.<br />

Heavy weather and sea margin used<br />

for layout of engine<br />

If, at the same time, the weather is<br />

bad, with head winds, the ship’s resistance<br />

may increase much more, and<br />

lead to even heavier running.<br />

When <strong>de</strong>termining the necessary engine<br />

power, it is normal practice to add<br />

an extra power margin, the so-called<br />

sea margin, which is traditionally about<br />

15% of the propeller <strong>de</strong>sign PD power.<br />

However, for large container ships,<br />

20-30% may sometimes be used.<br />

When <strong>de</strong>termining the necessary engine<br />

speed, for layout of the engine, it<br />

is recommen<strong>de</strong>d – compared with the<br />

clean hull and calm weather propeller<br />

curve 6 – to choose the heavier propeller<br />

curve 2, see Fig. 17, corresponding<br />

to curve 6 having a 3-7% higher rate of<br />

revolution than curve 2, and in general<br />

with 5% as a good choice.<br />

Note that the chosen sea power margin<br />

does not equalise the chosen<br />

heavy engine propeller curve.<br />

20


Power<br />

Engine margin<br />

(10% of MP)<br />

Sea margin<br />

(15% of PD)<br />

2 6<br />

Continuous service propulsion point SP<br />

The resulting speed and power combination<br />

– when including heavy propeller<br />

running and sea margin – is called the<br />

“continuous service rating for propulsion”<br />

SP for fouled hull and heavy weather.<br />

The heavy propeller curve, curve 2, for<br />

fouled hull and heavy weather will normally<br />

be used as the basis for the engine<br />

operating curve in service, and the<br />

propeller curve for clean hull and calm<br />

weather, curve 6, is said to represent a<br />

“light running” LR propeller.<br />

LR(5%)<br />

HR<br />

SP<br />

Fig. 17: Ship propulsion running points and engine layout<br />

MP<br />

PD´<br />

Engine speed<br />

2 Heavy propeller curve<br />

_<br />

fouled hull and heavy weather<br />

6 Light propeller curve<br />

_<br />

clean hull and calm weather<br />

MP: Specified propulsion point<br />

SP: Service propulsion point<br />

PD: Propeller <strong>de</strong>sign point<br />

Pd´: Alternative propeller <strong>de</strong>sign point<br />

LR: Light running factor<br />

HR: Heavy running<br />

PD<br />

Continuous service rating S<br />

The continuous service rating is the<br />

power at which the engine, including<br />

the sea margin, is assumed to operate,<br />

and point S is i<strong>de</strong>ntical to the service<br />

propulsion point SP unless a main engine<br />

driven shaft generator is installed.<br />

Light running factor f LR<br />

The heavy propeller curve for a fouled<br />

hull and heavy weather, and if no shaft<br />

generator is installed may, as mentioned<br />

above, be used as the <strong>de</strong>sign basis for<br />

the engine operating curve in service,<br />

curve 2, whereas the light propeller<br />

curve for clean hull and calm weather,<br />

curve 6, may be valid for running conditions<br />

with new ships, and equal to<br />

the layout/<strong>de</strong>sign curve of the propeller.<br />

Therefore, the light propeller curve<br />

for clean hull and calm weather is said<br />

to represent a “light running” LR propeller<br />

and will be related to the heavy<br />

propeller curve for fouled hull and<br />

heavy weather condition by means of a<br />

light running factor f LR<br />

, which, for the<br />

same power to the propeller, is <strong>de</strong>fined<br />

as the percentage increase of the rate<br />

of revolution n, compared to the rate of<br />

revolution for heavy running, i.e.<br />

f<br />

LR<br />

n<br />

=<br />

light<br />

− n<br />

n<br />

heavy<br />

heavy<br />

×100%<br />

Engine margin<br />

Besi<strong>de</strong>s the sea margin, a so-called<br />

“engine margin” of some 10-15% is<br />

frequently ad<strong>de</strong>d as an operational<br />

margin for the engine. The corresponding<br />

point is called the “specified MCR<br />

for propulsion” MP, see Fig. 17, and<br />

refers to the fact that the power for<br />

point SP is 10-15% lower than for<br />

point MP, i.e. equal to 90-85% of MP.<br />

Specified MCR M<br />

The engine’s specified MCR point M is<br />

the maximum rating required by the<br />

yard or owner for continuous operation<br />

of the engine. Point M is i<strong>de</strong>ntical to the<br />

specified propulsion MCR point MP unless<br />

a main engine driven shaft generator<br />

is installed. In such a case, the extra<br />

power <strong>de</strong>mand of the shaft generator<br />

must also be consi<strong>de</strong>red.<br />

Note:<br />

Light/heavy running, fouling and sea<br />

margin are overlapping terms.<br />

Light/heavy running of the propeller refers<br />

to hull and propeller <strong>de</strong>terioration,<br />

and bad weather, and sea margin, i.e.<br />

extra power to the propeller, refers to<br />

the influence of the wind and the sea.<br />

Based on feedback from service, it<br />

seems reasonable to <strong>de</strong>sign the propeller<br />

for 3-7% light running. The <strong>de</strong>gree<br />

of light running must be <strong>de</strong>ci<strong>de</strong>d<br />

upon, based on experience from the<br />

actual tra<strong>de</strong> and hull <strong>de</strong>sign, but 5%<br />

is often a good choice.<br />

21


Engine shaft power, % A<br />

110<br />

100<br />

90<br />

A 100% reference point<br />

M Specified engine MCR<br />

O Optimising point<br />

A=M<br />

5<br />

O<br />

7<br />

gine may be drawn-in. The specified<br />

MCR point M must be insi<strong>de</strong> the limitation<br />

lines of the layout diagram; if it is<br />

not, the propeller speed will have to be<br />

changed or another main engine type<br />

must be chosen. Yet, in special cases,<br />

point M may be located to the right of<br />

line L 1<br />

-L 2<br />

, see “Optimising/Matching<br />

Point” below.<br />

80<br />

70<br />

60<br />

mep<br />

110%<br />

100%<br />

90%<br />

10<br />

8<br />

4<br />

2<br />

1<br />

6<br />

Optimising point O<br />

The “Optimising (MC)/Matching (ME)<br />

point” O – or, better, the layout point of<br />

the engine – is the rating at which the<br />

engine (timing and) compression ratio<br />

are adjusted, with consi<strong>de</strong>ration to the<br />

scavenge air pressure of the turbocharger.<br />

50<br />

40<br />

60<br />

80%<br />

70%<br />

65 70 75 80 85 90 95 100 105<br />

Engine speed, % A<br />

Line 1: Propeller curve through optimising point (O)<br />

_<br />

layout curve for engine<br />

Line 2: Heavy propeller curve<br />

_<br />

fouled hull and heavy seas<br />

Line 3: Speed limit<br />

Line 4: Torque/speed limit<br />

Line 5: Mean effective pressure limit<br />

Line 6: Light propeller curve<br />

_<br />

clean hull and calm weather<br />

_<br />

layout curve for propeller<br />

Line 7: Power limit for continuous running<br />

Line 8: Overload limit<br />

Line 9: Sea trial speed limit<br />

Line 10: Constant mean effective pressure (mep) lines<br />

Fig. 18: Engine load diagram<br />

60%<br />

3<br />

9<br />

As mentioned below, un<strong>de</strong>r “Load diagram”,<br />

the optimising point O (later on<br />

in this paper also used in general<br />

where matching point for ME engines<br />

was the correct one) is placed on line 1<br />

(layout curve of engine) of the load diagram,<br />

and the optimised power can be<br />

from 85 to 100% of point M‘s power.<br />

Overload running will still be possible<br />

(110% of M‘s power), as long as consi<strong>de</strong>ration<br />

to the scavenge air pressure has<br />

been taken.<br />

The optimising point O is to be placed<br />

insi<strong>de</strong> the layout diagram. In fact, the<br />

specified MCR point M can be placed<br />

outsi<strong>de</strong> the layout diagram, but only by<br />

exceeding line L 1<br />

-L 2<br />

, and, of course,<br />

only provi<strong>de</strong>d that the optimising point<br />

O is located insi<strong>de</strong> the layout diagram.<br />

It should be noted that MC/MC-C engines<br />

