11.01.2015 Views

Introduction to Digital Signal and System Analysis - Tutorsindia

Introduction to Digital Signal and System Analysis - Tutorsindia

Introduction to Digital Signal and System Analysis - Tutorsindia

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Introduction</strong> <strong>to</strong> <strong>Digital</strong> <strong>Signal</strong> <strong>and</strong> <strong>System</strong> <strong>Analysis</strong><br />

Z Domain <strong>Analysis</strong><br />

H z)<br />

=<br />

( z + 0.8)( z<br />

2<br />

2<br />

z ( z −1)(<br />

z + 1)<br />

,<br />

−1.38593z<br />

+ 0.9604)( z + 1.64545z<br />

+ 0.9025) , find the zeros <strong>and</strong> poles.<br />

(<br />

2<br />

2<br />

Re-writing in polar form as:<br />

2<br />

π π <br />

z ( z −1)(<br />

z − exp<br />

j j)(<br />

z − exp<br />

− j )<br />

2 2 <br />

H(<br />

z)<br />

=<br />

π <br />

π <br />

5 <br />

<br />

( z + 0.8) z − 0.98exp<br />

j <br />

z − 0.98exp<br />

− j <br />

z − 0.95exp<br />

j π <br />

z − 0.95exp<br />

−<br />

4 <br />

4 <br />

6 <br />

<br />

5 <br />

j π <br />

6 <br />

The zeros <strong>and</strong> poles are easily <strong>to</strong> be found <strong>and</strong> described as:<br />

5 zeros: ⎛ p ⎞<br />

π 5 <br />

0, 0 ,1, exp⎜<br />

± j ⎟ , <strong>and</strong> 5 poles: − 0.8,<br />

0.98exp<br />

± j , 0.95exp<br />

± j π . .<br />

⎝ 2 ⎠ 4 6 <br />

Any zeros or poles at the origin only produce a time advance or delay. A minimum-delay system requires:<br />

The number of poles = the number of zeros<br />

If zeros are more than poles, a system becomes non-causal. Some poles are needed <strong>to</strong> be added <strong>to</strong> change in<strong>to</strong> causal.<br />

Example 5.7: If a transfer function H<br />

1<br />

− 2rz<br />

cosθ<br />

+ r<br />

−2<br />

( z)<br />

=<br />

=<br />

2<br />

2<br />

−1<br />

2 −2<br />

z<br />

1−<br />

2rz<br />

z<br />

cosθ<br />

+ r z<br />

, ,<br />

It can be found<br />

2<br />

y[<br />

n]<br />

= 2r<br />

cosq y[<br />

n −1]<br />

− r y[<br />

n − 2] + x[<br />

n − 2]<br />

.<br />

or<br />

2<br />

h[<br />

n]<br />

= 2r<br />

cosq<br />

h[<br />

n −1]<br />

− r h[<br />

n − 2] + d[<br />

n − 2]<br />

Assuming the system is causal, h [ n]<br />

= 0 when n < 0<br />

h[0]<br />

= 2r<br />

cosq<br />

h[<br />

−1]<br />

− r<br />

h[1]<br />

= 2r<br />

cosq<br />

h[0]<br />

− r<br />

2<br />

2<br />

h[<br />

−2]<br />

+ d[<br />

−2]<br />

= 0<br />

h[<br />

−1]<br />

+ d[<br />

−1]<br />

= 0.<br />

i.e., from the impulse response it can be seen that in the system, there is time delay of 2 samples. However, alternatively,<br />

if the z-transform is given by<br />

H<br />

z<br />

1<br />

− 2rz<br />

cosq + r 1−<br />

2rz<br />

cosq<br />

+ r z ,<br />

2<br />

( z)<br />

=<br />

=<br />

2<br />

2<br />

−1<br />

2 −2<br />

z<br />

74<br />

Download free ebooks at bookboon.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!