21.05.2014 Views

Mass and Light distributions in Clusters of Galaxies - Henry A ...

Mass and Light distributions in Clusters of Galaxies - Henry A ...

Mass and Light distributions in Clusters of Galaxies - Henry A ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Weak Lens<strong>in</strong>g Dilution <strong>in</strong> A1689<br />

0.5<br />

0.5<br />

0.2<br />

0.2<br />

Distortion g +<br />

0.1<br />

Distortion g +<br />

0.1<br />

0.02<br />

0.02<br />

0.01<br />

0.01<br />

2 5 10 20<br />

θ [arcm<strong>in</strong>]<br />

2 5 10 20<br />

θ [arcm<strong>in</strong>]<br />

Figure 2.3 – Tangential shear pr<strong>of</strong>iles,<br />

g T (r) <strong>of</strong> the red <strong>and</strong> blue background populations.<br />

The tangential distortion pr<strong>of</strong>ile<br />

<strong>of</strong> both decl<strong>in</strong>e smoothly from the center,<br />

rema<strong>in</strong><strong>in</strong>g positive to the limit <strong>of</strong> the data.<br />

The red galaxies are fitted well with a simple<br />

power-law, d log g T /d log r = −1.17 ±<br />

0.1. The blue sample is more noisy but<br />

also well represented by the same relation,<br />

only <strong>of</strong>fset <strong>in</strong> amplitude by 23 ± 17% <strong>and</strong><br />

is related to the greater depth <strong>of</strong> the blue<br />

population relative to the red, § 2.5<br />

Figure 2.4 – Tangential shear vs. radius.<br />

The green po<strong>in</strong>ts represent the <strong>in</strong>termediate<br />

color sample, conta<strong>in</strong><strong>in</strong>g both cluster<br />

<strong>and</strong> background galaxies. The black po<strong>in</strong>ts<br />

show the level <strong>of</strong> tangential distortion <strong>of</strong><br />

the comb<strong>in</strong>ed red+blue sample <strong>of</strong> the background.<br />

The green po<strong>in</strong>ts fall close to<br />

the background level def<strong>in</strong>ed at large radii,<br />

<strong>in</strong>dicat<strong>in</strong>g the green sample is dom<strong>in</strong>ated<br />

by background galaxies, <strong>and</strong> falls short towards<br />

the cluster center where cluster members<br />

<strong>in</strong>creas<strong>in</strong>gly dilute the lens<strong>in</strong>g signal.<br />

<strong>in</strong>vestigated this us<strong>in</strong>g the catalog <strong>of</strong> Capak et al. (2004) as here photometric<br />

redshifts are estimated (see § 2.5 for a fuller description <strong>of</strong> the photometric<br />

properties <strong>of</strong> this sample). First, we generated from the Capak catalog<br />

blue/red background galaxy samples with the same color-magnitude criteria<br />

as the present study. We then derived an i’-magnitude vs. photo-z relation<br />

for each galaxy sub-sample. We subdivided the data <strong>in</strong>to magnitude (i’) b<strong>in</strong>s<br />

<strong>and</strong> derived a magnitude (i’) vs. photo-z relation us<strong>in</strong>g median averag<strong>in</strong>g.<br />

We then assume this magnitude-redshift relation holds <strong>in</strong> our A1689 data<br />

<strong>and</strong> obta<strong>in</strong> for each galaxy <strong>in</strong> A1689 an estimate <strong>of</strong> redshift via the magnitude<br />

– photo-z relation. It is then straightforward to have an effective redshift<br />

distribution tak<strong>in</strong>g <strong>in</strong>to account weak lens<strong>in</strong>g statistical weights, w. We can<br />

see a qualitative feature that although low-z background galaxies are more<br />

strongly weighted than higher-z ones, the effect on our observed redshift distribution<br />

is negligible because our redshift selection w<strong>in</strong>dow does not sample<br />

38

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!