25.02.2014 Aufrufe

gwf Gas/Erdgas Gasnetze sind fit für die Energiewände (Vorschau)

Sie wollen auch ein ePaper? Erhöhen Sie die Reichweite Ihrer Titel.

YUMPU macht aus Druck-PDFs automatisch weboptimierte ePaper, die Google liebt.

Rohrnetz<br />

Fachberichte<br />

Im Rahmen der Durchführung einer konventionellen<br />

Druckverlustberechnung ist der Leitungsenddruck<br />

gemäß Gl. (1) zu ermitteln:<br />

L 16 Tm<br />

pn<br />

p p<br />

D T p V 2<br />

K<br />

2<br />

=<br />

1⋅ 1−λ⋅ ⋅ ⋅<br />

5 2 n<br />

⋅ ⋅ ⋅<br />

2 n<br />

⋅<br />

m<br />

π<br />

ρ & (1)<br />

n 1<br />

L 16 Tm<br />

pn<br />

Will p man p den Druckverlauf D T entlang p V 2<br />

des K<br />

2<br />

=<br />

1⋅ 1−λ⋅ ⋅ ⋅<br />

n<br />

⋅ ⋅ ⋅<br />

n<br />

⋅<br />

5 2<br />

2 m<br />

π<br />

ρ &<br />

Strömungsweges<br />

x 16<br />

( xauftragen, ) = p1 ⋅ 1−λgilt ⋅ ⋅<br />

n 1<br />

5<br />

D π<br />

ρ Tm<br />

pn<br />

2<br />

L Gl. 16 (2): ⋅ T⋅ ⋅ ⋅ ⋅<br />

2 n 2 n m<br />

Tn<br />

p V & K<br />

m<br />

pn<br />

p p<br />

1<br />

D x 16<br />

p( x) = p1 ⋅ 1−λ⋅ ⋅<br />

5<br />

D π<br />

ρ<br />

T T p<br />

m<br />

p<br />

V 2<br />

K<br />

2<br />

=<br />

1⋅ 1−λ⋅ ⋅ ⋅<br />

n<br />

⋅ ⋅ ⋅<br />

n<br />

⋅<br />

5 2<br />

2 m<br />

π<br />

ρ &<br />

n 1 n 2<br />

⋅<br />

2 n<br />

⋅ ⋅ ⋅<br />

2 n<br />

⋅<br />

m<br />

T<br />

2<br />

x ⎡<br />

2<br />

1− ⎛ n<br />

p V & K (2)<br />

L 16 Tm<br />

pn<br />

p p<br />

1<br />

D p ⎞ ⎤<br />

⎢<br />

x 16<br />

Folgender p( x) = p Zusammenhang<br />

⎝ ⎜ 1 ⎠<br />

⎟<br />

⎥ kann ebenfalls Verwendung<br />

finden:<br />

1⋅ 1−λ⋅ ⋅<br />

L<br />

5<br />

⎣⎢<br />

p 2⎦⎥<br />

D⎡<br />

2<br />

1<br />

⋅ 1− ⎛ π<br />

ρ<br />

T T p<br />

m<br />

p<br />

V 2<br />

K<br />

2<br />

=<br />

1⋅ 1−λ⋅ ⋅ ⋅<br />

n<br />

⋅ ⋅ ⋅<br />

n<br />

⋅<br />

5 2<br />

2 m<br />

π<br />

ρ &<br />

n 1 n 2<br />

⋅<br />

2 n<br />

⋅ ⋅ ⋅<br />

2 n<br />

⋅<br />

m<br />

⎞ ⎤Tn<br />

p V & K<br />

1<br />

x p<br />

⎢x<br />

16<br />

⎝ ⎜ 1 ⎠<br />

⎟<br />

⎥<br />

p( x) = p1 ⋅ 1−λL<br />

⋅<br />

⎡<br />

= − ⎛ 2<br />

⎣⎢<br />

⋅<br />

5 p<br />

⎦⎥<br />

D<br />

2<br />

p ⎞ ⎤ ⎡ 5 2<br />

2<br />

&V ⎢<br />

⎝ ⎜ 2<br />

⎠<br />

⎟ ⎥<br />

⎣⎢<br />

p<br />