without VIT (variable injection timing)<br />

fuel pumps cannot be optimised at<br />

part-load. Therefore, these engines are<br />

always optimised in point A, i.e. having<br />

point M‘s power.<br />

Engine layout diagram<br />

An engine’s layout diagram is limited by<br />

two constant mean effective pressure<br />

(mep) lines L 1<br />

-L 3<br />

and L 2<br />

-L 4<br />

, and by two<br />

constant engine speed lines L 1<br />

-L 2<br />

and<br />

L 3<br />

-L 4<br />

, see Fig. 17. The L 1<br />

point refers to<br />

the engine’s nominal maximum continuous<br />

rating. Within the layout area<br />

there is full freedom to select the engines<br />

specified MCR point M and relevant<br />

optimising point O, see below,<br />

which is optimum for the ship and the<br />

operating profile. Please note that the<br />

lowest specific fuel oil consumption for<br />

a given optimising point O will be obtained<br />

at 70% and 80% of point O’s<br />

power, for electronically (ME) and mechanically<br />

(MC) controlled engines,<br />

respectively.<br />

Based on the propulsion and engine<br />

running points, as previously found, the<br />

layout diagram of a relevant main en-<br />

Load diagram<br />

Definitions<br />

The load diagram (Fig. 18) <strong>de</strong>fines the<br />

power and speed limits for continuous<br />

as well as overload operation of an installed<br />

engine which has an optimising<br />

point O and a specified MCR point M<br />

that conforms to the ship’s specification.<br />

Point A is a 100% speed and power<br />

reference point of the load diagram,<br />

and is <strong>de</strong>fined as the point on the pro-<br />

22


peller curve (line 1) – the layout curve of<br />

the engine – through the optimising point<br />

O, having the specified MCR power.<br />

Normally, point M is equal to point A,<br />

but in special cases, for example if a<br />

shaft generator is installed, point M<br />

may be placed to the right of point A<br />

on line 7. The service points of the installed<br />

engine incorporate the engine<br />

power required for ship propulsion and<br />

for the shaft generator, if installed.<br />

During shoptest running, the engine will<br />

always operate along curve 1, with<br />

point A as 100% MCR. If CP-propeller<br />

and constant speed operation is required,<br />

the <strong>de</strong>livery test may be finished<br />

with a constant speed test.<br />

Limits to continuous operation<br />

The continuous service range is limited<br />

by the four lines 4, 5, 7 and 3 (9), see<br />

Fig. 18:<br />

Line 3 and line 9<br />

Line 3 represents the maximum acceptable<br />

speed for continuous operation, i.e.<br />

105% of A, however, maximum 105%<br />

of L 1<br />

. During sea trial conditions the<br />

maximum speed may be exten<strong>de</strong>d to<br />

107% of A, see line 9.<br />

The above limits may, in general, be<br />

exten<strong>de</strong>d to 105% and, during sea trial<br />

conditions, to 107% of the nominal L 1<br />

speed of the engine, provi<strong>de</strong>d the torsional<br />

vibration conditions permit.<br />

The overspeed set-point is 109% of<br />

the speed in A, however, it may be<br />

moved to 109% of the nominal speed<br />

in L 1<br />

, provi<strong>de</strong>d that torsional vibration<br />

conditions permit.<br />

Running at low load above 100% of<br />

the nominal L 1<br />

speed of the engine is,<br />

however, to be avoi<strong>de</strong>d for exten<strong>de</strong>d<br />

periods.<br />

Line 4:<br />

Represents the limit at which an ample<br />

air supply is available for combustion and<br />

imposes a limitation on the maximum<br />

combination of torque and speed.<br />

Line 5:<br />

Represents the maximum mean effective<br />

pressure level (mep) which can be<br />

accepted for continuous operation.<br />

Line 7:<br />

Represents the maximum power for<br />

continuous operation.<br />

Line 10:<br />

Represents the mean effective pressure<br />

(mep) lines. Line 5 is equal to the 100%<br />

mep-line. The mep-lines are also an<br />

expression of the corresponding fuel<br />

in<strong>de</strong>x of the engine.<br />

Limits for overload operation<br />

The overload service range is limited as<br />

follows, see Fig. 18:<br />

Line 8:<br />

Represents the overload operation limitations.<br />

The area between lines 4, 5, 7 and the<br />

dashed line 8 in Fig. 18 is available for<br />

overload running for limited periods<br />

only (1 hour per 12 hours).<br />

M: Specified MCR of engine<br />

S: Continuous service rating of engine<br />

O: Optimising point of engine<br />

A: Reference point of load diagram<br />

M: Specified MCR of engine<br />

S: Continuous service rating of engine<br />

O: Optimising point of engine<br />

A: Reference point of load diagram<br />

Power<br />

A=M=MP<br />

O<br />

S=SP<br />

7<br />

7<br />

5<br />

4<br />

Power 1 2 6<br />

3.3% A<br />

5% A<br />

1<br />

2<br />

6<br />

A=M<br />

5<br />

O<br />

S<br />

7<br />

5% L 1<br />

Propulsion and<br />

engine service curve<br />

for heavy running<br />

4 1<br />

2<br />

6<br />

Engine speed<br />

Point A of load diagram<br />

Line 1: Propeller curve through optimising point (O)<br />

Line 7: Constant power line through specified MCR (M)<br />

Point A: Intersection between lines 1 and 7<br />

Propulsion and engine service<br />

curve for heavy running<br />

3<br />

Engine speed<br />

Fig. 19a: Example 1 with FPP – engine layout without SG (normal case)<br />

Fig. 19b: Example 1 with FPP – load diagram without SG (normal case)<br />

23


Electronic governor with load limitation<br />

In or<strong>de</strong>r to safeguard the diesel engine<br />

against thermal and mechanical overload,<br />

the approved electronic governors inclu<strong>de</strong><br />

the following two limiter functions:<br />

• Torque limiter<br />

The purpose of the torque limiter is<br />

to ensure that the limitation lines of<br />

the load diagram are always observed.<br />

The torque limiter algorithm compares<br />

the calculated fuel pump in<strong>de</strong>x (fuel<br />

amount) and the actually measured<br />

engine speed with a reference limiter<br />

curve giving the maximum allowable<br />

fuel pump in<strong>de</strong>x at a given engine<br />

speed. If the calculated fuel pump<br />

in<strong>de</strong>x is above this curve, the resulting<br />

fuel pump in<strong>de</strong>x will be reduced<br />

correspondingly.<br />

The reference limiter curve is to be<br />

adjusted so that it corresponds to the<br />

limitation lines of the load diagram.<br />

• Scavenge air pressure limiter<br />

The purpose of the scavenge air<br />

pressure limiter is to ensure that the<br />

engine is not being overfuelled during<br />

acceleration, as for example during<br />

manoeuvring.<br />

The scavenge air pressure limiter<br />

algorithm compares the calculated<br />

fuel pump in<strong>de</strong>x and measured<br />

scavenge air pressure with a reference<br />

limiter curve giving the maximum<br />

allowable fuel pump in<strong>de</strong>x at a<br />

given scavenge air pressure. If the<br />

calculated fuel pump in<strong>de</strong>x is above<br />

this curve, the resulting fuel pump<br />

in<strong>de</strong>x will be reduced correspondingly.<br />

The reference limiter curve is to be<br />

adjusted to ensure that sufficient air<br />

will always be available for a good<br />

combustion process.<br />

Recommendation<br />

Continuous operation without a time<br />

limitation is allowed only within the area<br />

limited by lines 4, 5, 7 and 3 of the<br />

load diagram. For fixed pitch propeller<br />

operation in calm weather with loa<strong>de</strong>d<br />

ship and clean hull, the propeller/engine<br />

may run along or close to the propeller<br />

<strong>de</strong>sign curve 6.<br />

After some time in operation, the ship’s<br />

hull and propeller will become fouled,<br />

resulting in heavier running of the propeller,<br />

i.e. the propeller curve will move<br />

to the left from line 6 towards line 2, and<br />

