19.10.2019 Views

1.Algebra Booster

  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Sequence and Series 1.5<br />

fi<br />

fi<br />

Therefore,<br />

Similarly,<br />

1 1<br />

- = ( n+<br />

1) d<br />

b a<br />

a - b<br />

d =<br />

( n+<br />

1) ab<br />

1 1 1 Ê a - b ˆ<br />

= + d = +<br />

H1<br />

a a Á<br />

Ë( n+<br />

1) ab ˜<br />

¯<br />

1 1 1 Ê a - b ˆ<br />

= + d = + 2<br />

H2<br />

a a Á<br />

Ë ( n+<br />

1) ab ˜<br />

¯<br />

1 1 1 Ê a - b ˆ<br />

= + d = + 3<br />

H a a Á<br />

Ë ( n+ 1) ab ˜<br />

¯<br />

3<br />

o<br />

1 1 1 Ê a - b ˆ<br />

= + d = + n<br />

H a a Á<br />

Ë( n+<br />

1) ab ˜<br />

¯<br />

n<br />

Property<br />

The sum of the reciprocal of n harmonic means is equal to n<br />

times the single harmonic mean between the two given positive<br />

real numbers.<br />

Let H 1<br />

, H 2<br />

, …, H n<br />

are n harmonic means inserted between<br />

two positive real numbers a and b.<br />

Since a, H 1<br />

, H 2<br />

, …, H n<br />

, b are in HP<br />

1 1 1 1 1<br />

, , ,…, , are in AP<br />

a H1 H2<br />

Hn<br />

b<br />

Ê 1 1ˆ<br />

1 1 1 +<br />

Therefore, + + … +<br />

=<br />

a b<br />

n ¥<br />

H1 H2<br />

H<br />

Á<br />

n<br />

Ë<br />

˜<br />

2 ¯<br />

1<br />

= n ¥ Ê 2 ˆ<br />

Á 1 1˜<br />

Á +<br />

Ë<br />

˜<br />

a b¯<br />

Relation amongst the AM, GM and HM<br />

Let a, b ΠR + .<br />

Êa<br />

+ bˆ<br />

Then AM = (A) = Á<br />

Ë<br />

˜<br />

2 ¯ ,<br />

GM = (G) = ab<br />

Ê 2ab ˆ<br />

and HM = (H) = Á<br />

Ëa<br />

+ b<br />

˜<br />

¯<br />

Êa + bˆ Ê 2ab<br />

ˆ<br />

Now, A ¥ H = Á ¥<br />

Ë<br />

˜<br />

2 ¯ Á<br />

Ëa<br />

+ b<br />

˜<br />

¯<br />

= ab = G 2<br />

Thus, A, G, H are in GP.<br />

fi G 2 = AH<br />

fi<br />

A G<br />

=<br />

G H<br />

…(i)<br />

a + b<br />

Also, A – G = - ab<br />

2<br />

1 ( )<br />

2<br />

= a - b ≥ 0<br />

2<br />

A<br />

fi A≥Gfi ≥1<br />

G<br />

From Relations (i) and (ii), we get<br />

G A<br />

= ≥1<br />

H G<br />

fi G ≥ H<br />

Hence, A ≥ G ≥ H<br />

fi AM ≥ GM ≥ HM<br />

…(ii)<br />

Notes<br />

(i) If<br />

n+ 1 n+<br />

1<br />

a + b<br />

n n<br />

a + b<br />

be the AM between two numbers a<br />

and b, then n = 0<br />

n+ 1 n+<br />

1<br />

a + b<br />

(ii) If<br />

be GM between two positive numbers<br />

n n<br />

a + b<br />

a and b, then n = –1/2<br />

n+ 1 n+<br />

1<br />

a + b<br />

(iii) If<br />

be the HM between two positive<br />

n n<br />

a + b<br />

numbers a and b, then n = –1.<br />

7. mth POWERS THEOREM<br />

If a 1<br />

, a 2<br />

, …, a n<br />

be a set of positive numbers and all the a’s are<br />

not equal,<br />

m<br />

Ê n ˆ n<br />

m Ê ˆ<br />

ÁÂ<br />

ai<br />

˜ ÁÂ<br />

ai<br />

˜<br />

Ë i= 1 ¯ Á i=<br />

1<br />

> ˜ ,<br />

n Ë n ¯<br />

when 0 < m < 1<br />

m<br />

Ê n ˆ n<br />

m Ê ˆ<br />

ÁÂ<br />

ai<br />

˜ ÁÂ<br />

ai<br />

˜<br />

Ë i= 1 ¯ i=<br />

1<br />

and<br />

< Á ˜<br />

n Ë n ¯<br />

when m ΠR Р(0, 1).<br />

8. CAUCHY-SCHWARTZ INEQUALITY<br />

If a, b, c and x, y, z are any real numbers (positive, negative<br />

or zero), then<br />

(a 2 + b 2 + c 2 )(x 2 + y 2 + z 2 ) ≥ (ax + by + cz) 2<br />

9. MAXIMUM AND MINIMUM VALUES OF<br />

POSITIVE REAL NUMBERS<br />

Let us suppose that x, y, z, …, w and are n positive variables<br />

and c is constant.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!