04.05.2013 Views

Analysis of the extended defects in 3C-SiC.pdf - Nelson Mandela ...

Analysis of the extended defects in 3C-SiC.pdf - Nelson Mandela ...

Analysis of the extended defects in 3C-SiC.pdf - Nelson Mandela ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

18<br />

The polarity <strong>of</strong> <strong>the</strong> broken bonds <strong>in</strong> both situations differ and thus <strong>the</strong> α dislocation is<br />

positive and <strong>the</strong> β negative. Accord<strong>in</strong>gly <strong>the</strong>y will have different mobilities and<br />

activation energies. The dotted l<strong>in</strong>es <strong>in</strong> <strong>the</strong> figure <strong>in</strong>dicate <strong>the</strong> extra (double) half-<br />

planes <strong>of</strong> Ga-As atoms which generate <strong>the</strong> edge component <strong>of</strong> <strong>the</strong> two types <strong>of</strong><br />

dislocations.<br />

2.7 Stack<strong>in</strong>g Faults<br />

A stack<strong>in</strong>g fault is a planar defect <strong>in</strong> which <strong>the</strong> regular stack<strong>in</strong>g sequence <strong>of</strong> a local<br />

region with<strong>in</strong> <strong>the</strong> crystal has been disrupted. These faults are ma<strong>in</strong>ly <strong>in</strong>troduced due to<br />

plastic deformation through mechanical or <strong>the</strong>rmal stra<strong>in</strong> but may also be <strong>in</strong>troduced<br />

<strong>in</strong>to a crystal dur<strong>in</strong>g a CVD growth process. Stack<strong>in</strong>g faults are not expected <strong>in</strong> an<br />

ABABAB… type stack<strong>in</strong>g sequence s<strong>in</strong>ce no alternative configuration for an A layer<br />

rest<strong>in</strong>g on a B exists. However stack<strong>in</strong>g faults are possible <strong>in</strong> <strong>the</strong> ABCABC… type<br />

stack<strong>in</strong>g sequence s<strong>in</strong>ce alternate stack<strong>in</strong>g configurations do exist. This is frequently<br />

seen <strong>in</strong> <strong>the</strong> close-packed {111} planes for <strong>the</strong> fcc and z<strong>in</strong>c-blende structures.<br />

Fig. 2.15. The (a) <strong>in</strong>tr<strong>in</strong>sic and (b) extr<strong>in</strong>sic stack<strong>in</strong>g faults <strong>in</strong> an fcc lattice (from Hull<br />

et al. (1984))<br />

(a)<br />

(b)<br />

Two types <strong>of</strong> stack<strong>in</strong>g faults are possible, termed <strong>in</strong>tr<strong>in</strong>sic and extr<strong>in</strong>sic. Intr<strong>in</strong>sic<br />

stack<strong>in</strong>g faults are formed as a result <strong>of</strong> <strong>the</strong> removal <strong>of</strong> a layer <strong>in</strong> <strong>the</strong> stack<strong>in</strong>g<br />

sequence, as shown <strong>in</strong> Fig. 2.15(a) where part <strong>of</strong> a C layer has been removed, and

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!