extra power will be required for propulsion<br />

in or<strong>de</strong>r to maintain the ship speed.<br />

At calm weather conditions the extent<br />

of heavy running of the propeller will<br />

indicate the need for cleaning the hull<br />

and, possibly, polishing the propeller.<br />

The area between lines 4 and 1 is available<br />

for operation in shallow water,<br />

heavy weather and during acceleration,<br />

i.e. for non-steady operation without<br />

any actual time limitation.<br />

M: Specified MCR of engine<br />

S: Continuous service rating of engine<br />

O: Optimising point of engine<br />

A: Reference point of load diagram<br />

M: Specified MCR of engine<br />

S: Continuous service rating of engine<br />

O: Optimising point of engine<br />

A: Reference point of load diagram<br />

Power<br />

1<br />

2<br />

A<br />

O<br />

6<br />

S=SP<br />

7<br />

M=MP<br />

Power<br />

7<br />

5<br />

4<br />

1 2<br />

6<br />

3.3% A<br />

5% A<br />

A<br />

7<br />

5<br />

O M<br />

S<br />

5% L 1<br />

Propulsion and<br />

engine service curve<br />

for heavy running<br />

Engine speed<br />

Point A of load diagram<br />

Line 1: Propeller curve through optimising point (O)<br />

Line 7: Constant power line through specified MCR (M)<br />

Point A: Intersection between lines 1 and 7<br />

4 1<br />

2<br />

6<br />

Propulsion and engine service<br />

curve for heavy running<br />

3<br />

Engine speed<br />

Fig. 20a: Example 2 with FPP – engine layout without SG (special case)<br />

Fig. 20b: Example 2 with FPP – load diagram without SG (special case)<br />

24


The recommen<strong>de</strong>d use of a relatively<br />

high light running factor for <strong>de</strong>sign of<br />

the propeller will involve that a relatively<br />

higher propeller speed will be used for<br />

layout <strong>de</strong>sign of the propeller. This, in<br />

turn, may involve a minor reduction of<br />

the propeller efficiency, and may possibly<br />

cause the propeller manufacturer to<br />

abstain from using a large light running<br />

margin. However, this reduction of the<br />

propeller efficiency caused by the large<br />

light running factor is actually relatively<br />

insignificant compared with the improved<br />

engine performance obtained when<br />

sailing in heavy weather and/or with<br />

fouled hull and propeller.<br />

Use of layout and load<br />

diagrams - examples<br />

In the following, four different examples<br />

based on fixed pitch propeller (FPP)<br />

and one example based on controllable<br />

pitch propeller (CPP) are given in or<strong>de</strong>r<br />

to illustrate the flexibility of the layout<br />

and load diagrams.<br />

In this respect the choice of the optimising<br />

point O has a significant influence.<br />

Examples with fixed pitch propeller<br />

Example 1:<br />

Normal running conditions, without<br />

shaft generator<br />

Normally, the optimising point O, and<br />

thereby the engine layout curve 1, will<br />

be selected on the engine service<br />

curve 2 (for heavy running), as shown<br />

in Fig. 19a.<br />

Point A is then found at the intersection<br />

between propeller curve 1 (2) and the<br />

constant power curve through M, line<br />

7. In this case, point A will be equal to<br />

point M.<br />

Once point A has been found in the<br />

layout diagram, the load diagram can<br />

be drawn, as shown in Fig. 19b, and<br />

hence the actual load limitation lines<br />

of the diesel engine may be found.<br />

Example 2:<br />

Special running conditions, without<br />

shaft generator<br />

When the ship accelerates, the propeller<br />

will be subjected to an even larger<br />

load than during free sailing. The same<br />

applies when the ship is subjected to<br />

an extra resistance as, for example,<br />

when sailing against heavy wind and<br />

sea with large wave resistance.<br />

In both cases, the engine’s operating<br />

point will be to the left of the normal<br />

operating curve, as the propeller will<br />

run heavily.<br />

In or<strong>de</strong>r to avoid exceeding the<br />

left-hand limitation line 4 of the load<br />

diagram, it may, in certain cases, be<br />

necessary to limit the acceleration<br />

and/or the propulsion power.<br />

If the expected tra<strong>de</strong> pattern of the<br />

ship is to be in an area with frequently<br />

appearing heavy wind and sea and<br />

M: Specified MCR of engine<br />

S: Continuous service rating of engine<br />

O: Optimising point of engine<br />

A: Reference point of load diagram<br />

M: Specified MCR of engine<br />

S: Continuous service rating of engine<br />

O: Optimising point of engine<br />

A: Reference point of load diagram<br />

Power<br />

1 2<br />

Shaft generator<br />

6<br />

A=M<br />

7<br />

O SG<br />

S<br />

SG MP<br />

Propulsion curve<br />

for heavy running<br />

Engine service curve<br />

for heavy running<br />

Engine speed<br />

Point A of load diagram<br />

Line 1: Propeller curve through optimising point (O)<br />

Line 7: Constant power line through specified MCR (M)<br />

Point A: Intersection between lines 1 and 7<br />

SP<br />

Power<br />

7<br />

5<br />

4<br />

1 2 6<br />

4 1<br />

Engine service curve<br />

for heavy running<br />

3.3% A<br />

2<br />

Shaft generator<br />

6<br />

5% A<br />

A=M<br />

7<br />

5<br />

O<br />

S<br />

MP<br />

SP<br />

Propulsion curve<br />

for heavy running<br />

Engine speed<br />

3<br />

5% L 1<br />

Fig. 21a: Example 3 with FPP – engine layout with SG (normal case)<br />

Fig. 21b: Example 3 with FPP – load diagram with SG (normal case)<br />

25


large wave resistance, it can, therefore,<br />

be an advantage to <strong>de</strong>sign/move the<br />

load diagram more towards the left.<br />

The latter can be done by moving the<br />

engine’s optimising point O – and thus<br />

the propeller curve 1 through the optimising<br />

point – towards the left. However,<br />

this will be at the expense of a<br />

slightly increased specific fuel oil consumption.<br />

An example is shown in Figs. 20a and<br />

20b. As will be seen in Fig. 20b, and<br />

compared with the normal case shown<br />

in Example 1 (Fig. 19b), the left-hand<br />

limitation line 4 is moved to the left, giving<br />

a wi<strong>de</strong>r margin between lines 2 and<br />

4, i.e. a larger light running factor has<br />

been used in this example.<br />

Example 3:<br />

Normal case, with shaft generator<br />

In this example a shaft generator (SG)<br />

is installed, and therefore the service<br />

power of the engine also has to incorporate<br />

the extra shaft power required<br />

for the shaft generator’s electrical<br />

power production.<br />

In Fig. 21a, the engine service curve<br />

shown for heavy running incorporates<br />

this extra power.<br />

The optimising point O, and thereby the<br />

engine layout curve 1, will normally be<br />

chosen on the propeller curve (~ engine<br />

service curve) through point M.<br />

Point A is then found in the same way<br />

as in example 1, and the load diagram<br />

can be drawn as shown in Fig. 21b.<br />

Example 4:<br />

Special case, with shaft generator<br />

Also in this special case, a shaft generator<br />

is installed but, unlike in Example<br />

3, now the specified MCR for propulsion<br />

MP is placed at the top of the layout<br />

diagram, see Fig. 22a. This involves<br />

that the inten<strong>de</strong>d specified MCR of the<br />

engine (Point M’) will be placed outsi<strong>de</strong><br />

the top of the layout diagram.<br />

One solution could be to choose a<br />

diesel engine with an extra cylin<strong>de</strong>r,<br />

but another and cheaper solution is to<br />

reduce the electrical power production<br />

of the shaft generator when running in<br />

the upper propulsion power range.<br />

If choosing the latter solution, the required<br />

specified MCR power of the engine<br />

can be reduced from point M’ to<br />

point M as shown in Fig. 22a. Therefore,<br />

when running in the upper propulsion<br />

power range, a diesel generator has to<br />

