11.01.2017 Views

Sullivan Microsite DigiSample

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Sullivan</strong> AP˙<strong>Sullivan</strong>˙Chapter01 October 8, 2016 17:4<br />

<strong>Sullivan</strong><br />

134 Chapter 1 • Limits and Continuity<br />

The graphs of the functions g(x) = 3x 2 − 2x + 8<br />

and f (x) = 4x 2 − 5x<br />

are<br />

x 2 + 1<br />

x 3 + 1<br />

shown in Figures 56(a) and 56(b), respectively. In each graph, notice how the graph of<br />

the function behaves as x becomes unbounded.<br />

y<br />

y<br />

8<br />

6<br />

4<br />

g(x)<br />

3x 2 2x 8<br />

x 2 1<br />

y 3<br />

y 0<br />

4<br />

4<br />

f(x)<br />

4x 2 5x<br />

x 3 1<br />

4 8<br />

x<br />

2<br />

4<br />

Alternate Example<br />

Finding the Limit at Infinity<br />

Find<br />

x +<br />

lim 4 2<br />

10<br />

x→∞<br />

x − 5<br />

Solution<br />

Another way to find this limit at infinity is to<br />

consider the variable terms only, because<br />

the constant 10 in the numerator and −5 in<br />

the denominator contribute very little as<br />

x → ∞:<br />

x +<br />

x<br />

lim 4 2 10 = lim 4 2<br />

x→∞<br />

x − 5 x→∞<br />

x<br />

x<br />

= lim 2| | = lim 2=<br />

2<br />

x→∞<br />

x x→∞<br />

Alternate Example<br />

Finding the Limit at Infinity<br />

x<br />

Find lim sin .<br />

x→∞<br />

x<br />

Solution<br />

The numerator, sin x, fluctuates between<br />

−1 and 1 over its entire domain.<br />

Since the numerator is bounded, we can<br />

use the following argument to show the<br />

limit exists.<br />

sinx<br />

Some number between −1 and 1<br />

lim ≈<br />

x→∞<br />

x a very large number<br />

x<br />

and thus lim sin = 0<br />

x→∞<br />

x<br />

This problem can also be solved formally<br />

using the Squeeze Theorem.<br />

We can also take a graphical approach.<br />

y<br />

1<br />

20<br />

10<br />

y<br />

20<br />

10<br />

10<br />

Figure 57 f (x) =<br />

lim f (x) 2<br />

x →∞<br />

y 2<br />

10 20 x<br />

√<br />

4x 2 + 10<br />

x − 5<br />

NEED TO REVIEW? The end behavior<br />

of a polynomial function is discussed in<br />

Section P.2, p. 21.<br />

CALC<br />

CLIP<br />

Figure 56<br />

4<br />

8<br />

x<br />

(a) lim g(x) 3 (b) lim<br />

f(x) 0<br />

x→∞ x→ ∞<br />

Limits at infinity have the following property.<br />

If p > 0 is a rational number and k is any real number, then<br />

provided x p is defined when x < 0.<br />

k<br />

lim = 0 and lim<br />

x→∞ x<br />

p<br />

5<br />

−6<br />

For example, lim = 0, lim = 0, and<br />

x→∞ x<br />

3 x→∞ x lim<br />

2/3<br />

EXAMPLE 7 Finding the Limit at Infinity<br />

√<br />

4x<br />

2<br />

+ 10<br />

Find lim<br />

.<br />

x→∞ x − 5<br />

NOW WORK Problems 47 and 49.<br />

x→−∞<br />

x→−∞<br />

k<br />

x = 0 p<br />

4<br />

= 0.<br />

x<br />

8/3<br />

Solution Divide each term of the numerator and the denominator by x, the term with the<br />

highest power of x that appears in the denominator. But remember, since √ x 2 =|x| =x<br />

when x ≥ 0, in the numerator the divisor in the square root will be x 2 .<br />

lim<br />

x→∞<br />

√<br />

4x<br />

2<br />

+ 10<br />

x − 5<br />

= lim<br />

x→∞<br />

√<br />

4x 2 + 10<br />

x 2<br />

x − 5<br />

= lim<br />

x→∞<br />

x<br />

√<br />

√<br />

lim 4 + 10<br />

x→∞<br />

= [ x 2<br />

lim 1 − 5 ] =<br />

x→∞ x<br />

lim<br />

x→∞<br />

√<br />

4x 2<br />

x + 10<br />

2 x 2<br />

1 − 5 x<br />

[<br />

4 + 10 ]<br />

x 2<br />

1<br />

= √ 4 = 2<br />

√<br />

4x<br />

2<br />

+ 10<br />

The graph of f (x) =<br />

x − 5<br />

and its behavior as x →∞is shown in Figure 57.<br />

NOW WORK Problem 57 and AP® Practice Problem 6.<br />

An alternative method for finding limits at infinity for rational functions uses the<br />

end behavior of a polynomial function.<br />

■<br />

220<br />

20<br />

x<br />

21<br />

x→∞<br />

x<br />

x<br />

lim sin<br />

= 0.<br />

134<br />

Chapter 1 • Limits and Continuity<br />

TE_<strong>Sullivan</strong>_Chapter01_PART II.indd 17<br />

11/01/17 9:56 am

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!