19.10.2019 Views

1.Algebra Booster

  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Matrices and Determinants 7.77<br />

fi (sin x + 2 cos x)(sin x – cos x) 2 = 0<br />

fi (sin x + 2 cos x) = 0, (sin x – cos x) = 0<br />

fi tan x = –2, tan x = 1<br />

since<br />

p p<br />

- £ x £<br />

4 4<br />

fi –1 £ tan x £ 1<br />

p<br />

Hence, the number of solutions is 1 at x = .<br />

4<br />

40. The given determinant is<br />

ax -by - c bx + ay cx + a<br />

bx + ay - ax + by - c cy + b<br />

cx + a cy + b -ax - by + c<br />

Applying C 1<br />

Æ aC 1<br />

+ bC 2<br />

+ cC 3<br />

, we get<br />

2 2 2<br />

( )<br />

1 (<br />

2 2 2 )<br />

a<br />

2 2 2<br />

a + b + c x bx + ay cx + a<br />

a + b + c y - ax + by - c cy + b<br />

( a + b + c ) cy + b -ax - by + c<br />

x bx + ay cx + a<br />

1<br />

= y - ax + by - c cy + b<br />

a<br />

1 cy + b -ax - by + c<br />

ÊC2ÆC2-bC1ˆ<br />

Applying Á<br />

ËC ÆC -cC<br />

˜ , we get<br />

¯<br />

3 3 1<br />

x ay a<br />

1<br />

y -ax-c b<br />

a<br />

1 cy -ax -by<br />

Applying R 1<br />

Æ (xR 1<br />

+ yR 2<br />

+ R 3<br />

), we get<br />

x<br />

1<br />

ax<br />

2 2<br />

+ y + 1 0 0<br />

y -ax - c b<br />

1 cy -ax -by<br />

1 (<br />

2 2 1)[( )<br />

2<br />

x y ax acx abxy bcy bcy ]<br />

= + + + + + -<br />

ax<br />

1 (<br />

2 2 1)[( )<br />

2<br />

= x + y + ax + acx + abxy ]<br />

ax<br />

= (x 2 + y 2 + 1)(ax + by + c)<br />

If the given determinant is zero, then<br />

(ax + by + c) = 0, [(x 2 + y 2 + 1) π 0]<br />

Thus, (ax + by + c) = 0 represents a straight line.<br />

41. The given determinant is<br />

1 1 1<br />

1<br />

2<br />

-1-w<br />

2<br />

w<br />

1<br />

2<br />

w<br />

4<br />

w<br />

1 1 1<br />

= 1 w<br />

2<br />

w<br />

1<br />

2<br />

w w<br />

3 1 1<br />

2<br />

= 0 w w -1 ( C1Æ C1 + C2 + C3)<br />

2<br />

0 w w<br />

= 3(w 2 – w 4 )<br />

= 3(w 2 – w)<br />

= 3w(w – 1)<br />

42. Given system of equations are<br />

(k + 1)x + 8y = 4k; kx + (k + 3)y = 3k – 1<br />

has infinitely many solutions, if<br />

( k + 1) 8 4k<br />

= =<br />

k ( k + 3) (3k<br />

-1)<br />

fi<br />

( k + 1) 8<br />

=<br />

k ( k + 3)<br />

fi (k + 1)(k + 3) = 8k<br />

fi k 2 + 4k + 3 – 8k = 0<br />

fi k 2 – 4k + 3 = 0<br />

fi (k – 1)(k – 3) = 0<br />

fi k = 1, 3<br />

43. We have<br />

2<br />

2 Êa 0ˆ Êa 0ˆ<br />

Ê a 0ˆ<br />

A = A◊ A= Á ◊ =<br />

Ë1 1 ˜<br />

¯ Á<br />

Ë1 1 ˜<br />

¯ Á ˜<br />

Ëa<br />

+ 1 1¯<br />

Given relation is<br />

A 2 = B<br />

Ê<br />

2<br />

a 0ˆ Ê1 0ˆ<br />

fi Á ˜ = Á<br />

a 1 1 Ë5 1˜<br />

Ë + ¯ ¯<br />

fi a 2 = 1, a + 1 = 5<br />

fi a = ±1, a = 4<br />

44. The given system of equations has infinitely many solutions,<br />

if<br />

1 a 0<br />

a 0 1 = 0<br />

0 1 a<br />

fi 1(0 – 1) – a(a 2 – 0) = 0<br />

fi –1 – a 3 = 0<br />

fi a 3 = –1<br />

fi a = –1<br />

45. We have,<br />

Êa b cˆÊa b cˆ<br />

T<br />

A A= Áb Á<br />

c a˜Áb ˜Á<br />

c a˜<br />

˜<br />

Ëc a b¯Ëc a b¯<br />

Ê<br />

2 2 2<br />

a + b + c ab + bc + ca ab + bc + caˆ<br />

Á<br />

2 2 2<br />

˜<br />

= Áab + bc + ca a + b + c ab + bc + ca˜<br />

Á<br />

2 2 2˜<br />

Ëab + bc + ac ab + bc + ca a + b + c ¯<br />

Êa b bˆ<br />

= Áb Á<br />

a b˜<br />

˜<br />

Ëb b a¯

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!