02.12.2012 Views

Applications of state space models in finance

Applications of state space models in finance

Applications of state space models in finance

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Used abbreviations and symbols xxiii<br />

¯F T +l<br />

f t−1<br />

m<strong>in</strong>imum MSE variance matrix for a l-period ahead forecast<br />

vector <strong>of</strong> lagged factor realizations<br />

ft<br />

variance <strong>of</strong> one-step ahead prediction errors (univariate case)<br />

fk,t<br />

¯f<br />

˜fk,t<br />

realizations <strong>of</strong> the k-th risk factor<br />

steady-<strong>state</strong> value <strong>of</strong> ft<br />

mean zero realizations <strong>of</strong> the k-th risk factor<br />

fibt<br />

FIBOR rate<br />

F Xt<br />

exchange rate factor<br />

Ht<br />

variance-covariance matrix <strong>of</strong> observation disturbances<br />

h (i) i-th draw for h obta<strong>in</strong>ed from an importance density<br />

ht<br />

conditional variance <strong>in</strong> a GARCH model;<br />

log-volatility process <strong>in</strong> a SV model<br />

h unconditional variance <strong>of</strong> observation errors<br />

i∗ T<br />

the most probable <strong>state</strong> at time T <strong>in</strong> the Viterbi algorithm<br />

J Φ<br />

<strong>in</strong>dex matrix<br />

Kt<br />

¯K<br />

Kalman ga<strong>in</strong> matrix<br />

steady-<strong>state</strong> value <strong>of</strong> the Kalman ga<strong>in</strong> matrix<br />

Kɛ<br />

kurtosis for the unconditional distribution <strong>of</strong> ɛt<br />

Kz<br />

kurtosis for the unconditional distribution <strong>of</strong> zt<br />

k number <strong>of</strong> explanatory variables<br />

ku kurtosis <strong>of</strong> a series<br />

Lt<br />

element <strong>of</strong> the covariance matrix <strong>of</strong> the <strong>state</strong> vector<br />

l order <strong>of</strong> test statistics;<br />

lead time<br />

lev correlation between R2 i,t and Ri,t−1<br />

M number <strong>of</strong> draws from a simulation<br />

m dimension <strong>of</strong> the <strong>state</strong> vector;<br />

number <strong>of</strong> components <strong>in</strong> a mixture model<br />

mt+1<br />

stochastic discount factor<br />

N t<br />

variance matrix <strong>of</strong> the weighted sum <strong>of</strong> future <strong>in</strong>novations<br />

Nt<br />

number <strong>of</strong> pairs <strong>of</strong> sector ranks<br />

N dimension <strong>of</strong> a time series vector<br />

OILt<br />

oil factor<br />

P 1<br />

covariance matrix <strong>of</strong> the <strong>in</strong>itial <strong>state</strong> vector<br />

P ∗, P ∞ elements <strong>of</strong> the covariance matrix <strong>of</strong> the <strong>in</strong>itial <strong>state</strong> vector<br />

P t<br />

covariance matrix <strong>of</strong> the <strong>state</strong> vector<br />

¯P steady-<strong>state</strong> value <strong>of</strong> P t<br />

p ∗ likelihood <strong>of</strong> the most probable path <strong>in</strong> the Viterbi algorithm<br />

p number <strong>of</strong> lagged conditional variance terms <strong>of</strong> a GARCH model<br />

pt<br />

price <strong>of</strong> an asset at time t<br />

Qt variance-covariance matrix <strong>of</strong> <strong>state</strong> errors;<br />

variance-covariance matrix <strong>of</strong> standardized residuals<br />

Q0 <strong>in</strong>itial variance-covariance matrix <strong>of</strong> <strong>state</strong> errors<br />

variance-covariance matrix <strong>of</strong> <strong>state</strong> errors (extended <strong>state</strong> vector)<br />

Q †<br />

t

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!