19.10.2019 Views

1.Algebra Booster

  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2.2 Algebra <strong>Booster</strong><br />

fi<br />

fi<br />

fi<br />

fi<br />

2 2<br />

2<br />

x + 2 Ê Á b ˆ x + Ê b ˆ - Ê b ˆ + c = 0<br />

Ë<br />

˜<br />

2a¯ Á<br />

Ë<br />

˜ Á ˜<br />

2a¯ Ë2a¯<br />

a<br />

2 2<br />

Ê b ˆ b - 4ac<br />

Áx<br />

+ =<br />

Ë<br />

˜<br />

2<br />

2a¯<br />

4a<br />

Ê b ˆ b - 4ac<br />

Áx<br />

+ = ±<br />

Ë<br />

˜<br />

2a¯<br />

2a<br />

- b± b -4ac<br />

x =<br />

2a<br />

2<br />

2<br />

Notes<br />

1. The expression b 2 – 4ac is called the discriminant<br />

and is denoted as D defined as D = b 2 – 4ac. The<br />

value of D determines whether the quadratic equation<br />

has two real solutions, one real solution and no<br />

real solution according as D is positive (+ve), zero<br />

and negative (–ve).<br />

1.8 NATURE OF THE ROOTS<br />

Let ax 2 + bx + c = 0, a π 0, whereas D = b 2 – 4ac.<br />

The nature of the roots depends on D.<br />

(i) If D > 0, the roots are real and distinct.<br />

(ii) If D = 0, the roots are real and equal.<br />

(iii) If D < 0, the roots are imaginary and distinct.<br />

(iv) If D > 0 and a perfect square, the roots are rational.<br />

(v) If D > 0 and not a perfect square, the roots are irrational.<br />

(vi) If a, b, c ΠR and one of the roots is imaginary, say a +<br />

ib, its other root will be its conjugate, i.e. a – ib.<br />

(vii) If a, b, c ΠQ and one of the roots is irrational, say<br />

p + q, its other root will be its conjugate, i.e. p - q.<br />

(viii) If a = 1, b, c ΠQ and D = b 2 Р4ac is a perfect square,<br />

both the roots are integers.<br />

(ix) If a + b + c = 0 ( i.e. the sum of the co-efficients is<br />

c<br />

zero), 1 is one root and the other root will be .<br />

a<br />

c<br />

(x) If a – b + c = 0, –1 is one root and the other root is - .<br />

a<br />

(xi) If the equation ax 2 + bx + c = 0 has real roots a and b,<br />

we write<br />

2<br />

ax + bx + c = a( x -a)( x - b)<br />

.<br />

1.9 SUM AND PRODUCT OF THE ROOTS<br />

(i) If a and b be the roots of ax 2 + bx + c = 0,<br />

then<br />

b<br />

(a) a + b = Sum of the roots = -<br />

a<br />

c<br />

(b) ab = product of the roots = .<br />

a<br />

(ii) If a, b, g are the roots of ax 3 + bx 2 + cx + d = 0,<br />

then<br />

b<br />

(a) a + b + g = -<br />

a<br />

c<br />

(b) ab + bg + ga =<br />

a<br />

d<br />

(c) abg =-<br />

a<br />

(iii) If a, b, g, d are the roots of ax 4 + bx 3 + cx 2 + dx + c = 0,<br />

then<br />

b<br />

(a) a + b + g + d = -<br />

(b)<br />

(c)<br />

(d)<br />

a<br />

ab + ag + ad + bg + bd + gd =<br />

d<br />

abg + abd + agd + bgd = -<br />

e<br />

a<br />

abgd =-<br />

a<br />

1.10 SYMMETIC FUNCTIONS OF THE ROOTS<br />

In order to find the value of the symmetric function of the<br />

roots a and b, we should express the given function in terms<br />

of a + b and ab.<br />

2<br />

(i) ( a - b) = ( a + b) -4ab<br />

(ii)<br />

(iii)<br />

(iv)<br />

(v)<br />

(vi)<br />

2 2 2<br />

a + b = ( a + b) -2ab<br />

3 3 3<br />

a + b = ( a + b) - 3 ab( a + b)<br />

4 4 2 2 2 2<br />

a + b = ( a + b ) -2( ab)<br />

2 2 2<br />

={( a + b) –2 ab} –2( ab)<br />

5 5 3 3 2 2 2 2<br />

a + b = ( a + b )( a + b )- a b ( a + b)<br />

7 7 4 4 3 3 3 3<br />

a + b = ( a + b )( a + b )- a b ( a + b)<br />

1.11 FORMATION OF AN EQUATION<br />

(i) If a and b be the roots of ax 2 + bx + c = 0,<br />

then<br />

2 Ê bˆ<br />

c<br />

x -Á- x+ = 0<br />

Ë<br />

˜<br />

a¯<br />

a<br />

2<br />

fi x -( a + b) x+ ab = 0.<br />

(ii) If a, b and g are the roots of ax 3 + bx 2 + cx + d = 0, then<br />

3 Ê bˆ<br />

2 c d<br />

x -Á- x + x - = 0<br />

Ë<br />

˜<br />

a¯<br />

a a<br />

fi x 3 – (a + b + g)x 2 + (ab + bg + ga)x – abg = 0.<br />

(iii) If a, b, g, d are the roots of ax 4 + bx 3 + cx 2 + dx + e = 0,<br />

then<br />

4 Ê bˆ 3 Êcˆ 2 Ê dˆ<br />

e<br />

x -Á- ˜ x + Á ˜ x -Á- ˜ x+ = 0 .<br />

Ë a¯ Ëa¯ Ë a¯<br />

a<br />

4 3<br />

fi x -( a + b + g + d)<br />

x<br />

2<br />

+ ( ab + ag + ad + bg + bd + gd )x<br />

c<br />

a<br />

-( abg + abd + agd + bgd ) x + abgd = 0<br />

1.12 COMMON ROOTS OF QUADRATIC EQUATIONS<br />

Let a 1<br />

x 2 + b 1<br />

x + c 1<br />

= 0 and a 2<br />

x 2 + b 2<br />

x + c 2<br />

= 0 be two quadratic<br />

equations.<br />

(i) When one root is common<br />

Let a be a common root between the two equations. Then<br />

a 1<br />

a 2 + b 1<br />

a + c 1<br />

= 0<br />

and a 2<br />

a 2 + b 2<br />

a + c 2<br />

= 0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!