take over all or part of the electrical<br />

power production.<br />

However, such a situation will seldom<br />

occur, as ships rather infrequently operate<br />

in the upper propulsion power<br />

range. In the example, the optimising<br />

point O has been chosen equal to<br />

point S, and line 1 may be found.<br />

Point A, having the highest possible<br />

power, is then found at the intersection<br />

of line L 1<br />

-L 3<br />

with line 1, see Fig. 22a,<br />

and the corresponding load diagram is<br />

M: Specified MCR of engine<br />

S: Continuous service rating of engine<br />

O: Optimising point of engine<br />

A: Reference point of load diagram<br />

Power<br />

1<br />

2<br />

Shaft generator<br />

6<br />

M´<br />

A<br />

M<br />

O=S<br />

SG MP<br />

SP<br />

7<br />

M: Specified MCR of engine<br />

S: Continuous service rating of engine<br />

O: Optimising point of engine<br />

A: Reference point of load diagram<br />

Power<br />

7<br />

5<br />

4<br />

1 2 6<br />

3.3% A<br />

5% A<br />

M´<br />

A<br />

5 M<br />

O=S<br />

7<br />

SG MP<br />

5% L 1<br />

SP<br />

Engine service curve<br />

for heavy running<br />

Propulsion curve for heavy running<br />

Engine speed<br />

4<br />

1<br />

2<br />

Shaft generator<br />

6<br />

3<br />

Point A and M of load diagram<br />

Line 1: Propeller curve through optimising point (O)<br />

Point A: Intersection between line 1 and line L1 - L3<br />

Point M: Located on constant power line 7 through point A<br />

and at MP’s speed<br />

Propulsion curve<br />

for heavy running<br />

Engine service curve<br />

for heavy running<br />

Engine speed<br />

Fig. 22a: Example 4 with FPP – engine layout with SG (special case)<br />

Fig. 22b: Example 4 with FPP – load diagram with SG (special case)<br />

26


drawn in Fig. 22b. Point M is found on<br />

line 7 at MP’s speed.<br />

Example with controllable pitch propeller<br />

Example 5:<br />

With or without shaft generator<br />

Layout diagram – without shaft generator<br />

If a controllable pitch propeller (CPP)<br />

is applied, the combinator curve (of<br />

the propeller with optimum propeller<br />

efficiency) will normally be selected for<br />

loa<strong>de</strong>d ship including sea margin.<br />

For a given propeller speed, the combinator<br />

curve may have a given propeller<br />

pitch, and this means that, like for a fixed<br />

pitch propeller, the propeller may be<br />

heavy running in heavy weather.<br />

Power<br />

M: Specified MCR of engine<br />

S: Continuous service rating of engine<br />

O: Optimising point of engine<br />

A: Reference point of load diagram<br />

7<br />

5<br />

4<br />

1<br />

Combinator curve<br />

for loa<strong>de</strong>d ship<br />

and incl. sea margin<br />

3.3%A<br />

1<br />

Min<br />

speed<br />

Therefore, it is recommen<strong>de</strong>d to use a<br />

light running combinator curve (the dotted<br />

curve), as shown in Fig. 23, to obtain an<br />

increased operating margin for the diesel<br />

engine in heavy weather to the load limits<br />

indicated by curves 4 and 5.<br />

Layout diagram – with shaft generator<br />

The hatched area in Fig. 23 shows the<br />

recommen<strong>de</strong>d speed range between<br />

100% and 96.7% of the specified MCR<br />

speed for an engine with shaft generator<br />

running at constant speed.<br />

The service point S can be located at<br />

any point within the hatched area.<br />

The procedure shown in Examples 3<br />

and 4 for engines with FPP can also be<br />

A=M<br />

5<br />

O<br />

S<br />

5%A<br />

7<br />

Max<br />

speed<br />

Fig. 23: Example 5 with CPP – with or without shaft generator<br />

4<br />

3<br />

5%L<br />

1<br />

Engine speed<br />

Recommen<strong>de</strong>d range<br />

for shaft generator<br />

operation with<br />

constant speed<br />

applied for engines with CPP running<br />

on a combinator curve.<br />

The optimising point O for engines with<br />

VIT can be chosen on the propeller curve<br />

1 through point A=Mwith an optimised<br />

power from 85 to 100% of the specified<br />

MCR as mentioned before in the section<br />

<strong>de</strong>aling with optimising point O.<br />

Load diagram<br />

Therefore, when the engine’s specified<br />

MCR point M has been chosen including<br />

engine margin, sea margin and the<br />

power for a shaft generator, if installed,<br />

point M can be used as point A of the<br />

load diagram, which can then be drawn.<br />

The position of the combinator curve<br />

ensures the maximum load range<br />

within the permitted speed range for<br />

engine operation, and it still leaves a<br />

reasonable margin to the load limits<br />

indicated by curves 4 and 5.<br />

Influence on engine running of<br />

different types of ship resistance<br />

– plant with FP-propeller<br />

In or<strong>de</strong>r to give a brief summary regarding<br />

the influence on the fixed pitch<br />

propeller running and main engine operation<br />

of different types of ship resistance,<br />

an arbitrary example has been chosen,<br />

see the load diagram in Fig. 24.<br />

The influence of the different types of<br />

resistance is illustrated by means of<br />

corresponding service points for propulsion<br />

having the same propulsion power,<br />

using as basis the propeller <strong>de</strong>sign<br />

point PD, plus 15% extra power.<br />

Propeller <strong>de</strong>sign point PD<br />

The propeller will, as previously <strong>de</strong>scribed,<br />

normally be <strong>de</strong>signed according to a<br />

specified ship speed V valid for loa<strong>de</strong>d<br />

ship with clean hull and calm weather<br />

conditions. The corresponding engine<br />

speed and power combination is<br />

shown as point PD on propeller curve<br />

6 in the load diagram, Fig. 24.<br />

Increased ship speed, point S0<br />

If the engine power is increased by, for<br />

example, 15%, and the loa<strong>de</strong>d ship is<br />

still operating with a clean hull and in<br />

calm weather, point S0, the ship speed<br />

27


V and engine speed n will increase in<br />

accordance with the propeller law (more<br />

or less valid for the normal speed range):<br />

3.<br />

5<br />

VS<br />

0<br />

= V × 115 . = 1041 . × V<br />

3.<br />

0<br />

n = n× 115 . = 1048 . × n<br />

S 0<br />

Engine shaft power % of A<br />

Point S0 will be placed on the same<br />

propeller curve as point PD.<br />

Sea running with clean hull and 15%<br />

sea margin, point S 2<br />

Conversely, if still operating with loa<strong>de</strong>d<br />

ship and clean hull, but now with extra<br />

PD: Propeller <strong>de</strong>sign point, clean hull and calm weather<br />

Continuous service rating for propulsion with<br />

a power equal to 90% specified MCR, based on:<br />

S0: Clean hull and calm weather, loa<strong>de</strong>d ship<br />

S1: Clean hull and calm weather, ballast (trial)<br />

S2: Clean hull and 15% sea margin, loa<strong>de</strong>d ship<br />

SP: Fouled hull and heavy weather, loa<strong>de</strong>d ship<br />

S3: Very heavy sea and wave resistance<br />

110<br />

100% ref. point (A)<br />

Specified MCR (M)<br />

105<br />

100<br />

A=M<br />

5<br />

7<br />

95<br />

S0<br />

S1<br />

90<br />

S2<br />

85<br />

SP<br />

S3<br />

8 4 1 6<br />

80<br />

2<br />

PD<br />

3 9<br />

75<br />

6.3<br />

6.2 6.1<br />

70<br />

80 85 90 95 100 105 110<br />

Engine speed, % of A<br />

Line 1: Propeller curve through point A=M, layout curve for engine<br />

Line 2: Heavy propeller curve, fouled hull and heavy weather, loa<strong>de</strong>d ship<br />

Line 6: Light propeller curve, clean hull and calm weather,<br />

loa<strong>de</strong>d ship, layout curve for propeller<br />

Line 6.1: Propeller curve, clean hull and calm weather, ballast (trial)<br />

Line 6.2: Propeller curve, clean hull and 15% sea margin, loa<strong>de</strong>d ship<br />

Line 6.3: Propeller curve, very heavy sea and wave resistance<br />

Fig. 24: Influence of different types of ship resistance on the continuous service rating<br />

