19.10.2019 Views

1.Algebra Booster

  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4.10 Algebra <strong>Booster</strong><br />

In an equilateral triangle, the circumcentre and the centroid<br />

are the same point.<br />

Ê z1+ z2+<br />

z3ˆ<br />

Therefore, z0<br />

= Á<br />

Ë<br />

˜<br />

3 ¯<br />

2 2<br />

fi ( z + z + z ) = 9z<br />

fi<br />

1 2 3 0<br />

2 2 2 2<br />

1 + 2 + 3 + 2( 1 2+ 2 3+ 3 1) = 9 0<br />

z z z z z z z z z z<br />

fi (z 1<br />

z 2<br />

+ z 2<br />

z 3<br />

+ z 3<br />

z 1<br />

)<br />

Ê<br />

2 2 2 2<br />

9z0 - z1 - z2 - z ˆ<br />

3<br />

= Á<br />

Ë<br />

˜<br />

2 ¯<br />

since z 1<br />

, z 2<br />

, z 3<br />

are the vertices of an equilateral triangle,<br />

then<br />

2 2 2<br />

fi z + z + z = z z + z z + z z<br />

1 2 3 1 2 2 3 3 1<br />

2 2 2<br />

2 2 2 1 2 3<br />

9 - z - z - z<br />

Thus, z1 + z2 + z3<br />

=<br />

2<br />

2 2 2 2<br />

fi 3( z + z + z ) = 9z<br />

fi<br />

1 2 3 0<br />

2 2 2 2<br />

1 + 2 + 3 = 0<br />

( z z z ) 3z<br />

which is the required condition.<br />

11. Condition of Parallelism of Two Lines<br />

Az ( 1)<br />

Bz ( 2)<br />

Cz ( 3)<br />

Dz ( 2)<br />

Ê 1 2<br />

Let arg z - z ˆ<br />

Á = q<br />

z3 z ˜ .<br />

Ë - 4¯<br />

If AB||CD, then q = 0 or ±p<br />

Ê z1-<br />

z2ˆ fi argÁ<br />

= 0 or ± p<br />

Ë z3-<br />

z ˜<br />

4¯<br />

fi<br />

Ê z1-<br />

z2ˆ<br />

Á z3 z ˜ is real<br />

Ë - 4¯ 12. Condition of Perpendicularity<br />

Az ( 1)<br />

q<br />

Dz ( 4)<br />

Bz ( 2)<br />

Cz ( 3)<br />

p<br />

If AB ^ CD, then q =±<br />

2<br />

Ê z1-<br />

z2ˆ p<br />

arg Á =±<br />

Ë z3-<br />

z ˜<br />

4¯<br />

2<br />

Ê z1-<br />

z2ˆ<br />

Á z3 z ˜ is purely imaginary number.<br />

Ë - 4¯ (z 1<br />

– z 2<br />

) = ±k(z 3<br />

– z 4<br />

),<br />

where k is purely imaginary number.<br />

13. Condition of a parallelogram<br />

Az ( 1)<br />

Dz ( 4)<br />

Bz ( 2)<br />

Cz ( 3)<br />

As we know that the diagonals of a parallelogram bisect<br />

each other.<br />

Thus, mid point of AC = Mid-point of BD<br />

1 3 2 4<br />

fi z + z z +<br />

=<br />

z<br />

2 2<br />

fi (z 1<br />

+ z 3<br />

) = (z 2<br />

+ z 4<br />

)<br />

14. Regular polygon of n sides<br />

(i) Given z 1<br />

and z 0<br />

, then find z 2<br />

and z 3<br />

in terms of z 1<br />

and z 0 z5<br />

z 4<br />

z 0<br />

z n z 3<br />

2 p/n<br />

z 1<br />

Centre at Z 0<br />

is at an angle 2p/n.<br />

Ê z2- z0ˆ z2-<br />

z0<br />

Á = ¥ e<br />

Ë z1- z ˜<br />

0¯<br />

z1-<br />

z0<br />

Ê z2- z0ˆ | z2-<br />

z0|<br />

fi Á = ¥ e<br />

Ë z1- z ˜<br />

0¯<br />

| z2-<br />

z0|<br />

z<br />

2<br />

2 z0<br />

i p<br />

Ê - ˆ<br />

fi<br />

e<br />

n<br />

Á =<br />

Ë z1-<br />

z ˜<br />

0¯<br />

i 2<br />

fi ( z - z ) = ( z - z ) ¥ e p<br />

n<br />

fi<br />

z 2<br />

2 0 1 0<br />

i 2<br />

z2= z0+ ( z1- z0) ¥ e p<br />

n<br />

i 2p<br />

n<br />

i 2p<br />

n<br />

similarly, we can easily show that,<br />

z = z + ( z - z ) ¥ e<br />

3 0 1 0<br />

z = z + ( z - z ) ¥ e<br />

o<br />

4 0 1 0<br />

i 4p<br />

n<br />

i 6p<br />

n<br />

2( n –1) p<br />

i<br />

n<br />

zn<br />

= z0+ ( z1- z0)<br />

¥ e<br />

(ii) Given z 1<br />

, z 2<br />

, find z 3<br />

, z 4<br />

, z 5<br />

and so on.<br />

z 5<br />

z 4<br />

z 0<br />

z n z 3<br />

z 1<br />

( n – 2) p<br />

n<br />

z 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!