⎦⎥ ⋅ ⋅ D 2<br />

L<br />

⋅ π<br />

⋅ Tn<br />

T<br />

⋅ p1<br />

p<br />

⋅ 1 ⋅ 1<br />

( ) =<br />

n<br />

11⋅ 1− ⋅ 1− ⎛ π<br />

ρ Tm<br />

pn<br />

2<br />

⋅<br />

2 n<br />

⋅ ⋅ ⋅<br />

2 n<br />

⋅<br />

m<br />

⎞ ⎤Tn<br />

p V & K<br />

1<br />

x p<br />

p x p ⎢<br />

1<br />

λ 16<br />

m n<br />

ρn Km<br />

⎡<br />

= − ⎛ 2<br />

⎝ ⎜ 1 ⎠<br />

⎟<br />

⎥ (3)<br />

L<br />

p ⎞ ⎤ ⎣⎢<br />

p<br />

5 ⎦⎥<br />

2<br />

2<br />

&V ⎢<br />

⎝ ⎜ 2<br />

⎠<br />

⎟ ⎥<br />

⎣⎢<br />

p<br />

wm<br />

⋅D⎦<br />

⎥ ⋅ 1<br />

⋅ D<br />

L<br />

⋅ π<br />

⋅ Tn<br />

T<br />

⋅ p1<br />

p<br />

⋅ 1 ⋅ 1<br />

n<br />

1 x ⎡<br />

2<br />

Die ( ) Transportkapazität =<br />

1⋅ 1− ⋅ 1<br />

1<br />

λ<br />

− ⎛ p ⎞ ⎤<br />

p x p ⎢<br />

16 der Rohrleitung<br />

m n<br />

ρn K ist dann<br />

m<br />

wm⋅D⋅ρm<br />

Re<br />

Rem<br />

= =<br />

= − ⎛ 2<br />

⎝ ⎜ 1 ⎠<br />

⎟<br />

⎥<br />

L<br />

⎡ ⎞ ⎤ 5 2<br />

2<br />

gemäß Gl. (4) bestimmbar: p<br />

⎣⎢<br />

p<br />

νm<br />

ηm<br />

⎝ ⎜ 2<br />

⎢<br />

w ⎠<br />

⎟<br />

⎥<br />

m<br />

⋅D wm⋅D⋅ρm<br />

Re = Re<br />

⎣⎢<br />

m<br />

=<br />

⎦⎥ ⋅ 1<br />

⋅ D<br />

⋅ π<br />

⎦⎥<br />

⋅ Tn<br />

⋅ p1<br />

⋅ 1 ⋅ 1<br />

&V<br />

n<br />

1<br />

p1<br />

λ L 16 Tm pn ρn Km<br />

=<br />

4<br />

= ⋅ V−&<br />

⎛ 2<br />

⎡<br />

ν<br />

⎞ ⎤ 5 2<br />

2<br />

p<br />

m<br />

ηm<br />

m<br />

w ⎝ ⎜ 2<br />

⎢<br />

m 2 w ⎠<br />

⎟ ⎥<br />

Re = Re π⎣<br />

⎢<br />

m<br />

⋅<br />

⋅D<br />

4<br />

⋅ =<br />

⎦⎥ ⋅ ⋅ D<br />

⋅ ⋅ Tn<br />

⋅ p<br />

&V<br />

⋅ ⋅<br />

n<br />

1<br />

L 116<br />

πT<br />

1 1<br />

m<br />

pn<br />

1<br />

p p<br />

(4)<br />

p1<br />

D λw L<br />

m⋅D<br />

16 ⋅Tρ<br />

Tp p<br />

V 2<br />

m n<br />

ρ<br />

K<br />

2<br />

=<br />

1⋅ 1−λ⋅ ⋅ ⋅<br />

n<br />

⋅ ⋅ ⋅<br />

n<br />

⋅<br />

5 2<br />

2 m<br />

π<br />

ρ &<br />

K<br />

nm<br />

1 n m<br />

m<br />

=<br />

V&<br />

ν L<br />

16<br />

m m<br />

η<br />

m<br />

Außerdem w geht<br />

m<br />

π⋅Dn<br />

V&<br />

m<br />

V&<br />

n<br />

p 2<br />

wT<br />

⋅<br />

aus der Herleitung der Druckverlustgleichung<br />

Re p( x= ) Re = pklar = ⋅ = hervor = [1], dass sowohl <strong>die</strong> Rohrreibungs-<br />

