19.10.2019 Views

1.Algebra Booster

  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Matrices and Determinants 7.49<br />

fi AX = B, where<br />

Ê5 3 7ˆ Êxˆ Ê4ˆ<br />

A= Á3 26 2 ˜, X = Áy˜, B=<br />

Á9˜<br />

Á ˜ Á ˜ Á ˜<br />

Ë7 2 10¯ Ëz¯ Ë5¯<br />

5 3 7<br />

Now, | A| = 3 26 2 = 0<br />

7 2 10<br />

So, inverse does not exist.<br />

Also,<br />

Ê 256 –16 –176ˆ<br />

adj(A) =<br />

Á –16 1 11 ˜<br />

Á<br />

˜<br />

Ë–176 11 121 ¯<br />

Thus,<br />

Ê 256 –16 –176ˆÊ4ˆ<br />

adj(A)B = Á –16 Á<br />

1 11 ˜Á9˜<br />

˜Á ˜<br />

Ë–176 11 121 ¯Ë5¯<br />

Ê0ˆ<br />

= Á0˜<br />

= O<br />

Á ˜<br />

Ë0¯<br />

Therefore, the given system of equations have infinitely<br />

many solutions.<br />

112. The given system of equations can be written in matrix<br />

form as<br />

AX = B<br />

It has either<br />

(i) a unique solution, or<br />

(ii) infinite solutions, or<br />

(iii) no solution.<br />

Thus, there cannot exist any matrix A such that<br />

Èx˘<br />

È1˘<br />

A Í<br />

y<br />

˙ Í<br />

0<br />

˙<br />

Í ˙<br />

=<br />

Í ˙<br />

ÍÎz<br />

˙˚<br />

ÍÎ0<br />

˙˚<br />

has two distinct solutions.<br />

113. Let<br />

x 2 2 2<br />

= X, y = Y and = Z.<br />

2 2 2<br />

a b c<br />

The given system of equations reduces to<br />

X + Y - Z = 1<br />

X - Y + Z = 1<br />

X + Y + Z = 1<br />

It can be written in matrix form as<br />

Ê1 1 -1ˆÊX<br />

ˆ Ê1ˆ<br />

Á1 - 1 1 ˜ÁY<br />

˜ = Á1˜<br />

Á ˜Á ˜ Á ˜<br />

Ë1 1 1 ¯ËZ<br />

¯ Ë1¯<br />

Let AX¢ = B, where<br />

Ê1 1 -1ˆ ÊX<br />

ˆ Ê1ˆ<br />

A= Á1 - 1 1 ˜, X¢<br />

= ÁY˜, B=<br />

Á1˜<br />

Á ˜ Á ˜ Á ˜<br />

Ë1 1 1 ¯ ËZ<br />

¯ Ë1¯<br />

Now,<br />

1 1 -1<br />

| A| = 1 - 1 1 = -4π0<br />

1 1 1<br />

Thus, the system of equations have a unique solution.<br />

114. We have,<br />

A = I.A<br />

fi<br />

fi<br />

fi<br />

fi<br />

Ê1 2ˆ Ê1 0ˆ<br />

Á = ◊ A<br />

Ë3 4<br />

˜<br />

¯<br />

Á<br />

Ë0 1<br />

˜<br />

¯<br />

Ê1 2 ˆ Ê 1 0ˆ<br />

Á = ◊ A<br />

Ë0 –2<br />

˜<br />

¯<br />

Á<br />

Ë–3 1<br />

˜<br />

¯<br />

Ê1 0 ˆ Ê–2 1ˆ<br />

Á = ◊ A<br />

Ë0 –2<br />

˜<br />

¯<br />

Á<br />

Ë–3 1<br />

˜<br />

¯<br />

Ê1 0 ˆ Ê –2 1 ˆ<br />

Á = ◊ A<br />

Ë0 1<br />

˜<br />

¯<br />

Á<br />

Ë3/2 –1/2<br />

˜<br />

¯<br />

(R 2<br />

Æ R 2<br />

– 2R 1<br />

)<br />

(R 1<br />

Æ R 1<br />

+ 2R 2<br />

)<br />

È Ê–1ˆ<br />

˘<br />

ÍR2Æ Á ˜ ¥ R2<br />

Ë 2 ¯ ˙<br />

Î<br />

˚<br />

Thus,<br />

1<br />

–2 1<br />

A - Ê ˆ<br />

= Á<br />

Ë3/2 –1/2 ˜<br />

¯ .<br />

115. We have,<br />

1 2 3<br />

|A| = 2 4 7<br />

3 6 10<br />

= 1(40 – 42) – 4(20 – 21) + 3(12 – 12)<br />

= –2 + 2 + 0 = 0<br />

Since the determinant of A is zero, so the rank of the<br />

given matrix is 2.<br />

116. We have,<br />

2 4 3<br />

| A | = 1 2 -1<br />

-1 -2 6<br />

= 2(12 – 2) – 4(6 – 1) + 3(–2 + 2)<br />

= 20 – 20 + 0<br />

= 0<br />

Since the determinant of A is zero, so the rank of the<br />

given matrix is 2.<br />

117. We have,<br />

1 2 3<br />

| A | = 2 3 4<br />

4 5 6<br />

= 1(18 – 20) – 2(12 – 12) + 3(10 – 12)<br />

= –2 – 6 = –8<br />

Since the determinant of A is non-zero, so the rank of<br />

the given matrix is 3.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!