23.05.2014 Views

10 - H1 - Desy

10 - H1 - Desy

10 - H1 - Desy

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

7.2 Photon energy calibration 89<br />

using already introduced electrons from Bethe-Heitler events and photons from deeply virtual<br />

Compton scattering events, in a similar way to [66]. For BH electrons, the transverse<br />

LAr energy was calibrated with the help of the electron transverse momentum measured<br />

directly in the tracker. For DVCS photons the energy can be calculated indirectly using<br />

the double angle method:<br />

E γ T,DA =<br />

2E e sinθ had sinθ e<br />

sinθ had + sinθ e − sin(θ had + θ e ) , (7.3)<br />

where E e is the electron beam energy, θ e is the polar angle of the scattered electron and<br />

θ had is the inclusive hadronic angle. Both methods confirm the validity of the calibration<br />

factors used in the analysis, within statistical significance.<br />

A similar study was performed for the calibration of photons in the MC simulation. Figure<br />

7.4 shows the comparison between MC generated E gen<br />

T<br />

and reconstructed ET<br />

rec transverse<br />

energy additionally binned in the pseudorapidity of the photon. The mean value of<br />

the fitted gaussian resolution function corresponds to typically two percent miscalibration.<br />

800 -1.0 < η < -0.6<br />

µ = -0.007<br />

600<br />

σ = 0.043<br />

400<br />

200<br />

<strong>10</strong>00<br />

500<br />

-0.6 < η < -0.2<br />

µ = -0.016<br />

σ = 0.048<br />

1500<br />

<strong>10</strong>00<br />

500<br />

-0.2 < η < 0.2<br />

µ = -0.020<br />

σ = 0.049<br />

-0.2<br />

0<br />

-0.1 0 0.1 0.2<br />

rec gen gen<br />

(E -E T<br />

)/E<br />

T<br />

T<br />

-0.2<br />

0<br />

-0.1 0 0.1 0.2<br />

rec gen gen<br />

(E -E T<br />

)/E<br />

T<br />

T<br />

-0.2<br />

0<br />

-0.1 0 0.1 0.2<br />

rec gen gen<br />

(E -E T<br />

)/E<br />

T<br />

T<br />

4000<br />

3000<br />

2000<br />

<strong>10</strong>00<br />

0.2 < η < 0.6<br />

µ = -0.029<br />

σ = 0.049<br />

3000<br />

2000<br />

<strong>10</strong>00<br />

0.6 < η < 1.0<br />

µ = -0.018<br />

σ = 0.050<br />

3000<br />

2000<br />

<strong>10</strong>00<br />

1.0 < η < 1.4<br />

µ = 0.002<br />

σ = 0.053<br />

-0.2<br />

0<br />

-0.1 0 0.1 0.2<br />

rec gen gen<br />

(E -E T<br />

)/E<br />

2000<br />

1500<br />

<strong>10</strong>00<br />

500<br />

T<br />

T<br />

-0.2<br />

0<br />

-0.1 0 0.1 0.2<br />

rec gen gen<br />

(E -E T<br />

)/E<br />

1.4 < η < 1.8<br />

µ = 0.006<br />

σ = 0.056<br />

T<br />

T<br />

1500 1.8 < η < 2.4<br />

<strong>10</strong>00<br />

500<br />

-0.2<br />

0<br />

-0.1 0 0.1 0.2<br />

rec gen gen<br />

(E -E T<br />

)/E<br />

µ = -0.011<br />

σ = 0.044<br />

T<br />

T<br />

-0.2<br />

0<br />

-0.1 0 0.1 0.2<br />

rec gen gen<br />

(E -E T<br />

)/E<br />

T<br />

T<br />

-0.2<br />

0<br />

-0.1 0 0.1 0.2<br />

rec gen gen<br />

(E -E T<br />

)/E<br />

T<br />

T<br />

Figure 7.4: Transverse energy calibration studied with the help of reconstructed energy<br />

ET<br />

rec and generated energy E gen<br />

T<br />

in eight bins of pseudorapidity. Distributions are consistent<br />

with a Gaussian function with fitted mean value µ and standard deviation σ. Both<br />

parameters are printed in the respective subfigures.<br />

Comparison to the data miscalibration, together with other <strong>H1</strong> analyses (particularly<br />

DVCS study of [119]) lead to a relative MC misrepresentation of the data electromagnetic

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!