19.10.2019 Views

1.Algebra Booster

  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Matrices and Determinants 7.7<br />

11. INTEGRATION OF DETERMINANT<br />

If<br />

then<br />

f() x g() x h()<br />

x<br />

Fx () = a b c ,<br />

l m n<br />

b<br />

Ú<br />

a<br />

b b b<br />

Ú Ú Ú<br />

f () x dx g() x dx h()<br />

x dx<br />

a a a<br />

F()<br />

x dx = a b c<br />

l m n<br />

12. SUMMATION OF DETERMINANTS<br />

f() r g() r h()<br />

r<br />

Let D r = a b c<br />

p q r<br />

Then<br />

n<br />

Â<br />

r = 1<br />

D =<br />

r<br />

n n n<br />

  Â<br />

f() r g() r h()<br />

r<br />

r= 1 r= 1 r=<br />

1<br />

a b c<br />

p q r<br />

13. ADJOINT OF A MATRIX<br />

The adjoint of a matrix is the transpose of the co-factors of<br />

the corresponding elements of a given matrix.<br />

If A be any square matrix, then<br />

adj A = (C ij<br />

) T<br />

EXAMPLE 1: Let<br />

then<br />

EXAMPLE 2: Let<br />

then<br />

2 3<br />

A = Ê ˆ<br />

Á<br />

Ë4 5 ˜<br />

¯ ,<br />

Ê 5 -4ˆ Ê 5 -3ˆ<br />

adj ( A)<br />

= Á =<br />

Ë-3 2 ˜<br />

¯<br />

Á<br />

Ë-4 2˜<br />

¯ .<br />

T<br />

Ê1 2 3ˆ<br />

B = Á2 Á<br />

1 2 ˜,<br />

˜<br />

Ë3 2 4¯<br />

Ê 1 2 2 2 2 1 ˆ<br />

Á -<br />

2 4 3 4 3 2 ˜<br />

Á<br />

˜<br />

Á 2 3 1 3 1 2˜<br />

adj ( B)<br />

= Á- - ˜<br />

Á 2 4 3 4 3 2˜<br />

Á<br />

2 3 1 3 1 2<br />

˜<br />

Á<br />

-<br />

Ë 1 2 2 2 2 1 ˜<br />

¯<br />

T<br />

Ê 0 -2 1 ˆ<br />

= Á-2 -5 4˜<br />

Á<br />

˜<br />

Ë 1 4 -3¯<br />

Ê 0 -2 1 ˆ<br />

= Á-2 -5 4˜<br />

Á<br />

˜<br />

Ë 1 4 -3¯<br />

T<br />

Theorem: If A be any square matrix, then<br />

A◊ [adj ( A)] = | A| ◊ I = [adj ( A)]<br />

◊ A<br />

13.1 Properties of Adjoint of Matrix or Matrices<br />

(i) If A be any square matrix of order n, then<br />

1<br />

|adj ( A)|<br />

= | A| n-<br />

Proof: We know that A◊ adj ( A) = | A| ◊In<br />

fi | A◊ adj( A)| = ||A| ◊ I | = | A| n<br />

fi | A||adj( A)| = || A| ◊ I | = | A| n<br />

fi<br />

| A|<br />

|adj ( A)| = = | A|<br />

| A|<br />

n<br />

n<br />

n<br />

n<br />

n-1<br />

( |AB| = |A||B|)<br />

Hence, the result.<br />

(ii) If |A| = 0, then |adj(A)| = 0<br />

i.e. if A is singular, then adj(A) is also singular<br />

n-1<br />

(iii) adj ( kA) = k (adj ( A))<br />

T<br />

(iv) adj ( A ) = (adj A)<br />

(v) adj ( AB) = (adj B)(adj A)<br />

Proof: We have<br />

( AB)adj( AB) = | AB|<br />

In<br />

fi (adj B)(adj A)( AB) adj ( AB)<br />

= | AB|(adj B)(adj A)<br />

I<br />

T<br />

fi (adj B) | A| I B(adj AB) = | AB|(adj B)(adj A)<br />

n<br />

fi | A| (adj B) B(adj AB) = | AB| (adj B)(adj A)<br />

fi | ABI || | (adj AB) = |AB|(adj B)(adj A)<br />

n<br />

fi | A| | B| (adj AB) = | AB|(adj B)(adj A)<br />

fi (adj AB) = (adj B)(adj A)<br />

(vi) If A is a non-singular matrix, then<br />

2<br />

adj[adj ( A)]<br />

| A| n -<br />

= ◊ A<br />

(vii)<br />

Proof: We know that<br />

A.adj(A) = |A|.I n<br />

Replace A by adjA, we get<br />

adj ( A) ◊ adj[adj ( A)] = |adj ( A)|<br />

◊I<br />

n-1<br />

fi adj ( A) ◊ adj[adj ( A)] = | A|<br />

I<br />

fi<br />

fi<br />

fi<br />

fi<br />

fi<br />

n<br />

n<br />

n-1<br />

[ Aadj ( A)] ◊ adj (adj ( A)) = | A| ( AI n )<br />

1<br />

| A| I adj[adj ( A)] | A| n -<br />

◊ = ◊ A<br />

n<br />

1<br />

| A| adj[adj ( A)] | A| n -<br />

= ◊ A<br />

n - 1<br />

◊<br />

| A|<br />

A<br />

adj[adj ( A)]<br />

=<br />

| A|<br />

2<br />

adj[adj ( A)]<br />

| A| n -<br />

= ◊ A<br />

2<br />

( 1)<br />

|adj[adj ( A)]|<br />

= | A| n-<br />

Proof: We have |[adj(A)]| = |A| n–1<br />

n

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!