11.01.2017 Views

Sullivan Microsite DigiSample

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Sullivan</strong> AP˙<strong>Sullivan</strong>˙Chapter01 October 8, 2016 17:4<br />

Section 1.4 • Assess Your Understanding 125<br />

Figures 47(a) and 47(b) illustrate the graphs of f and F.<br />

y<br />

8<br />

4<br />

y<br />

1<br />

1<br />

2<br />

4<br />

x<br />

Must-Do Problems for<br />

Exam Readiness<br />

AB: 9–45 odd, AP ® Practice Problems<br />

BC: 11, 23, 25, 35, 43, 45, 55, all AP ®<br />

Practice Problems<br />

Summary Basic Limits<br />

• lim<br />

x→c<br />

A = A, where A is a constant<br />

• lim sin x = sin c • lim cos x = cos c<br />

x→c x→c<br />

• lim a x = a c , a > 0, a = 1<br />

x→c<br />

1.4 Assess Your Understanding<br />

Concepts and Vocabulary<br />

1. lim x→0<br />

sin x =<br />

Figure 47<br />

• lim<br />

x→c<br />

x = c<br />

2 2<br />

(a) f (x) e 2x<br />

sin θ<br />

cos θ − 1<br />

• lim = 1 • lim = 0<br />

θ→0 θ<br />

θ→0 θ<br />

• lim<br />

x→c<br />

log a x = log a c, c > 0, a > 0, a = 1<br />

cos x − 1<br />

2. True or False lim = 1<br />

x→0 x<br />

3. The Squeeze Theorem states that if the functions f, g, and h<br />

have the property f (x) ≤ g(x) ≤ h(x) for all x in<br />

an open interval containing c, except possibly at c, and<br />

if lim f (x) = lim h(x) = L, then lim g(x) = .<br />

x→c x→c x→c<br />

4. True or False f (x) = csc x is continuous for all real numbers<br />

except x = 0.<br />

Skill Building<br />

In Problems 5–8, use the Squeeze Theorem to find each limit.<br />

PAGE<br />

118 5. Suppose −x 2 + 1 ≤ g(x) ≤ x 2 + 1 for all x in an open<br />

interval containing 0. Find lim g(x).<br />

x→0<br />

6. Suppose −(x − 2) 2 − 3 ≤ g(x) ≤ (x − 2) 2 − 3 for all x<br />

in an open interval containing 2. Find lim x→2<br />

g(x).<br />

7. Suppose cos x ≤ g(x) ≤ 1 for all x in an open interval<br />

containing 0. Find lim x→0<br />

g(x).<br />

8. Suppose −x 2 + 1 ≤ g(x) ≤ sec x for all x in an open interval<br />

containing 0. Find lim x→0<br />

g(x).<br />

In Problems 9–22, find each limit.<br />

9. lim x→0<br />

(x 3 + sin x) 10. lim x→0<br />

(x 2 − cos x)<br />

x<br />

2<br />

3<br />

(b) F(x) ln x<br />

NOW WORK Problem 45 and AP® Practice Problems 3, 5, and 9.<br />

11. lim (cos x + sin x) 12. lim (sin x − cos x)<br />

x→π/3 x→π/3<br />

13.<br />

cos x<br />

sin x<br />

lim<br />

14. lim<br />

x→0 1 + sin x<br />

x→0 1 + cos x<br />

15.<br />

3<br />

e x − 1<br />

lim x→0 1 + e x 16. lim x→0 1 + e x<br />

17. lim(e x sin x) 18. lim(e −x tan x)<br />

x→0 x→0<br />

( ) e x<br />

( x<br />

)<br />

19. lim ln<br />

20. lim ln<br />

x→1 x<br />

x→1 e x<br />

e 2x<br />

1 − e x<br />

21. lim x→0 1 + e x 22. lim x→0 1 − e 2x<br />

In Problems 23–34, find each limit.<br />

PAGE<br />

121 23.<br />

sin(7x)<br />

lim x→0 x<br />

PAGE<br />

121 25.<br />

θ + 3 sin θ<br />

lim θ→0 2θ<br />

27.<br />

sin θ<br />

lim θ→0 θ + tan θ<br />

29.<br />

5<br />

lim θ→0 θ · csc θ<br />

PAGE<br />

122 31.<br />

1 − cos 2 θ<br />

lim θ→0 θ<br />

24. lim x→0<br />

sin x 3<br />

x<br />

26.<br />

2x − 5 sin(3x)<br />

lim x→0 x<br />

28.<br />

tan θ<br />

lim θ→0 θ<br />

30.<br />

sin(3θ)<br />

lim θ→0 sin(2θ)<br />

[<br />

33. lim(θ · cot θ) 34. lim sin θ<br />

θ→0 θ→0<br />

cos(4θ)− 1<br />

32. lim θ→0 2θ<br />

( )]<br />

cot θ − csc θ<br />

θ<br />

TRM Full Solutions to Section<br />

1.4 Problems and AP® Practice<br />

Problems<br />

Answers to Section 1.4<br />

Problems<br />

1. 0<br />

2. False.<br />

3. L<br />

4. False.<br />

5. 1<br />

6. −3<br />

7. 1<br />

8. 1<br />

9. 0<br />

10. −1<br />

3 1<br />

11. +<br />

2 2<br />

3 1<br />

12. −<br />

2 2<br />

13. 1<br />

14. 0<br />

15. 3 2<br />

16. 0<br />

17. 0<br />

18. 0<br />

19. 1<br />

20. −1<br />

21. 1 2<br />

TRM Section 1.4: Worksheet 2<br />

This worksheet includes 9 limit questions to be<br />

solved analytically.<br />

22. 1 2<br />

23. 7<br />

24. 1 3<br />

25. 2<br />

26. −13<br />

27. 1 2<br />

28. 1<br />

29. 5<br />

30. 3 2<br />

31. 0<br />

32. 0<br />

33. 1<br />

34. 0<br />

Section 1.4 • Assess Your Understanding<br />

125<br />

TE_<strong>Sullivan</strong>_Chapter01_PART II.indd 8<br />

11/01/17 9:55 am

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!