19.10.2019 Views

1.Algebra Booster

  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2.4 Algebra <strong>Booster</strong><br />

First we find the values of<br />

Ê b ˆ<br />

f( d), f( e), f Á-<br />

.<br />

Ë<br />

˜<br />

2a¯<br />

Ï<br />

Ê b ˆ¸<br />

Maximum value = M = max Ìf( d), f( e),<br />

f Á-<br />

˜˝<br />

Ó<br />

Ë 2a¯˛<br />

Ï<br />

Ê b ˆ¸<br />

Minimum value = m = min Ìf( d), f( e),<br />

f Á-<br />

˜˝<br />

Ó<br />

Ë 2a¯˛<br />

Case VI: Maximum and Minimum values of a rational<br />

function<br />

2<br />

ax + bx + c<br />

Let y =<br />

2<br />

px + qx + r<br />

To find the maximum and minimum values of y, we should<br />

remember the following points:<br />

(i) First we make it a quadratic equation of x.<br />

(ii) Since x, y in R , then D ≥ 0<br />

(iii) Then solve the quadratic equation of y.<br />

(iv) If y Π[A, B], the maximum value = A and Minimum<br />

Value = B<br />

(v) If y Œ (– , A] » [B, ), the maximum and minimum<br />

values are not defined.<br />

(vi) If y Π(Р, ), the maximum and minimum values are<br />

also not defined.<br />

1.14 RESOLUTION OF A SECOND DEGREE<br />

EXPRESSION IN X AND Y<br />

Let f(x, y) = ax 2 + 2hxy + by 2 + 2gx + 2fy + c.<br />

Now, f(x, y) = 0 gives<br />

ax 2 + 2(hy + g)x + (by 2 + 2fy + c) = 0<br />

fi<br />

2 2<br />

- 2( hy + g) ± 2 ( hy + g) - a( by + 2fy<br />

+ c)<br />

x =<br />

2a<br />

2 2<br />

-( hy + g) ± ( hy + g) - a( by + 2 fy + c)<br />

=<br />

a<br />

2 2 2<br />

fi ax + hy + g =± ( h - ab) y + 2( hg - af ) y + ( g -ac)<br />

Now in order that f(x, y) may be the product of two linear<br />

factors of the form px + qy + r, the quantity under the radical<br />

sign must be a perfect square, hence<br />

(hg – af) 2 = (h 2 – ab)(g 2 – bc)<br />

fi (h 2 g 2 + a 2 f 2 – 2afgh) = (g 2 h 2 – g 2 ab – h 2 bc + a 2 bc)<br />

fi abc + 2fgh – af 2 – bg 2 – ch 2 = 0<br />

a h g<br />

fi h b f = 0<br />

g f c<br />

1.15 LOCATION OF THE ROOTS<br />

Let f(x) = ax 2 + bx + c, where a π 0 and a and b be the roots<br />

of f(x) = 0.<br />

For simplicity, we can assume that a £ b.<br />

b D<br />

where a - -<br />

- b+<br />

D<br />

= and b = , D = b 2 – 4ac<br />

2a<br />

2a<br />

1. When both roots are +ve<br />

0<br />

(i) Sum of the roots > 0<br />

(ii) Product of the roots > 0<br />

(iii) For real roots, D ≥ 0.<br />

2. When both roots are negative<br />

Y<br />

X¢<br />

(i) Sum of the roots < 0.<br />

(ii) Product of the roots > 0.<br />

(iii) For real roots, D ≥ 0<br />

3. When roots are of opposite signs<br />

Y<br />

X¢<br />

Y<br />

0<br />

Y¢<br />

(i) Product of the roots < 0<br />

4. When both roots are<br />

greater than k.<br />

(i) D ≥ 0<br />

(ii) af(k) > 0<br />

(iii) a + b > 2k<br />

5. When both roots are<br />

less than k<br />

(i) D ≥ 0<br />

(ii) af(k) > 0<br />

(iii) a + b < 2k<br />

6. When k lies between<br />

the roots<br />

(i) D > 0<br />

(ii) af(k) < 0<br />

7. When both roots are<br />

confined by k 1<br />

and k 2<br />

such that k 1<br />

< k 2<br />

(i) D ≥ 0<br />

(ii) af(k 1<br />

) > 0<br />

0<br />

X<br />

X<br />

X<br />

k a<br />

a<br />

a<br />

b<br />

k<br />

b<br />

k<br />

b<br />

k 1 a b k 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!