resistance from heavy seas, an extra<br />

power of, for example, 15% is nee<strong>de</strong>d<br />

in or<strong>de</strong>r to maintain the ship speed V<br />

(15% sea margin).<br />

As the ship speed V S2<br />

= V, and if the<br />

propeller had no slip, it would be expected<br />

that the engine (propeller) speed would<br />

also be constant. However, as the water<br />

does yield, i.e. the propeller has a slip,<br />

the engine speed will increase and the<br />

running point S2 will be placed on a<br />

propeller curve 6.2 very close to S0, on<br />

propeller curve 6. Propeller curve 6.2<br />

will possibly represent an approximate<br />

0.5% heavier running propeller than<br />

curve 6.<br />

Depending on the ship type and size,<br />

the heavy running factor of 0.5% may<br />

be slightly higher or lower.<br />

For a resistance corresponding to<br />

about 30% extra power (30% sea margin),<br />

the corresponding relative heavy<br />

running factor will be about 1%.<br />

Sea running with fouled hull, and<br />

heavy weather, point SP<br />

When, after some time in service, the<br />

ship’s hull has been fouled, and thus<br />

becomes more rough, the wake field<br />

will be different from that of a smooth<br />

ship (clean hull).<br />

A ship with a fouled hull will, consequently,<br />

be subject to an extra resistance<br />

which, due to the changed<br />

wake field, will give rise to a heavier<br />

running propeller than experienced<br />

during bad weather conditions alone.<br />

When also incorporating some average<br />

influence of heavy weather, the<br />

propeller curve for loa<strong>de</strong>d ship will<br />

move to the left, see propeller curve<br />

2 in the load diagram in Fig. 24. This<br />

propeller curve, <strong>de</strong>noted fouled hull<br />

and heavy weather for a loa<strong>de</strong>d ship,<br />

is about 5% heavy running compared<br />

to the clean hull and calm weather<br />

propeller curve 6.<br />

In or<strong>de</strong>r to maintain an ample air<br />

supply for the diesel engine’s combustion,<br />

which imposes a limitation<br />

on the maximum combination of<br />

torque and speed, see curve 4 of the<br />

load diagram, it is normal practice to<br />

match the diesel engine and turbo-<br />

28


charger etc. according to a propeller<br />

curve 1 of the load diagram, equal to<br />

the heavy propeller curve 2.<br />

Instead of point S2, therefore, point SP<br />

will normally be used for the engine layout<br />

by referring this service propulsion<br />

rating to, for example, 90% of the engine’s<br />

specified MCR, which corresponds to<br />

choosing a 10% engine margin.<br />

In other words, in the example the propeller’s<br />

<strong>de</strong>sign curve is about 5% light<br />

running compared with the propeller<br />

curve used for layout of the main engine.<br />

Running in very heavy seas with<br />

heavy waves, point S3<br />

When sailing in very heavy sea against,<br />

with heavy waves, the propeller can be<br />

7-8% heavier running (and even more)<br />

than in calm weather, i.e. at the same<br />

propeller power, the rate of revolution<br />

may be 7-8% lower.<br />

For a propeller power equal to 90% of<br />

specified MCR, point S3 in the load<br />

diagram in Fig. 24 shows an example<br />

of such a running condition.<br />

In some cases in practice with strong<br />

wind against, the heavy running has<br />

proved to be even greater and even to<br />

be found to the left of the limitation line<br />

4 of the load diagram.<br />

In such situations, to avoid slamming of<br />

the ship and thus damage to the stem<br />

and racing of the propeller, the ship<br />

speed will normally be reduced by the<br />

navigating officers on watch.<br />

Ship acceleration and operation in<br />

shallow waters<br />

When the ship accelerates and the<br />

propeller is being subjected to a larger<br />

load than during free sailing, the effect<br />

on the propeller may be similar to that<br />

illustrated by means of point S3 in the<br />

load diagram, Fig. 24. In some cases in<br />

practice, the influence of acceleration<br />

on the heavy running has proved to be<br />

even greater. The same conditions are<br />

valid for running in shallow waters.<br />

Sea running at trial conditions, point S1<br />

Normally, the clean hull propeller curve<br />

6 will be referred to as the trial trip propeller<br />

curve. However, as the ship is<br />

seldom loa<strong>de</strong>d during sea trials and<br />

more often is sailing in ballast, the actual<br />

propeller curve 6.1 will be more<br />

light running than curve 6.<br />

For a power to the propeller equal to<br />

90% specified MCR, point S1 on the<br />

load diagram, in Fig. 24, indicates an<br />

example of such a running condition. In<br />

or<strong>de</strong>r to be able to <strong>de</strong>monstrate operation<br />

at 100% power, if required, during<br />

sea trial conditions, it may in some<br />

cases be necessary to exceed the propeller<br />

speed restriction, line 3, which<br />

during trial conditions may be allowed<br />

to be exten<strong>de</strong>d to 107%, i.e. to line 9<br />

of the load diagram.<br />

S=PD<br />

Line 1<br />

Line 1<br />

Influence of ship resistance on<br />

combinator curves – plant with<br />

CP-propeller<br />

This case is rather similar with the FPpropeller<br />

case <strong>de</strong>scribed above, and<br />

therefore only briefly <strong>de</strong>scribed here.<br />

The CP-propeller will normally operate<br />

on a given combinator curve, i.e. for a<br />

given propeller speed the propeller<br />

pitch is given (not valid for constant<br />

propeller speed). This means that<br />

heavy running operation on a given<br />

propeller speed will result in a higher<br />

power operation, as shown in the example<br />

in Fig. 25.<br />

Propeller <strong>de</strong>sign point incl. sea margins, and continuous service rating of engine<br />

Propeller curve for layout of engine<br />

Combinator curve for propeller <strong>de</strong>sign, clean hull and 15% sea margin, loa<strong>de</strong>d ship<br />

Line 6.1 Light combinator curve, fouled hull and calm weather, loa<strong>de</strong>d ship<br />

Line 2<br />

Heavy combinator curve, fouled hull and heavy weather, loa<strong>de</strong>d ship<br />

Line 2.1 Very heavy combinator curve, very heavy sea and wave resistance<br />

Engine shaft power % of A<br />

110<br />

105<br />

100<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

100% ref. point (A)<br />

Specified MCR (M)<br />

2<br />

2.1<br />

A=M<br />

7<br />

5<br />

8 4 1 6 3<br />

50<br />

65 70 75 80 85 90 95 100 105 110<br />

Engine speed, % of A<br />

Fig. 25: Influence of ship resistance on combinator curves for CP-propeller<br />

6.1<br />

S=PD<br />

29


Closing Remarks<br />

In practice, the ship’s resistance will<br />

frequently be checked against the results<br />

obtained by testing a mo<strong>de</strong>l of the ship<br />

in a towing tank. The experimental tank<br />

test measurements are also used for<br />

optimising the propeller and hull <strong>de</strong>sign.<br />

When the ship’s necessary power requirement,<br />

including margins, and the<br />

propeller’s speed (rate of revolution)<br />

have been <strong>de</strong>termined, the correct<br />

main engine can then be selected, e.g.<br />

with the help of MAN B&W Diesel’s<br />

computer-based engine selection<br />

programme.<br />

In this connection the interaction between<br />

ship and main engine is extremely important,<br />

and the placing of the engine’s<br />

load diagram, i.e. the choice of engine<br />

layout in relation to the engine’s (ship’s)<br />

operational curve, must be ma<strong>de</strong> carefully<br />

in or<strong>de</strong>r to achieve the optimum<br />

propulsion plant. In or<strong>de</strong>r to avoid overloading<br />

of the main engine for excessive<br />

running conditions, the installation of an<br />

electronic governor with load control may<br />

be useful.<br />

References<br />

[1] Technical discussion with<br />

Keld Kofoed Nielsen,<br />

Burmeister & Wain Shipyard,<br />

Copenhagen<br />

[2] Ship Resistance<br />

H.E. Guldhammer and<br />

Sv. Aa. Harvald, 1974<br />

[3] Resistance and Propulsion of Ships,<br />

Sv. Aa. Harvald, 1983<br />

[4] Paint supplier “International<br />

Coatings Ltd.”, 2003<br />

[5] Fartygspropellrar och Fartygs Framdrift,<br />

Jan Tornblad, KaMeWa Publication,<br />

1985<br />

Furthermore, we recommend:<br />

[6] Prediction of Power of Ships<br />

Sv. Aa. Harvald, 1977 and 1986<br />

[7] Propulsion of Single-Screw Ships<br />

Sv. Aa. Harvald & J.M. Hee, 1981<br />

If a main engine driven shaft generator –<br />

producing electricity for the ship – is installed,<br />

the interaction between ship and<br />

main engine will be even more complex.<br />

However, thanks to the flexibility of the<br />

layout and load diagrams for the MAN<br />

B&W engines, a suitable solution will<br />

nearly always be readily at hand.<br />

1


174<br />

APÊNDICE D. SELECÇÃO DE MOTORES PROPULSORES


Apêndice<br />

E<br />

Derating para Reduzir Consumo <strong>de</strong><br />

Combustível<br />

175


176<br />

APÊNDICE E. DERATING


Derating: a solution for<br />

high fuel savings and lower emissions<br />

Rudolf Wettstein 1 & David Brown 2<br />

Wärtsilä Switzerland Ltd, Winterthur<br />

Summary<br />

This paper sets out ways to achieve worthwhile reductions in the fuel consumption of Wärtsilä low-speed engines<br />

when <strong>de</strong>signing newbuildings. The key approach is to use the flexibility offered by the full power/speed layout field to<br />

select a better layout point at a <strong>de</strong>rated power with a lower BSFC and also possibly a higher propeller efficiency.<br />