m<br />

⋅ ⋅<br />

4<br />

m<br />

p<br />

T<br />

K<br />

x w16<br />

m⋅D⋅<br />

ρm<br />

m1 V&<br />

⋅ 1−λ⋅ ⋅<br />

5<br />

zahl n<br />

m<br />

n m<br />

V&<br />

m<br />

= V&<br />

n<br />

⋅ p m<br />

wλ als auch <strong>die</strong><br />

νm<br />

Kompressibilitätszahl<br />

D π η<br />

ρ T<br />

Tm<br />

pn<br />

p p<br />

D T<br />

p V 2<br />

K<br />

2<br />

=<br />

1⋅ 1−λ⋅ ⋅ ⋅<br />

n<br />

⋅ ⋅ ⋅<br />

n<br />

⋅<br />

5 2<br />

2 m<br />

π<br />

ρ &<br />

n<br />

1<br />

m<br />

pn<br />

2<br />

⋅<br />

2 n<br />

⋅ ⋅ ⋅<br />

2 n<br />

⋅<br />

m<br />

m Tn<br />

p V & K<br />

1 K <strong>für</strong> über den<br />

2<br />

π D T<br />

⋅ ⋅<br />

m<br />

p 3 3<br />

2<br />

T<br />

K<br />

gesamten − pn<br />

2<br />

= ⋅ Strömungsweg x 16<br />

gemittelte Drücke und Temperaturen<br />

4 V&<br />

2<br />

m<br />

n<br />

m 2<br />

V&<br />

3<br />

1<br />

⋅ p<br />

m<br />

V&<br />

⋅ p m<br />

w zu bestimmen <strong>sind</strong>:<br />

2<br />

π D T<br />

n 3 2⋅<br />

3 m<br />

2<br />

p1<br />

m −Tp<br />

K<br />

2<br />

( ) =<br />

1⋅ ⋅ 1− ⎛ p( x) = p<br />

1⋅ 1−λ⋅ ⋅<br />

5<br />

D π<br />

ρ Tm<br />

pn<br />

2<br />

⋅<br />

2 n<br />

⋅ ⋅ ⋅<br />

2 n<br />

⋅<br />

m<br />

T<br />

⎡ ⎞ ⎤<br />

n<br />

p V & K<br />

1<br />

xL<br />

16 p T<br />

l = l m = l (T m , p<br />

n2<br />

m ) ⎝ ⎜ m<br />

pn<br />

p<br />

x p p ⎢<br />

1 ⎠<br />

⎟<br />

⎥<br />

DL<br />

⎣⎢<br />

p T<br />

⎦⎥<br />

p V 2<br />

K<br />

2<br />

=<br />

1⋅ 1−λ⋅ ⋅ ⋅<br />

n<br />

⋅ ⋅ ⋅<br />

n<br />

⋅<br />

5 2<br />

2 m<br />

π<br />

ρ &<br />

m<br />

= ⋅<br />

2 2<br />

3<br />

1n<br />

− pm<br />

2 2<br />

V&<br />

V &<br />

n⋅⎛<br />

p T<br />

K m = K (T m , p⋅ ⋅p<br />

⎞<br />

3 m )<br />

3 2 m<br />

m<br />

2<br />

+<br />

⎝<br />

⎜<br />

p<br />

1m<br />

1−Tp<br />

K<br />

n 1<br />

2<br />

x ⎡<br />

2<br />

( ) = 1⋅ 1− ⋅ 1− ⎛ p ⎞ ⎤<br />

p x p ⎢<br />

n2<br />

p + ⎠<br />

⎟<br />

m<br />

= ⎡⋅<br />

2 12<br />

p<br />

2 2<br />

Für<br />

= 23<br />

⎛p1<br />

− p2p<br />

⎞<br />

2<br />

