19.02.2013 Views

4th EucheMs chemistry congress

4th EucheMs chemistry congress

4th EucheMs chemistry congress

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Poster Session 1<br />

s948<br />

chem. Listy 106, s587–s1425 (2012)<br />

Poster session 1 - inorganic Chemistry<br />

P - 0 1 7 4<br />

CoordinAtion CheMiStry of<br />

2,6-diPhoSPhonyLPhenyL-SuBStituted<br />

diPhenyLPhoSPhAne ChALCoGenideS<br />

M. GoCK 1 , C. dietz 1 , K. JurKSChAt 1<br />

1 TU Dortmund, Anorganische Chemie II, Dortmund, Germany<br />

E,C,E-coordinating pincer-type ligands (E = heteroatoms<br />

such as N, P, O, S...) are well established for stabilizing numerous<br />

complexes of metals such as tin, platinum and palladium. [1] Beside<br />

that ability however, the coordination <strong>chemistry</strong> of the ligands<br />

themselves is not well explored. In continuation of our systematic<br />

studies on phosphorus-containing O,C,O-coordinating pincer-type<br />

ligand [2] – 4-t-Bu-2,6-[P(O)(Oi-Pr) ] C H we present here the<br />

2 2 6 2<br />

phosphorus-substituted derivatives 4-t-Bu-2,6-[P(O)(Oi-<br />

-Pr) ] C H P(E)Ph (E = O, S, Se, lone pair) and complexes with<br />

2 2 6 2 2<br />

a variety of transition metals.<br />

references:<br />

1. The <strong>chemistry</strong> of Pincer compounds, Morales-Morales,<br />

D.; Jensen, C. M. 2007, Elsevier.<br />

2. a) Wagner, M.; Dorogov, K.; Schürmann, M.; Jurkschat, K.<br />

Dalton Trans. 2011, 40, 839.<br />

b) Henn, M.; Deaky, V.; Krabbe, S.; Schürmann, M.;<br />

Prosenc, M. H.; Herres-Pawlis, S.; Mahieu, B.;<br />

Jurkschat, K.; Z. Anorg. Allg. Chem. 2011, 637, 211.<br />

c) Mehring, M.; Löw, C.; Schürmann, M.; Uhlig, F.;<br />

Jurkschat, K.; Mahieu, B. Organometallics 2000, 19,<br />

4613.<br />

Keywords: Phosphane ligands; Coordination modes;<br />

Transition metals;<br />

4 th <strong>EucheMs</strong> <strong>chemistry</strong> <strong>congress</strong><br />

P - 0 1 7 5<br />

effeCtS of the PrePArAtion ConditionS in<br />

the ProPertieS of the Li LA tio AS<br />

3x 2/3-x 3<br />

eLeCtroLyte in SoLid-StAte LithiuM-ion<br />

BAtterieS<br />

K. vidAL 1 , A. LArrAnAGA 1 , L. orteGA 2 ,<br />

M. ArriortuA 3<br />

1 Universidad del País Vasco., Mineralogía y Petrología,<br />

LEIOA-BIZKAIA, Spain<br />

2 Pontificia Universidad Católica del Perú (PUCP),<br />

Departamento de Ciencias Sección Químicas, Lima, Peru<br />

3 Universidad del Pais Vasco (UPV/EHU), Departamento<br />

Mineralogía y Petrología, Leioa-Bizkaia, Spain<br />

In recent years, all solid state lithium ion batteries have been<br />

attracting more attention owing to their properties of high power<br />

density and good safety. As an important part of the battery,<br />

inorganic solid state electrolytes (Li La TiO , LLTO) become<br />

3x 2/3-x 3<br />

a significant issue because they present the highest lithium ion<br />

electrical conductivity at room temperature (about 10-3 S.cm-1 for<br />

x = 0.3). [1, 2]<br />

It is well known that the conductivity of LLTO strongly<br />

depends on the exact conditions of sample preparation. Until now<br />

most of inorganic solid-state electrolytes have been obtained by<br />

solid state reaction. As known, this conventional preparation<br />

method needs high sintering temperature and long sintering<br />

time, [3] which result in serious lithium loss during sintering<br />

process and in a particle size increase that is negative for<br />

micro-electrolyte layers in battery applications. As alternatives,<br />

some other synthetic methods have been used to prepare LLTO<br />

ceramics pellets or thin films. [4, 5] Furthermore the lithium content<br />

(x value) and the cooling rate in the sample syntesis play a crucial<br />

role in the structural properties, and then, in the materials<br />

properties as conductivity. [2]<br />

In this sense, this study is focused on the synthesis route,<br />

sintering temperature, cooling rate and crystal stability of the<br />

Li La TiO electrolyte in order to find out a suitable processing<br />

3x 2/3-x 3<br />

conditions to use in Lithium-ion battery systems.<br />

Keywords: synthesis route; solid electrolyte; lithium battery;<br />

perovskite;<br />

AUGUst 26–30, 2012, PrAGUE, cZEcH rEPUbLIc

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!