01.03.2013 Views

scostep 2010 (stp12) - Leibniz-Institut für Atmosphärenphysik an der ...

scostep 2010 (stp12) - Leibniz-Institut für Atmosphärenphysik an der ...

scostep 2010 (stp12) - Leibniz-Institut für Atmosphärenphysik an der ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

STP12 Abstracts<br />

Berlin, 12 - 16 July <strong>2010</strong><br />

SCOSTEP Symposium <strong>2010</strong><br />

Sensitivity of the 11-Year Solar Signal in the Atmosphere to Spectral Solar Irradi<strong>an</strong>ce<br />

Data <strong>an</strong>d Ozone<br />

Oberlän<strong>der</strong> Sophie 1 , L<strong>an</strong>gematz Ulrike 1 , Matthes Katja 2 , Kubin Anne 1<br />

1 <strong>Institut</strong> <strong>für</strong> Meteorologie, Freie Universität Berlin, Germ<strong>an</strong>y, 2 <strong>Institut</strong> <strong>für</strong> Meteorologie, Freie<br />

Universität Berlin, Germ<strong>an</strong>y <strong>an</strong>d Helmholtz-Zentrum Potsdam (GFZ), Germ<strong>an</strong>y<br />

The effect of solar variability on the atmospheric radiation budget as<br />

simulated in chemistry climate models (CCMs) strongly depends on the<br />

capability of the broad-b<strong>an</strong>d radiation schemes used by the CCMs to account<br />

for the spectral variations of solar irradi<strong>an</strong>ce. Another aspect<br />

influencing the amplitude of the simulated solar signal are the spectral<br />

solar fluxes that need to be prescribed at the top of the model<br />

atmosphere. The purpose of this study is to qu<strong>an</strong>tify the effects of<br />

prescribing different solar flux data sets on the simulated atmospheric<br />

response, <strong>an</strong>d to compare these to the atmospheric effects of the 11-year<br />

variations in both the solar flux <strong>an</strong>d the ozone, respectively. We will<br />

present results obtained with the FUBRad short-wave radiation<br />

parameterization (Nissen et al., 2007) that was run in offline-mode <strong>an</strong>d as<br />

short-wave (SW) radiation module in the ECHAM5-MESSy (EMAC) CCM. SW<br />

heating rate differences between a minimum (September 1986) <strong>an</strong>d a maximum<br />

phase (November 1989) of the 11-year solar cycle will be compared. They<br />

are calculated using observed spectral solar flux variations from three<br />

different data sets: (a) daily spectral data from UARS/SOLSTICE described<br />

in Le<strong>an</strong> et al. (2005), (b) spectral solar irradi<strong>an</strong>ce reconstructed from<br />

the SATIRE model based on SOHO MDI imaging (Krivova <strong>an</strong>d Sol<strong>an</strong>ki, 2005),<br />

<strong>an</strong>d (c) scaled solar variability data <strong>der</strong>ived from SCIAMACHY (Pagar<strong>an</strong> et<br />

al., 2009). The effect of solar induced ozone variations are taken into<br />

account by prescribing two ozone climatologies for solar maximum <strong>an</strong>d<br />

minimum conditions respectively, taken from offline calculations with a<br />

chemical tr<strong>an</strong>sport model <strong>an</strong>d the EMAC CCM.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!