pm<br />

=<br />

<strong>die</strong><br />

⋅<br />

Berechnung<br />

− ⎛ 2<br />

p ⎞ ⎤<br />

⎝ ⎜ 1 ⎠<br />

⎟<br />

⎥<br />

L<br />

⎣⎢<br />

x 16p<br />

5 2⎦<br />

⎥<br />

p( x) = p<br />

2<br />

1⋅ 1−λ⋅ &V ⎢<br />

+<br />

3 2⎝<br />

⎜ p<br />

der mittleren Rohrreibungszahl<br />

3⎝ ⎜ 2<br />

⎠<br />

⎟ ⎥<br />

1 3<br />

2⎣<br />

⎢ p<br />

p −<br />

+ 2⎠<br />

⎟<br />

ist <strong>die</strong> 1<br />

p ⎦⎥ ⋅ 1 ⋅<br />

5<br />

⋅ D<br />

L<br />

⋅ π<br />

⋅ n<br />

T<br />

⋅ 1<br />

p<br />

⋅ 1 ⋅ 1<br />

n<br />

1 D π<br />

ρ Tm<br />

pn<br />

2<br />

⋅<br />

2 n<br />

⋅ ⋅ ⋅<br />

2 n<br />

⋅<br />

m<br />

Tn<br />

p V & K<br />

1<br />

1<br />

λ 16<br />

m n<br />

ρn Km<br />

2<br />

p mittlere 1<br />

p2<br />

m<br />

p⋅<br />

+ 2p Reynolds-Zahl<br />

1⋅ 2<br />

Re m zu verwenden. Es gilt:<br />

2 2<br />

m 23<br />

⎛p<br />

1<br />

− p2p<br />

⎞<br />

= ⋅ 3<br />

2<br />

m 2<br />

( p<br />

+<br />

1+<br />

p2)<br />

2<br />

3p ⎝<br />

⎜ p<br />

1wm<br />

⋅D = − ⎛ 2<br />

⎡ ⎞ ⎤ 5 2<br />

2<br />

p<br />

⎝ ⎜ 2<br />

⎢<br />

⎠<br />

⎟ ⎥<br />

⎣⎢<br />

⎦⎥ ⋅ 1<br />

⋅ D<br />

⋅ π<br />

⋅ Tn<br />

⋅ p<br />

⋅ 1 ⋅ 1<br />

&V<br />

n<br />

1<br />

2<br />

1<br />

p x ⎡<br />

1<br />

λ<br />

w<br />

L 2<br />

Re = Re1<br />

= 2+ = p1⋅ p +<br />

2 ⎠<br />

⎟ m⋅D<br />

16<br />

⋅ρ<br />

Tm pn ρn Km<br />

( ) =<br />

1⋅ 1− ⋅ 1− ⎛ p ⎞ ⎤<br />

p x p ⎢<br />

m<br />

m 1<br />

p=<br />

2 (5)<br />

⎝<br />

p<br />

⎜ 1 ⎠<br />

⎟<br />

⎥<br />

L<br />

m ν 2⎣<br />

⎢ p<br />

2 ⎛<br />

m<br />

η ⎦⎥<br />

3 p ⎞<br />

m<br />

2<br />

pm<br />

⋅ ⋅ ( p+<br />

1+<br />

2)<br />

2<br />

2<br />

3p ⎝<br />

⎜ p<br />

1w Die mittlere 2<br />

1<br />

+ m<br />

⋅D w<br />

p1⋅ p +<br />

2 ⎠<br />

⎟<br />

1<br />

p2<br />

pm = 4<br />

= ⋅ Strömungsgeschwindigkeit m⋅D⋅ρm<br />

Re = Rem<br />

= =<br />

folgt aus<br />

V&<br />

ν<br />

der 3<br />

m m<br />

ηm<br />

wKontinuitätsgleichung<br />

m= π ⋅ 2( 1+<br />

p2)<br />

2⋅<br />

2<br />

D<br />

− ⎛ 2<br />

⎡ ⎞ ⎤ 5 2<br />

2<br />

p<br />

2<br />

p1<br />