Introduction<br />

Fuel efficiency and environmental friendliness are<br />

high on the list of requirements for ship propulsion<br />

engines from today’s shipping- and shipbuilding<br />

industries. Thus Wärtsilä is committed to creating<br />

better technology in these areas that will benefit both<br />

the customers and the environment.<br />

Yet it is often forgotten by many ship <strong>de</strong>signers<br />

and those specifying low-speed main engines that<br />

advantage can be taken of the power/speed layout<br />

field of Wärtsilä low-speed engines to select an engine<br />

rating point with a still lower fuel consumption.<br />

The concept of the power/speed layout field for<br />

low-speed marine diesel engines originated in the<br />

1970s. The layout options were step-by-step wi<strong>de</strong>ned<br />

until, in 1984, our low-speed engines began to be<br />

offered with a broad power/speed layout field. An<br />

engine’s contracted maximum continuous rating<br />

(CMCR) can be selected at any point in the power/<br />

speed field <strong>de</strong>fined by the four corner points: R1,<br />

R2, R3 and R4 (Fig. 1). The rating point R1 is the<br />

maximum continuous rating (MCR) of the engine.<br />

Most recently, the layout fields for certain<br />

engines, the RT-flex82C, RTA82C, RT-flex82T and<br />

RTA82T, are exten<strong>de</strong>d to increased speeds for the<br />

R1+ and R2+ points (Fig. 2). The exten<strong>de</strong>d fields<br />

offer wi<strong>de</strong>ned flexibility to select the most efficient<br />

propeller speed for lowest daily fuel consumption,<br />

and the most economic propulsion equipment,<br />

1<br />

Rudolf Wettstein is Director, Marketing &<br />

Application Development, Ship Power, Wärtsilä<br />

Switzerland Ltd.<br />

2<br />

David Brown is Manager, Marketing Support,<br />

Wärtsilä Switzerland Ltd.<br />

Engine power, %R1<br />

100<br />

90<br />

80<br />

70<br />

60<br />

70<br />

Higher propulsive<br />

efficiency<br />

R3<br />

R4<br />

80<br />

Constant torque line<br />

90<br />

R1<br />

0<br />

-1 ∆BSFC<br />

-2 g/kWh<br />

-3<br />

-4<br />

-5<br />

100<br />

Engine speed, %R1<br />

Fig. 1: Typical layout field for RTA and RT-flex engines. The<br />

contracted maximum continuous rating (CMCR) can be<br />

selected at any point, such as Rx, within the layout field. The<br />

∆BSFC is the reduction in full-load BSFC for any rating<br />

point Rx relative to that at the R1 rating.<br />

[08#044]<br />

Rx<br />

R2<br />

-6<br />

-7<br />

Lower<br />

specific<br />

fuel<br />

consumption<br />

namely the propeller, shafting, etc.<br />

One basic principle of the engine layout field is<br />

that the same maximum cylin<strong>de</strong>r pressure (Pmax)<br />

is employed at all CMCR points within the layout<br />

field. Thus the reduced brake mean effective pressure<br />

(BMEP) obtained at the reduced power outputs in<br />

the field results in an increased ratio of Pmax/BMEP<br />

and thus lower brake specific fuel consumption<br />

(BSFC).<br />

The other principle behind the layout field is<br />

— 1 — © Wärtsilä Corporation, June 2008


Engine power, %R1<br />

100<br />

R1<br />

R1+<br />

Engine power, %R1<br />

100<br />

R1<br />

90<br />

R3<br />

90<br />

80<br />

R3<br />

Rx1<br />

Rx2<br />

Rating line<br />

slope = α<br />

80<br />

R4<br />

R2<br />

R2+<br />

70<br />

R4<br />

R2<br />

80<br />

90<br />

100<br />

Engine speed, %R1<br />

60<br />

70<br />

80<br />

90<br />

100<br />

Engine speed, %R1<br />

Fig. 2: For the RT-flex82C, RTA82C, RT-flex82T and<br />

RTA82T engines the layout fields are exten<strong>de</strong>d to the ratings<br />

R1+ and R2+ at the same powers as R1 and R2 respectively<br />

but with increased shaft speed.<br />

[08#049]<br />

that the lower CMCR speeds allow flexibility in<br />

selection of the optimum propeller with consequent<br />

benefits in propulsion efficiency and thus lower fuel<br />

consumption in terms of tonnes per day.<br />

One feature to be borne in mind when selecting<br />

the rating point for the <strong>de</strong>rated engine is the rating<br />

Fig. 4: Since the 1980s engine ratings have been selected over<br />

a steadily smaller area of the layout field.<br />

[08#051]<br />

Engine power, %R1<br />

100<br />

90<br />

80<br />

70<br />

60<br />

70<br />

R3<br />

R4<br />

Area of recent<br />

CMCR selection<br />

80<br />

Area of CMCR<br />

selection in<br />

the 1980s<br />

90<br />

R1<br />

100<br />

R2<br />

Engine speed, %R1<br />

Fig. 3: For a given ship, a rating line (slope α) can be applied<br />

to the layout field so that all rating points on that line would<br />

give the same ship speed with a suitably optimized propeller.<br />

Rating points at lower speeds on the rating line require<br />

a larger propeller diameter and give a greater propulsive<br />

efficiency.<br />

line (Fig. 3). This is the line through a CMCR rating<br />

point such that any point on the line represents<br />

a new power/speed combination that will give<br />

the same ship speed in knots. The points on the<br />

rating line all require the same propeller type but<br />

with different adaptations to suit the power/speed<br />

combination. In general, lower speeds of rotation<br />

require larger propeller diameters and thereby<br />

increase the total propulsive efficiency. Usually the<br />

selected propeller speed <strong>de</strong>pends on the maximum<br />

permissible propeller diameter. The maximum<br />

diameter is often <strong>de</strong>termined by operational<br />

requirements, such as <strong>de</strong>sign draught and ballast<br />

draught limitations, as well as class recommendations<br />

concerning propeller–hull clearance (pressure<br />

impulse induced by the propeller on the hull).<br />

The slope of the rating line (α) <strong>de</strong>pends broadly<br />

upon the ship type. It can range from 0.15 for<br />

tankers, bulk carriers and general cargo ships up to<br />

about 10,000 tdw to 0.22 for container ships larger<br />

than 3000 TEU and 0.25 for tankers and bulk<br />

carriers larger than 30,000 tdw.<br />

Changing engine selection strategies<br />

When the broad layout field was introduced in<br />

RTA engines in 1984 it was wi<strong>de</strong>ly welcomed by<br />

shipowners and shipbuil<strong>de</strong>rs. Afterwards RTA<br />

engines were frequently selected at ratings in the<br />

lower part of the layout field to gain the benefits of<br />

— 2 — © Wärtsilä Corporation, June 2008


Bunker price, US$/tonne<br />

380cSt HFO<br />

500<br />

400<br />

300<br />

200<br />

100<br />

2004 2005 2006 2007 2008<br />

Fig. 5: Bunker prices have consi<strong>de</strong>rably increased in recent times. The chart shows the average price of 380 cSt heavy fuel oil (HFO)<br />

from various ports around the world from 2004 to 2008. The green bars indicate the mean price for each year.<br />

[08#045]<br />

lower fuel consumption.<br />

However, un<strong>de</strong>r the pressure of first costs and<br />

softening bunker prices the strategy was changed and<br />

the selected power/speed combination has, during<br />

the past 15 years or so, been selected to be closer to<br />

the R1 rating (Fig. 4).<br />

Yet, more recently, bunker prices have steadily<br />

climbed, rising by some 85 per cent in the course of<br />

2007 from US$ 270 to US$ 500 per tonne (Fig. 5).<br />

The result is that bunkers are now the dominant part<br />

of ship operating costs.<br />

Such drastic increases in bunker prices give a<br />

strong impetus to reduce fuel costs. They can also<br />

justify additional investment cost such as selecting<br />

an engine with an extra cylin<strong>de</strong>r. The consequent<br />

fuel saving may make for an acceptable payback time<br />

on the additional investment cost. It would justify<br />

any efforts to increase the overall efficiency of the<br />

complete propulsion system.<br />

Further impetus to implementing such changes<br />

in engine selection strategy will come from a future<br />

need to cut CO 2<br />

emissions. If a carbon trading<br />

scheme is imposed on shipping it would give further<br />

economic advantage to reducing fuel consumption<br />

and further help to pay for any necessary extra<br />

investment costs.<br />

In addition it is important to bear in mind that<br />

the fuel savings measures discussed here will also<br />

result in lower NO X<br />

emissions in absolute terms.<br />

Derating engines for greater fuel savings<br />

In the following pages are some case studies for ship<br />

installations for which an engine is selected with an<br />

extra cylin<strong>de</strong>r without increasing the engine’s power.<br />

These cases <strong>de</strong>monstrate that such engine <strong>de</strong>rating<br />

