26.12.2012 Views

2 Homometallic Alkoxides

2 Homometallic Alkoxides

2 Homometallic Alkoxides

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

518 Alkoxo and Aryloxo Derivatives of Metals<br />

Table 6.17 Strontium aryloxides<br />

Bond Bond<br />

length ( ˚A) angle ( Ž )<br />

Compound Aryloxide M–O M–O–Ar Ref.<br />

[Sr4⊲OAr⊳8⊲HOAr⊳2⊲THF⊳6]<br />

6-coord. Sr<br />

[Sr(OAr) 2⊲THF⊳3]<br />

OC6H5<br />

2-OC6H5<br />

3-OC6H5<br />

OC6H2Bu<br />

2.450 (7)<br />

2.404 (7)–2.495 (7)<br />

2.512 (7)–2.558 (6)<br />

i<br />

t tbp, equatorial OAr<br />

3-2,4,6 2.306 (5)<br />

2.323 (5)<br />

175<br />

176<br />

ii<br />

[Sr3⊲OAr⊳6⊲HMPA⊳5]<br />

[Ba2Sr6⊲OAr⊳14⊲O⊳2⊲H⊳2⊲HMPA⊳6]<br />

two fused Sr3Ba2 square<br />

pyramids with 5-O, 6-coord.<br />

Sr and 6- and 8-coord. Ba<br />

OC6H5<br />

2-OC6H5<br />

3-OC6H5<br />

2-OC6H5<br />

3-OC6H5<br />

2.34 (3)<br />

2.38 (3)–2.53 (2)<br />

2.52 (2)–2.65 (2)<br />

2.52 (3)–2.62 (4)<br />

2.44 (3)–2.71 (3)<br />

169 iii<br />

iv<br />

[Sr(OAr) 2].5H2O<br />

8-coord. Sr, polymeric structure<br />

2-OC6H2⊲NO2⊳3-<br />

2,4,6<br />

2.604 (4), 2.843 (4) v<br />

i S.R. Drake, W.E. Streib, M.H. Chisholm, and K.G. Caulton, Inorg. Chem., 29, 2707 (1990).<br />

ii S.R. Drake, D.J. Otway, M.B. Hursthouse, and K.M.A. Malik, Polyhedron, 11, 1995 (1992).<br />

iii K.G. Caulton, M.H. Chisholm, S.R. Drake, K. Folting, J.C. Huffman, and W.E. Streib, Inorg.<br />

Chem., 32, 1970 (1993).<br />

iv K.G. Caulton, M.H. Chisholm, S.R. Drake, K. Folting, and J.C. Huffman, Inorg. Chem., 32,<br />

816 (1993).<br />

v J.M. Harrowfield, B.W. Skelton, and A.H. White, Aust. J. Chem., 48, 1311 (1995).<br />

6.2.3 Group 3 Metal and Lanthanide Aryloxides<br />

The synthesis of group 3 metal and lanthanide aryloxides can be achieved utilizing<br />

metal halide substrates reacted with alkali metal aryloxides. Homoleptic, basefree<br />

metal(III) aryloxides can be formed by this method when the aryloxide is<br />

bulky, e.g. [Sc(OC6H2Bu t 2 -2,6-Me-4)3], 289 [M(OC6H3Bu t 2 -2,6)3](MD La, Sm), 290 and<br />

[Ce(OC6H3Bu t 2 -2,6)3] 291 (which is also obtained via [CefN⊲SiMe3⊳2g3]. 292 However, in<br />

a number of homoleptic derivatives there exists association via -interaction with the<br />

phenoxide nucleus and adjacent metal centres, e.g. [(ArO)2M( 2-O- 6 -OAr)2M(OAr)2]<br />

(M D La, Sm, Nd; ArO D OC6H3Pr i 2 -2,6) (Table 6.19).293 The reaction of substrates<br />

such as [SmfCH⊲SiMe3⊳2g3] (itself prepared from a homoleptic aryloxide) [Cp3Ln]<br />

(Ln D Nd, Yb), 91 [Cp Ł 2 Sm(thf)2], 294 and [ScfN⊲SiMe3⊳2g2⊲THF⊳3] with phenols has<br />

been shown to yield corresponding metal(II) and (III) aryloxides. 295 An important<br />

alternative synthetic strategy involves reaction of the lanthanide metal itself with the<br />

phenol. This can occur in the presence of aryl-mercury reagents (Eq. 6.12). 296,297 Direct<br />

reaction of europium 298 and ytterbium 299 with 2,6-dialkylphenols in liquid ammonia<br />

has been reported. Recently N-methylimidazole and acetonitrile have been shown to<br />

be suitable solvents for the production of europium aryloxides from the metal. 300 The<br />

conversion of ytterbium(III) aryloxides to the corresponding bis-aryloxide has been<br />

achieved using Yb metal as the reducing agent.<br />

In the case of 2,6-diphenylphenoxide ancillary ligands, chelation to the electrondeficient<br />

metal via -interactions with ortho-phenyl rings has been observed in a large<br />

number of cases (Table 6.19). In some compounds only a fraction of the arene ring

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!