+ p1⋅ p2+<br />

p2<br />

pm = ⋅ ⎝<br />

4 V&<br />

⎜ 2<br />

⎢<br />

⎠<br />

⎟<br />

⎥<br />

⎣⎢<br />

⎦⎥ ⋅ 1<br />

⋅ D<br />

⋅ π<br />

⋅ Tn<br />

⋅ p1<br />

⋅ 1 ⋅ 1<br />

&V<br />

n<br />

1<br />

p1<br />

λ L 16 Tm pn ρn Km<br />

m 3<br />

⋅ n( p1m+<br />

p2)<br />

V&<br />

m<br />

= V&<br />

n<br />

2<br />

p m<br />

w<br />

2<br />

π⋅D<br />

T<br />

⋅ ⋅<br />

m<br />

p<br />

w<br />

m<br />

T<br />

K<br />

m<br />

⋅D wm⋅D⋅ρm<br />

Re = Rem<br />

n<br />

n<br />

= ⋅ m<br />

V&<br />

⋅ ⋅<br />

3 3<br />

2<br />

1<br />

−<br />

m<br />

V&<br />

p = =<br />

Tν<br />

m<br />

n<br />

m<br />

pm<br />

Tp<br />

K<br />

ηm<br />

n2<br />

pm<br />

= ⋅<br />

2 2<br />

3<br />

4<br />

Der = mittlere ⋅ p<br />

V&<br />

m<br />

w<br />

1<br />

− p<br />

m Druck 2 muss grundsätzlich mit Hilfe des<br />

32<br />

3<br />

2π<br />

⋅<br />

pD<br />

−<br />

Mittelwertsatzes p<br />

1<br />

p2<br />

m<br />

= ⋅ der Integralrechnung berechnet wer-<br />

2<br />

2<br />

2<br />

2<br />

3 ⎛<br />

p<br />

−<br />

den [1]. Für den 1<br />

phier 2p<br />

⎞<br />

2 behandelten Fall der horizontalen<br />

pm<br />

+<br />

3 ⎝<br />

⎜<br />

n1<br />

m<br />

<strong>Gas</strong>transportleitung V&<br />

p + ⎠<br />

⎟<br />

m<br />

= V&<br />

⋅ p T<br />

n<br />

⋅ ⋅<br />

1 mpist 2<br />

der mittlere Pipelinedruck wie<br />

2<br />

pm<br />

T<br />

K<br />

n 2<br />

folgt ⎛<br />

p<br />

⎞<br />

analytisch = ⋅ 2<br />

2<br />

p bestimmbar:<br />

2<br />

pm<br />

+<br />

1<br />

+ p1⋅ 2 3 ⎝<br />

⎜ p1<br />

p<br />

+<br />

⎠<br />

⎟<br />

1<br />

p<br />

3 3 2<br />

m 2 p1<br />

− p2<br />

pm<br />

= ⋅3<br />

(6)<br />

2 2<br />

3<br />

⋅ ( p1+<br />

p<br />

2p1<br />

− p2<br />

2)<br />

2<br />

p 2<br />

+ ⋅ +<br />

1<br />

p1 p2 p2<br />

p<br />

m<br />

=<br />

Dieser Zusammenhang 3<br />

kann formal weiter umgeformt<br />

= ⋅ ⎞<br />

2 ⎛<br />

⋅ ( p<br />

1+<br />

2<br />

)<br />

2<br />

2<br />

p werden, p<br />

m<br />

+<br />

3 ⎝<br />

⎜ p womit man eine in der russischsprachigen<br />

Literatur häufig 1<br />