can be an advantageous solution with remarkable<br />

saving potential. Depending on bunker costs, such a<br />

strategy can have a very attractive pay-back time.<br />

The four case studies are for a Suezmax tanker,<br />

a Capesize bulk carrier, a Panamax container ship<br />

and a Post-Panamax container ship. They inclu<strong>de</strong><br />

estimations of the respective pay-back times for the<br />

additional engine costs.<br />

— 3 — © Wärtsilä Corporation, June 2008


Case 1: Suezmax tanker & Capesize bulk carrier<br />

In this case, a typical Suezmax tanker might be<br />

specified with a six-cylin<strong>de</strong>r Wärtsilä RT-flex68-D<br />

main engine. However, if a seven-cylin<strong>de</strong>r engine is<br />

employed instead, the daily fuel consumption can be<br />

reduced by some 3.4 per cent.<br />

In the engine/propeller layout for this ship as<br />

shown in figure 6, the CMCR points for the two<br />

alternative engines are on the same rating line<br />

(α = 0.3) through a common <strong>de</strong>sign point for the<br />

same ship service speed (knots).<br />

The calculation of annual fuel costs given in table<br />

2 is based on 6000 hours running with heavy fuel oil<br />

costing US$ 500 per tonne.<br />

The resulting payback time for the extra cost<br />

associated with the additional engine cylin<strong>de</strong>r is<br />

estimated to be between 3.5 and six years <strong>de</strong>pending<br />

on the bunker price of US$ 600–400 per tonne<br />

respectively (Fig. 7). The calculations of the payback<br />

are based on an interest rate of eight per cent.<br />

A similar case may be ma<strong>de</strong> for a Capesize bulk<br />

carrier as it would be similar in size and speed to a<br />

Suezmax tanker and would thus require a similar<br />

engine.<br />

Table 1: Typical ship parameters for a Suezmax tanker<br />

Length overall: about 274 m<br />

Beam: 46–50 m<br />

Design draught: 16 m<br />

Scantling draught: 17 m<br />

Sea margin: 15 %<br />

Engine service load: 90 %<br />

Table 2: Main engine options<br />

Alternative engines: 6RT-flex68-D 7RT-flex68-D<br />

Cylin<strong>de</strong>r bore, mm: 680 680<br />

Piston stroke, mm: 2720 2720<br />

Stroke/bore ratio: 4:1 4:1<br />

MCR, kW / rpm: 18,780/95 21,910/95<br />

CMCR, kW / rpm: 18,780/95 18,460/89.7<br />

BMEP at CMCR, bar: 20.0 17.9<br />

CSR at 90% CMCR, kW/rpm: 16,902/91.7 16,614/86.6<br />

BSFC at CMCR, g/kWh:<br />

– 100% load: 169.0 164.8<br />

– 90% load: 165.6 162.6<br />

Daily fuel consumption, tonnes/day:<br />

– ISO fuel, LCV 42.7 MJ/kg: 67.2 64.8<br />

– LCV 40.5 MJ/kg: 70.8 68.4<br />

– As percentage, %: 100 96.6 –3.4%<br />

Annual fuel costs, US$: 8,853,000 8,544,000<br />

Fuel saving, US$: 0 – 309,000<br />

Engine length, mm: 8690 9870<br />

Engine mass, tonnes: 472 533<br />

— 4 — © Wärtsilä Corporation, June 2008


Case 1: Suezmax tanker & Capesize bulk carrier<br />

Engine power, kW<br />

22,000<br />

7RT-flex68-D<br />

Fig. 6: Engine/propeller layouts for<br />

a typical Suezmax tanker with a<br />

<strong>de</strong>rated seven-cylin<strong>de</strong>r RT-flex68-D<br />

engine compared with a six-cylin<strong>de</strong>r<br />

engine at the full MCR power and<br />

speed.<br />

[08#052]<br />

20,000<br />

18,000<br />

16,000<br />

Constant ship speed<br />

α = 0.3<br />

CMCR<br />

18,460 kW<br />

89.7 rpm<br />

CSR<br />

16,614 kW<br />

86.6 rpm<br />

CSR<br />

16,902 kW<br />

91.7 rpm<br />

Design point<br />

CMCR = R1<br />

18,780 kW, 95 rpm<br />

6RT-flex68-D<br />

75 80<br />

85 90 95 100<br />

Engine speed, rpm<br />

Millions US$<br />

Fig. 7: Variation of payback times<br />

from fuel savings according to<br />

bunker costs for the <strong>de</strong>rated engine<br />

with an extra cylin<strong>de</strong>r for a typical<br />

Suezmax tanker.<br />

[08#144]<br />

3.0<br />

2.0<br />

1.0<br />

0<br />

Bunker price, HFO:<br />

$600/tonne<br />

$500/tonne<br />

$400/tonne<br />

Investment approx. ($)<br />

2 4 6 8 10 12 14<br />

Years<br />

— 5 — © Wärtsilä Corporation, June 2008


Case 2: Panamax container ship<br />

In this case, a typical Panamax container ship with<br />

a container capacity of up to 5000 TEU might be<br />

specified with an eight-cylin<strong>de</strong>r Wärtsilä RT-flex82C<br />

main engine. However, if a nine-cylin<strong>de</strong>r engine is<br />

employed instead, the daily fuel consumption can be<br />

reduced by some two per cent.<br />

In the engine/propeller layout for this ship as<br />

shown in figure 8, the CMCR points for the two<br />

alternative engines are on the same rating line<br />

(α = 0.2) through a common <strong>de</strong>sign point for the<br />

same ship service speed (knots).<br />

The calculation of annual fuel costs given in table<br />

4 is based on 6000 hours running with heavy fuel oil<br />

costing US$ 500 per tonne.<br />

The resulting payback time for the extra cost<br />

associated with the additional engine cylin<strong>de</strong>r<br />

is estimated to be between four and seven years<br />

<strong>de</strong>pending on the bunker price of US$ 600–400 per<br />

tonne respectively (Fig. 9). The calculations of the<br />

payback are based on an interest rate of eight per<br />

cent.<br />

Table 3: Typical ship parameters for a Panamax<br />

container ship<br />

Length overall: about 295 m<br />

Beam: 32.2 m<br />

Design draught: 12 m<br />

Scantling draught: 13.5 m<br />

Sea margin: 15 %<br />

Engine service load: 90 %<br />

Table 4: Main engine options<br />

Alternative engines: 8RT-flex82C 9RT-flex82C<br />

Cylin<strong>de</strong>r bore, mm: 820 820<br />

Piston stroke, mm: 2646 2646<br />

Stroke/bore ratio: 3.2:1 3.2:1<br />

MCR, kW / rpm: 36,160/102 40,680/102<br />

CMCR, kW / rpm: 36,160/102 35,480/97.5<br />

BMEP at CMCR, bar: 19.0 17.5<br />

CSR at 90% CMCR, kW / rpm: 32,544/98.5 32,250/94.3<br />

BSFC at CMCR, g/kWh:<br />

– 100% load: 169.0 166.6<br />

– 90% load: 166.5 164.6<br />

Daily fuel consumption, tonnes/day:<br />

– ISO fuel, LCV 42.7 MJ/kg: 130.0 127.4<br />

– LCV 40.5 MJ/kg: 137.1 134.3<br />

– As percentage, %: 100 98 – 2.0%<br />

Annual fuel costs, US$: 17,138,000 16,790,000<br />

Fuel saving, US$: 0 – 348,000<br />

Engine length, mm: 14,055 16,500<br />

Engine mass, tonnes: 1020 1140<br />

— 6 — © Wärtsilä Corporation, June 2008


Case 2: Panamax container ship<br />

Engine power, kW<br />

42,000<br />

40,000<br />

Fig. 8: Engine/propeller layouts for a<br />

typical Panamax container ship with<br />

a <strong>de</strong>rated nine-cylin<strong>de</strong>r RT-flex82C<br />

engine compared with an eightcylin<strong>de</strong>r<br />

engine at the full MCR<br />

power and speed.<br />

[08#062]<br />

38,000<br />

36,000<br />

34,000<br />

32,000<br />

9RT-flex82C<br />

Constant ship speed<br />

α = 0.2<br />

8RT-flex82C<br />

CSR<br />

32,250 kW<br />

94.3 rpm<br />

CMCR<br />

35,850 kW<br />

97.5 rpm<br />

CSR<br />

32,544 kW<br />

98.5 rpm<br />

Design point<br />

CMCR = R1+<br />

36,160 kW, 102 rpm<br />

85 90 95 100 105<br />

Engine speed, rpm<br />

Millions US$<br />

4.0<br />

3.0<br />

Bunker price, HFO:<br />

$600/tonne<br />

$500/tonne<br />

$400/tonne<br />

Fig. 9: Variation of payback times<br />

from fuel savings according to<br />

bunker costs for the <strong>de</strong>rated engine<br />

with an extra cylin<strong>de</strong>r for a typical<br />

Panamax container ship.<br />

[08#145]<br />

2.0<br />

1.0<br />

0<br />

Investment approx. ($)<br />

2 4 6 8 10 12 14<br />

Years<br />

— 7 — © Wärtsilä Corporation, June 2008


Case 3: Post-Panamax container ship<br />

In this case, a typical Post-Panamax container<br />

ship with a container capacity of around 7000<br />

TEU might be specified with an eleven-cylin<strong>de</strong>r<br />

Wärtsilä RT-flex96C main engine. However, if a<br />

12-cylin<strong>de</strong>r engine is employed instead, the daily fuel<br />

consumption can be reduced by some 2.4 per cent.<br />

In the engine/propeller layout for this ship as<br />

shown in figure 10, the CMCR points for the two<br />

alternative engines are on the same rating line<br />

(α = 0.2) through a common <strong>de</strong>sign point for the<br />

same ship service speed (knots).<br />

The calculation of annual fuel costs given in table<br />

6 is based on 6000 hours running with heavy fuel oil<br />

costing US$ 500 per tonne.<br />

The resulting payback time for the extra cost<br />

associated with the additional engine cylin<strong>de</strong>r is<br />

estimated to be between two-and-a-half and four<br />

years <strong>de</strong>pending on the bunker price of US$ 600–<br />

400 per tonne respectively (Fig. 11). The calculations<br />

of the payback are based on an interest rate of eight<br />

per cent.<br />

Table 5: Typical ship parameters for a Post-Panamax<br />

container ship<br />

Length overall: about 325 m<br />

Beam: 42.8 m<br />

Design draught: 13 m<br />

Scantling draught: 14.5 m<br />

Sea margin: 15 %<br />

Engine service load: 90 %<br />

Table 6: Main engine options<br />

Alternative engines: 11RT-flex96C 12RT-flex96C<br />

Cylin<strong>de</strong>r bore, mm: 960 960<br />

Piston stroke, mm: 2500 2500<br />

Stroke/bore ratio: 2.6:1 2.6:1<br />

MCR, kW / rpm: 66,330/102 72,360/102<br />

CMCR, kW / rpm: 66,330/102 65,919/98.9<br />

BMEP at CMCR, bar: 19.6 18.4<br />

CSR at 90% CMCR, kW / rpm: 59,697/98.5 59,327/95.5<br />

BSFC at CMCR, g/kWh:<br />

– 100% load: 171.0 168.0<br />

– 90% load: 166.8 163.8<br />

Daily fuel consumption, tonnes/day:<br />

– ISO fuel, LCV 42.7 MJ/kg: 239 233.2<br />

– LCV 40.5 MJ/kg: 252 245.9<br />

– As percentage, %: 100 97.6 – 2.4%<br />

Annual fuel costs, US$: 31,500,000 30,738,000<br />

Fuel saving, US$: 0 – 762,000<br />

Engine length, mm: 21,550 23,230<br />

Engine mass, tonnes: 1910 2050<br />

— 8 — © Wärtsilä Corporation, June 2008


Case 3: Post-Panamax container ship<br />

Engine power, kW<br />

72,000<br />

70,000<br />

12RT-flex96C<br />

Fig. 10: Engine/propeller layouts for<br />

a typical Post-Panamax container<br />

ship with a <strong>de</strong>rated 12-cylin<strong>de</strong>r RTflex96C<br />

