19.10.2019 Views

1.Algebra Booster

  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Binomial Theorem 6.67<br />

=2( n C 1<br />

◊6 + n C 2<br />

◊6 2 + n C 3<br />

◊6 3 + … + n C n<br />

◊6 n )<br />

+ 3( n C 1<br />

◊ 4 + n C 2<br />

◊4 2 + … n C n<br />

◊4 n )<br />

Clearly, it is divisible by 24.<br />

17. We have,<br />

= n◊2 n–2 (n – 1 + 2)<br />

= n◊(n + 1)2 n–2<br />

(2 n)! 1<br />

£<br />

n<br />

r r r<br />

2<br />

rn<br />

È 1 3 7 15<br />

˘<br />

(2 n)! ¥ ( n) (3n<br />

+ 1)<br />

 (- 1) Cr Í + + + + m terms<br />

r 2r 3r 4r<br />

˙<br />

r = 0 Î2 2 2 2<br />

˚<br />

20. Do yourself.<br />

m n<br />

k<br />

n<br />

n n<br />

Ê2 - 1ˆ<br />

2 1<br />

= (-1) ( Cr<br />

)<br />

21. Let (5 5 11)<br />

ÂÂ<br />

n +<br />

F = -<br />

Á<br />

Ë r ˜<br />

k= 1r=<br />

0<br />

2 ¯<br />

Then 0 < F < 1<br />

m k<br />

n<br />

Also, R – F<br />

Ê 2 - 1ˆ<br />

2n+ 1 2n+<br />

1<br />

= Â Á1<br />

-<br />

= (5 5 + 11) - (5 5 -11)<br />

Ë k ˜<br />

k = 1 2 ¯<br />

= Even integer<br />

m n<br />

Ê 1 ˆ<br />

= 2m (say)<br />

= Â Á<br />

Ë k ˜<br />

k = 1 2 ¯<br />

Thus, R – F = 2m<br />

fi [R] + f – F = 2m<br />

m k<br />

Ê 1 ˆ<br />

fi f – F = 2m – [R]<br />

= Â Á<br />

Ë n ˜<br />

k = 1 2 ¯<br />

As, 0 < f < 1, 0 < F < 1<br />

fi 0 < f < 1, –1 < –F < 0<br />

2 3<br />

m<br />

1 Ê 1 ˆ Ê 1 ˆ Ê 1 ˆ<br />

fi –1 < f – F < 1<br />

= + + + +<br />

n Á n˜ Á n˜ Á n˜<br />

2 Ë2 ¯ Ë2 ¯ Ë2<br />

¯<br />

fi f – F = 0<br />

fi f = F<br />

1 Ê 1 ˆ<br />

1 -<br />

n Á mn˜<br />

mn<br />

Now,<br />

2 Ë 2 ¯ 2 - 1<br />

2n+ 1 2n+<br />

1<br />

= =<br />

Rf = (5 5 + 11) (5 5 -11)<br />

1<br />

mn n<br />

1 -<br />

2 (2 - 1)<br />

2n+<br />

1<br />

n<br />

2<br />

= ((5 5 + 11) ¥ (5 5 -11))<br />

=(125 – 121) 2n+1<br />

= 4 2n+1<br />

Ênˆ Ênˆ<br />

22. We have,<br />

2 Á ˜! Á ˜!<br />

Ë2¯ Ë2¯ ¥<br />

2 2 n 2<br />

[ C0 + C1<br />

+ + ( - 1) ( n + 1) Cn<br />

]<br />

n!<br />

where n is an even +ve integer, is equal to<br />

Also,<br />

n + 1<br />

(a) 0<br />

(b) (-1)<br />

2<br />

(c) (–1) n (n + 2) (d) None<br />

[IIT-JEE, 1986]<br />

= [k(k – 1)] n C k<br />

+ k n C k<br />

nn ( - 1) n-2 n n-1<br />

= kk ( - 1) ¥ Ck-2+ k¥<br />

Ck-1<br />

kk ( - 1)<br />

k<br />

= n(n – 1) n–2 C k–2<br />

+ n n–1 C k–1<br />

= m+n C k<br />

Therefore,<br />

n<br />

n<br />

2 n<br />

Âk Ck<br />

= Âtk+<br />

1<br />

k= 0 k=<br />

0<br />

n<br />

n-2 n-1<br />

= Â ( nn ( - 1) Ck-2+<br />

n Ck-1)<br />

k = 0<br />

n<br />

n<br />

n-2 n-1<br />

= nn ( - 1) Â( Ck-2) + nÂ( Ck-1)<br />

k= 0 k=<br />

0<br />

= n(n – 1)2 n–2 + n2 n–1<br />

18. If C r<br />

stands for n C r<br />

, then sum of the series<br />

19. We have<br />

t k+1<br />

= k 2 C k<br />

= [k(k – 1) + k] n C k<br />

20. Prove by the mathematical induction that<br />

for every +ve integer n.<br />

(1 + x) m<br />

= m C 0<br />

+ m C 1<br />

x + m C 2<br />

x 2 + … + m C k<br />

x k + …<br />

[IIT-JEE, 1987]<br />

…(i)<br />

(1 + x) n<br />

= n C 0<br />

+ n C 1<br />

x + n C 2<br />

x 2 + n C 3<br />

xx + … + n C k<br />

x k + n C k–1<br />

x k–1<br />

+ n C k–2<br />

x k–2 + …<br />

…(ii)<br />

Multiplying Eqs (i) and (ii), we get<br />

(1 + x) m+n = ( m C 0<br />

◊ n<br />

C k<br />

+ m C 1<br />

◊ n<br />

C k–1<br />

+ m C 2<br />

◊ n<br />

C k–2<br />

+ … + m C k<br />

◊ n C 0<br />

)x k + (…)x k–1 + (…)x k–2 + …<br />

Comparing the co-efficients of x k from both the sides,<br />

we get<br />

m<br />

C 0<br />

◊ n C k<br />

+ m C 1<br />

◊ n C k–1<br />

+ m C 2<br />

◊ n C k–2<br />

+ … + m C k<br />

◊ n C 0<br />

23. We have,<br />

C 0<br />

+ C 1<br />

x + C 2<br />

x 2 + … + C n<br />

x n = (1 + x) n<br />

Multiplying by x, we get<br />

C 0<br />

x + C 1<br />

x 2 + C 2<br />

x 3 + … + C n<br />

x n+1 = x(1 + x) n<br />

Differentiating w.r.t x, we get<br />

C 0<br />

+ 2 2 C 1<br />

x + 3 2 C 2<br />

x 2 + … + (n + 1)C n<br />

X n<br />

= (1 + x) n + nx(1 + x) n–1<br />

Again multiplying by x, we get<br />

C 0<br />

x + 2C 1<br />

x 2 + 3C 2<br />

x 3 + … + (n + 1)C n<br />

x n+1<br />

= x(1 + x) n + nx 2 (1 + x) n–1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!