1<br />

p + ⎠<br />

⎟ p2verwendete Formulierung findet:<br />

p<br />

2<br />

p1<br />

+ p ⋅ p + p<br />

=<br />

⋅ ( p1+<br />

p2)<br />

2<br />

m<br />

3<br />

2<br />

1 2 2<br />

p<br />

L 16 Tm<br />

pn<br />

p<br />

D T p V 2<br />

= ⋅ 1−λ⋅ ⋅ ⋅ K<br />

n<br />

⋅ ⋅ ⋅<br />

2 n<br />

⋅<br />

π<br />

ρ &<br />

2 1 5 2<br />

n<br />

x 16<br />

( x) = p1 ⋅ 1−λ⋅ ⋅<br />

5<br />

D π<br />

ρ Tm<br />

pn<br />

2<br />

L 16 ⋅<br />

2<br />

Tn<br />

⋅ ⋅ ⋅ ⋅<br />

2 n m<br />

Tn<br />

p V & K<br />

m<br />

pn<br />

p p<br />

1<br />

D T p V 2<br />

K<br />

2<br />

=<br />

1⋅ 1−λ⋅ ⋅ ⋅<br />

n<br />

⋅ ⋅ ⋅<br />

n<br />

⋅<br />

5 2<br />

2 m<br />

π<br />

ρ &<br />

n 1<br />

Bild 1. Situationsskizze horizontale <strong>Gas</strong>transportleitung.<br />

2<br />

x ⎡<br />

2<br />

1− ⎛ p ⎞ ⎤<br />

p x<br />

p<br />

⎢x<br />

16<br />

( ) =<br />

⎝ ⎜ 1 ⎠<br />

⎟<br />

⎥<br />

1⋅ 1−λ⋅ ⋅<br />

L 5<br />

D⎣<br />

⎢ πp<br />

ρ Tm<br />

pn<br />

2<br />

⋅ ⋅ ⋅ ⋅ ⋅<br />

2 n 2 n m<br />

⎦⎥<br />

Tn<br />

p V & K<br />

1<br />

= − ⎛ 2<br />

2<br />

⎡ ⎞ ⎤ 5 2<br />

2<br />

p x ⎡<br />

⎢<br />

⎝ ⎜ 2<br />

&V<br />

⎠<br />

⎟ ⎥<br />

⎣⎢<br />

p<br />

⎦⎥ ⋅ ⋅ D 2<br />

L<br />

⋅ π<br />

⋅ Tn<br />

T<br />

⋅ p1<br />

p<br />

⋅ 1 ⋅ 1<br />

n( ) = 11⋅ 1− ⋅ 1− ⎛ p ⎞ ⎤<br />

p x p ⎢<br />

1<br />

λ ⎝ ⎜ 1 16 ⎠<br />

⎟<br />

⎥<br />

L<br />

⎣⎢<br />

p<br />

⎦⎥<br />

m n<br />

ρn Km<br />

wm<br />

⋅D wm⋅D⋅ρm<br />

Re<br />

Rem<br />

= =<br />

= − ⎛ 2<br />

⎡ ⎞ ⎤ 5 2<br />

2<br />

p<br />

νm<br />

ηm<br />

⎝ ⎜ 2<br />

⎢<br />

⎠<br />

⎟ ⎥<br />

⎣⎢<br />

⎦⎥ ⋅ 1<br />

⋅ D<br />

⋅ π<br />

⋅ Tn<br />

⋅ p1<br />

&V<br />

⋅ 1<br />

p L<br />

⋅ 1<br />

n<br />

1<br />

1<br />

λ 16 Tm pn ρn Km<br />

4<br />

= ⋅ V&<br />

m<br />

wm<br />

2 wm<br />

⋅D wm⋅D⋅ρm<br />

Re = Re π⋅D<br />

m<br />

= =<br />

ν η<br />

m<br />

1<br />

n m<br />

V&<br />

m<br />

= V&<br />

n⋅ p T<br />

⋅ ⋅<br />

m<br />

4 p<br />

T<br />

K<br />

= ⋅ V&<br />

m<br />

w<br />

n<br />

m<br />

Bild 2.<br />

2<br />

π⋅Situationsskizze D<br />