engine compared with an<br />

11-cylin<strong>de</strong>r engine at the full MCR<br />

power and speed.<br />

[08#127]<br />

68,000<br />

66,000<br />

64,000<br />

62,000<br />

60,000<br />

58,000<br />

Constant ship speed<br />

α = 0.2<br />

CSR<br />

59,327 kW<br />

95.5 rpm<br />

CMCR<br />

65,919 kW<br />

98.9 rpm<br />

CSR<br />

59,697 kW<br />

98.5 rpm<br />

Design point<br />

CMCR = R1<br />

66,330 kW, 102 rpm<br />

11RT-flex96C<br />

90 95 100 105<br />

Engine speed, rpm<br />

Millions US$<br />

Fig. 11: Variation of payback times<br />

from fuel savings according to<br />

bunker costs for the <strong>de</strong>rated engine<br />

with an extra cylin<strong>de</strong>r for the typical<br />

Post-Panamax container ship.<br />

[08#146]<br />

8.0<br />

6.0<br />

4.0<br />

2.0<br />

0<br />

Bunker price, HFO:<br />

$600/tonne<br />

$500/tonne<br />

$400/tonne<br />

Investment approx. ($)<br />

2 4 6 8 10 12 14<br />

Years<br />

— 9 — © Wärtsilä Corporation, June 2008


Case 4: Derating without adding an<br />

engine cylin<strong>de</strong>r<br />

It is also feasible to apply a <strong>de</strong>rated engine to obtain<br />

fuel savings in such a way that an additional engine<br />

cylin<strong>de</strong>r is not required.<br />

An example of this can be seen with the Wärtsilä<br />

RT-flex50 engine. In October 2007, the D version<br />

of this engine was announced, in which the engine<br />

power was increased by 5.1 per cent and the BSFC<br />

at full-load was reduced by 2 g/kWh compared with<br />

the B version.<br />

Thus if a ‘-D’ engine is <strong>de</strong>rated to the same<br />

cylin<strong>de</strong>r power output as the original version of the<br />

RT-flex50, then the BSFC at full load is reduced<br />

by 4.5 g/kWh, or 2.7 per cent (see Table 7). For a<br />

typical bulk carrier with a six-cylin<strong>de</strong>r RT-flex50<br />

engine this can translate into annual savings of<br />

US$ 124,000 when operating for 6000 running<br />

hours a year with heavy fuel oil costing US$ 500<br />

per tonne. Even greater savings are possible if the<br />

engine is <strong>de</strong>rated to a lower running speed (rpm)<br />

at the <strong>de</strong>rated power to gain the benefits of a better<br />

propulsion efficiency.<br />

There are already a number of standard ship<br />

<strong>de</strong>signs <strong>de</strong>livered and on or<strong>de</strong>r with RT-flex50-B or<br />

even the original RT-flex50 engine. So it would be<br />

perfectly feasible to install a <strong>de</strong>rated RT-flex50-D<br />

in further newbuildings to the same ship <strong>de</strong>signs<br />

and obtain the benefit of the substantial savings in<br />

operating costs. The overall dimensions of the D<br />

version are i<strong>de</strong>ntical to those of the B and original<br />

versions of the RT-flex50. There would, however, be<br />

a mo<strong>de</strong>st increase in cost of the D version for the<br />

higher-efficiency turbochargers used, but the extra<br />

cost would soon be repaid by the fuel cost savings.<br />

Derating with flexibility to full rating<br />

Although <strong>de</strong>rating offers attractive economics, it<br />

can be frustrating to buy more ‘engine’ than seems<br />

necessary. Yet there is an interesting option to retain<br />

an ability to utilise the full available installed engine<br />

power, even up to the full R1 rating for future use to<br />

obtain higher ship service speeds.<br />

The concept would be to set up the engine for<br />

the <strong>de</strong>rated output at the chosen reduced service<br />

speed. Then for a later date, the engine could be<br />

re-adapted to the higher output. However, this needs<br />

corresponding provisions in the selection and <strong>de</strong>sign<br />

of the propeller, shafting and ancillary equipment to<br />

meet the requirements of the envisaged higher power.<br />

Furthermore the engine would need to be tested<br />

and approved by the Classification Society for both<br />

ratings with all the necessary emissions certification.<br />

RT-flex technology as an important<br />

contribution to fuel saving<br />

Wärtsilä RT-flex technology plays an important role<br />

in fuel saving. Wärtsilä RT-flex low-speed engines<br />

incorporate the latest electronically-controlled<br />

common-rail technology for fuel injection and valve<br />

actuation. The result is great flexibility in engine<br />

setting, bringing benefits in lower fuel consumption,<br />

lower minimum running speeds, smokeless operation<br />

Table 7: Options for the Wärtsilä RT-flex50 engine type<br />

Alternative engines: 6RT-flex50 6RT-flex50-D<br />

Cylin<strong>de</strong>r bore, mm: 500 500<br />

Piston stroke, mm: 2050 2050<br />

S/B ratio: 4.1:1 4.1:1<br />

MCR, kW / rpm: 9720/124 10,470/124<br />

CMCR, kW / rpm: 9720/124 9720/124<br />

BMEP at CMCR, bar: 19.5 19.5<br />

CSR at 90% CMCR, kW / rpm: 8748/119.7 8748/119.7<br />

BSFC at CMCR, g/kWh:<br />

– 100% load: 171 165.7<br />

– 90% load: 167.6 163.0<br />

Daily fuel consumption, tonnes/day:<br />

– ISO fuel, LCV 42.7 MJ/kg: 35.2 34.2<br />

– LCV 40.5 MJ/kg: 37.1 36.2<br />

– As percentage, %: 100 97.3 – 2.7%<br />

Annual fuel costs, US$: 4,637,000 4,513,000<br />

Fuel saving, US$: 0 – 124,000<br />

— 10 — © Wärtsilä Corporation, June 2008


at all running speeds, and better control of other<br />

exhaust emissions.<br />

Not only do RT-flex engines have a lower partload<br />

fuel consumption than RTA engines but they<br />

can be adapted through Delta Tuning so that their<br />

part-load fuel consumtion is even lower. [1]<br />

Owing to the interaction between fuel economy<br />

and NO X<br />

emissions, there is always the possibility<br />

that fuel saving measures will have an impact on<br />

NO X<br />

emissions. As with all new marine engines<br />

nowadays, Wärtsilä RTA and RT-flex engines are all<br />

fully compliant with the NO X<br />

emission regulation of<br />

Annexe VI of the MARPOL 1973/78 convention.<br />

Moreover, the engines in the Wärtsilä portfolio will<br />

be adapted to meet the coming IMO NO X<br />

reduction<br />

level Tier II.<br />

also possibly a higher propeller efficiency.<br />

It must also not be forgotten that any fuel savings<br />

achieved at the ship <strong>de</strong>sign stage will have benefits in<br />

also reducing exhaust emissions.<br />

If you have a project for which you wish to<br />

explore the fuel-saving possibilities through <strong>de</strong>rating<br />

as set out in this paper, then please contact your<br />

nearest Wärtsilä office. Our experts will be <strong>de</strong>lighted<br />

to calculate various alternatives for your evaluation.<br />

References<br />

1. German Weisser, ‘Fuel saving with RT-flex’,<br />

Wärtsilä Switzerland Ltd, July 2004.<br />

Conclusion<br />

The paper shows that there are techniques to achieve<br />

worthwhile reductions in the fuel consumption<br />

of Wärtsilä low-speed engines when <strong>de</strong>signing<br />

newbuildings. The key approach is to use the<br />

flexibility offered by the full power/speed layout field<br />

to select a better layout point with a lower BSFC and<br />

Published June 2008 by:<br />

Wärtsilä Switzerland Ltd<br />

PO Box 414<br />

CH-8401 Winterthur<br />

Tel: +41 52 262 49 22<br />

Fax: +41 52 262 07 18<br />

www.wartsila.com<br />

— 11 — © Wärtsilä Corporation, June 2008

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!