19.10.2019 Views

1.Algebra Booster

  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

7.2 Algebra <strong>Booster</strong><br />

(vii) Identity matrix<br />

(xv) Equality of two matrices<br />

The sum of the diagonal elements of a matrix is known as the<br />

Èa11 a12<br />

˘<br />

trace of a matrix.<br />

Thus, if A = Í<br />

a21 a ˙<br />

Î 22 ˚ and Èb11 b12<br />

˘<br />

B = Í<br />

b21 b ˙<br />

Î 22 ˚,<br />

Èa11 a12 a13<br />

˘<br />

If A= Í<br />

a21 a22 a<br />

˙<br />

Í 23 ˙<br />

, then Tr(A) = a 11<br />

+ a 22<br />

+ a<br />

Èa11b11 + a12b21 a11b12 + a12b22<br />

˘<br />

33 then AB = Í<br />

Ía31 a32 a33<br />

˙<br />

a21b11 a22b21 a21b12 a22b<br />

˙<br />

Î + + 22 ˚<br />

Î<br />

˚<br />

In a scalar matrix, if all the diagonal elements are 1, it is<br />

called an identity matrix.<br />

Two comparable matrices are said to be equal if their corresponding<br />

elements are the same.<br />

1 0 0<br />

For example, I<br />

1 0 È ˘<br />

È2 3˘ Èa<br />

b˘<br />

È ˘ , 0 1 0 ,etc.<br />

2= I<br />

Í ˙<br />

If Í ,<br />

Í 3=<br />

0 1<br />

˙<br />

4 6<br />

˙ = Í<br />

c d<br />

˙ then a = 2, b = 3, c = 4 and d = 6.<br />

Í ˙<br />

Î ˚ Î ˚<br />

Î ˚<br />

ÍÎ0 0 1˙˚<br />

(xvi) Sub-matrix<br />

(viii) Non-zero matrix<br />

Any matrix is obtained by eliminating some rows and some<br />

In a matrix, if at-least one element is non-zero, it is called a columns from a given matrix A, it is called a sub-matrix of A.<br />

non-zero matrix.<br />

È1 3 4 6˘<br />

1 2 0 0<br />

For example, A= Í ˘ and B =<br />

Ê ˆ<br />

Let A<br />

Í<br />

7 0 5 2<br />

˙ 1 3 4<br />

= Í ˙<br />

and B = È ˘<br />

Í<br />

7 0 5 ˙<br />

3 4<br />

˙ Á<br />

Ë0 2˜<br />

Î ˚<br />

¯<br />

Í2 5 9 0˙<br />

Î ˚,<br />

Î ˚<br />

are non-zero matrices.<br />

(ix) Zero matrix<br />

In a matrix, if every elements are zero, it is known as zero<br />

matrix. It is denoted as O.<br />

B is a sub-matrix of A.<br />

3. ADDITION OF MATRICES<br />

We can find the addition of two or more matrices if they are<br />

comparable matrices otherwise addition is not defined.<br />

È0 0˘ È0 0 0˘<br />

For example, O = Í , O = , etc.<br />

0 0<br />

˙ Í<br />

0 0 0<br />

˙<br />

1 3 2 3<br />

Î ˚ Î ˚<br />

Let A= Í ˘ and<br />

6 5<br />

˙ B =<br />

È Í ˘<br />

4 1<br />

˙<br />

(x) Upper triangular matrix<br />

Î ˚ Î ˚,<br />

In a square matrix, if all the elements below the leading elements<br />

are zero, it is called a upper triangular matrix.<br />

then A + B = Í<br />

È 3 6˘<br />

10 6<br />

˙<br />

Î ˚<br />

1 2 3<br />

For example, A<br />

1 2 È ˘<br />

È ˘<br />

= , B =<br />

Í 0 4 5 ˙<br />

Í ,etc.<br />

0 4<br />

˙ Í ˙<br />

Properties of Addition of Matrices<br />

Î ˚<br />

ÍÎ0 0 7˙<br />

(i) Matrix addition is commutative.<br />

˚<br />

(ii) Matrix addition is associative.<br />

(xi) Lower triangular matrix<br />

(iii) Additive identity of a matrix exists.<br />

In a square matrix, if all the elements above the leading elements<br />

are zero, it is called a lower triangular matrix.<br />

(iv) Additive inverse of a matrix exists.<br />

1 0 0<br />

For example, A<br />

1 0 È ˘<br />

3.1 Scalar Multiplication<br />

È ˘<br />

= , B =<br />

Í 2 7 0 ˙<br />

Í ,etc.<br />

2 7<br />

˙ Í ˙<br />

2 4<br />

Î ˚<br />

If A = È ˘<br />

ÍÎ2 3 4˙<br />

Í<br />

˚<br />

6 7 ˙<br />

Î ˚, then È2k<br />

4k˘<br />

kA = Í<br />

6k<br />

7k<br />

˙<br />

Î ˚,<br />

(xii) Strictly triangular matrix<br />

where k is the scalar multiple of A.<br />

In a square matrix, if all the diagonal matrices are zero, it is<br />

called a strictly triangular matrix.<br />

3.2 Negative of a matrix<br />

0 2 3<br />

For example, A<br />

0 3 È ˘<br />

2 4<br />

È ˘<br />

= , B =<br />

Í 5 0 7 ˙<br />

If A = È ˘<br />

Í ,etc.<br />

Í<br />

2 0<br />

˙ Í ˙<br />

6 7 ˙<br />

Î ˚, then È-2 -4˘<br />

- A = Í<br />

-5 -7<br />

˙<br />

Î ˚<br />

Î ˚<br />

ÍÎ3 6 0˙˚<br />

(xiii) Comparable matrices<br />

4. MULTIPLICATION OF MATRICES<br />

Two matrices are said to be comparable matrices, if their orders<br />

are the same.<br />

If the number of columns of a first matrix is equal to the number<br />

of rows of a second matrix, we can find out the product,<br />

È1 2˘ Èa<br />

b˘<br />

otherwise product is not defined.<br />

Let A= Í and B =<br />

3 4<br />

˙ Í<br />

c d<br />

˙ are two comparable matrices.<br />

Î ˚ Î ˚ If A= [ a ij ] m¥<br />

n and B = [ b ji ] n¥<br />

p ,<br />

(xiv) Trace of a matrix<br />

then AB = [ c ij ] m¥<br />

p

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!