<strong>Gas</strong>transportleitung mit Höhendifferenzen.<br />

3 3<br />

2 p1<br />

− p2<br />

pm<br />

= ⋅<br />

2 2<br />

3<br />

n<br />

= ⋅ 1<br />

−⋅ pm<br />

V&<br />

m<br />

V&<br />

p T<br />

n<br />

2⋅<br />

p T<br />

K<br />

m<br />

n<br />

m<br />

m<br />

2<br />

⎛ p ⎞<br />

3 3 2<br />

m<br />

2<br />

+<br />

⎝<br />

⎜pp1<br />

+ ⎠<br />

⎟ (7)<br />

1<br />

− p2<br />

pm<br />

= ⋅<br />

1<br />

p<br />

2 2 2<br />

3 p1<br />

− p2<br />

Nach dem Ausrechnen von Gl. (6) erhält man mit<br />

2<br />

2<br />

Gl. (8) p1<br />

+ p1⋅ p2+<br />

p2<br />

pm = eine weitere nutzbare 2<br />

2 ⎛<br />

Beziehung. Diese Schreibweise<br />

wird<br />

3<br />

p ⎞<br />

2<br />

pm<br />

= ⋅ in ⋅ ( p<br />

+ DVGW-G<br />

1+<br />

p2)<br />

2000 u. a. zur Berechnung des<br />

3 ⎝<br />

⎜ p1<br />

Netzinhalts<br />

2 p + ⎠<br />

⎟<br />

1<br />

p2<br />

verwendet.<br />

p<br />

2<br />

p1<br />

+ p ⋅ p + p<br />

=<br />

⋅ ( p1+<br />

p2)<br />

2<br />

m<br />

3<br />

2<br />

1 2 2<br />

(8)<br />

Alle oben zur Berechnung des mittleren Druckes<br />

angegebenen Gleichungen führen zu identischen<br />

Resultaten.<br />

2.2 <strong>Gas</strong>transportleitungen mit Höhendifferenzen<br />

Mit den Bezeichnungen gemäß Bild 2 lassen sich <strong>die</strong><br />

nachstehenden Gebrauchsgleichungen anschreiben<br />

[1]. Es ist zu beachten, dass bei steigenden Leitungen <strong>für</strong><br />

ΔH das Vorzeichen „+“ und bei fallenden Leitungen „–“<br />

zu wählen ist.<br />

Verwendet man wieder <strong>die</strong> Normdichte und den<br />

Normvolumenstrom, erhält man <strong>die</strong> sog. Ferguson-Gleichung<br />

[1]:<br />

2 2<br />

p1<br />

−p2<br />

⋅e<br />

ξ<br />

e −1<br />

ξ<br />

2 gTn<br />

n<br />

= ⋅ ⋅ ρ<br />

ξ ⋅ ⋅∆H<br />

p K T<br />

n<br />

ξ<br />

L 16 Tm<br />

2<br />

= λ⋅ ⋅ ⋅ ⋅p ⋅ρ<br />

⋅V&<br />

⋅K<br />

5 2<br />

D π T<br />

⋅ m 1<br />

n<br />

m<br />

n n n m<br />

(9)<br />

April 2012<br />

<strong>gwf</strong>-<strong>Gas</strong> <strong>Erdgas</strong> 259

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!