19.10.2019 Views

1.Algebra Booster

  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Permutations and Combinations 5.5<br />

= Co-efficient of x n – m in (1 – mx n + … ) ¥ (1 – x) –m<br />

= m + n – m – 1 C n – m<br />

= n – 1 C m – 1<br />

(ii) The number of negative integral solutions of the equation<br />

x 1<br />

+ x 2<br />

+ … + x m<br />

= n.<br />

Hence, the required number of solutions<br />

= Co-efficient of x n in (1 + x + x 2 + … + x n ) m<br />

Ê<br />

n<br />

1 - x<br />

= Co-efficient of x n in Á<br />

Ë 1 - x<br />

+ 1<br />

m<br />

= Co-efficient of x n in (1 – x n + 1 ) m ¥ (1 – x) –m<br />

= Co-efficient of x n (1 – mx n + 1 + … ) ¥ (1 – x) –m<br />

= m + n – 1 C m – 1<br />

(iii) The number of integral solutions of the equation<br />

x 1<br />

+ x 2<br />

+ … + x m<br />

= n, when x 1<br />

≥ c 1<br />

, x 2<br />

≥ c 2<br />

, …, x m<br />

≥ c m<br />

Let y 1<br />

= x 1<br />

– c 1<br />

, y 2<br />

= x 2<br />

– c 2<br />

, …, y n<br />

= x n<br />

– c n<br />

Then the given equation can be written as<br />

y 1<br />

+ y 2<br />

+ y 3<br />

+ … + y m<br />

= n – (c 1<br />

+ c 2<br />

+ c 3<br />

+ … + c m<br />

)<br />

where y i<br />

≥ 0, i = 1, 2, 3, …, n<br />

Hence, the required number of solutions<br />

= the number of solutions of the negative integers<br />

Ê<br />

m<br />

ˆ<br />

n-1<br />

= Án- Âci˜<br />

+ Cm-1<br />

Ë i = 1 ¯<br />

26. SELECTION OF SQUARES<br />

Let there be m rows, whereas 1st row has m 1<br />

squares, 2nd row<br />

has m 2<br />

squares, 3rd row has m 3<br />

squares and so on.<br />

Now, if we placed n x’s in the squares such that each row<br />

contain at least one x, the number of the possible ways<br />

= Co-efficient of x n in<br />

m1 m1 2 m<br />

(<br />

1 m<br />

Cx+ C x + + C x<br />

1)<br />

ˆ<br />

˜<br />

¯<br />

1 2<br />

m1<br />

m2 m2 2 m2 m<br />

Cx<br />

2<br />

1 C2x Cm<br />

2<br />

m3 m3 2 m3 m<br />

Cx<br />

3<br />

1 C2x Cm<br />

x<br />

3<br />

¥ ( + + + x )<br />

¥ ( + + + )<br />

¥<br />

27. GEOMETRICAL PROBLEMS<br />

(i) If there are n points in a plane of which m (< n) are<br />

colinear, the total number of straight lines obtained by<br />

joining these n points is n C 2<br />

– m C 2<br />

+ 1.<br />

(ii) If there are n points in a plane of which m (< n) are<br />

colinear, the total number of triangles formed by joining<br />

these n points is n C 3<br />

– m C 3<br />

.<br />

(iii) The number of diagonals in a polygon of n sides<br />

n nn ( - 3)<br />

= C2<br />

- 2 = .<br />

2<br />

(iv) If n straight lines are drawn in a plane such that no<br />

two lines are parallel and no three lines are concurrent,<br />

the number of parts into which these lines divided the<br />

plane is 1 + Sn.<br />

(v) If m parallel lines in a plane are intersected by a family<br />

of lines other n parallel lines, the total number of parallelograms<br />

so formed<br />

= m C 2<br />

¥ n C 2<br />

mn( m -1)( n -1)<br />

=<br />

4<br />

(vi) Number of squares: The number of squares of any<br />

size n ¥ p that can be formed<br />

= np + (n – 1)(p – 1) + (n – 2)(p – 2) + …<br />

+ [n(n – 1)(p – (n – 1))]<br />

Ï<br />

Ô<br />

Ô<br />

n<br />

( n- r + 1)( p - r + 1): n<<br />

p<br />

r = 1<br />

= Ì<br />

n<br />

Ô 2<br />

 :<br />

=<br />

r = 1<br />

Ô<br />

Ó<br />

Â<br />

r n p<br />

(vii) Number of rectangles: The number of rectangles of<br />

any size n ¥ p that can be formed<br />

= n + 1 C 2<br />

¥ p + 1 C 2<br />

Ïnp( n + 1)( p + 1) : n<<br />

p<br />

Ô 4<br />

= Ì<br />

2<br />

Ô Ênn<br />

( + 1) ˆ<br />

Á ˜ : n=<br />

p<br />

ÔÓ Ë 2 ¯<br />

EXERCISES<br />

Level I<br />

FACTORIAL NOTATION<br />

x x 1<br />

1. Find x, if + = .<br />

5! 6! 7!<br />

(2 n)!<br />

2. Simplify: .<br />

n!<br />

(Questions based on Fundamentals)<br />

3. Simplify: 3 ◊ 6 ◊ 9 ◊ 12…(3 n - 3)3 n<br />

.<br />

3 n<br />

4. Find the unit digit of 1! + 2! + 3! + 4! + … + (10)!.<br />

5. If N = a! + b! + c! + d! + e! be a two-digit number, find<br />

the value of N, where a, b, c, d, e ΠI.<br />

6. If the product of factorials of n consecutive positive<br />

integers be a single-digit number, find the maximum<br />

value of n.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!