04.05.2013 Views

Analysis of the extended defects in 3C-SiC.pdf - Nelson Mandela ...

Analysis of the extended defects in 3C-SiC.pdf - Nelson Mandela ...

Analysis of the extended defects in 3C-SiC.pdf - Nelson Mandela ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

31<br />

As stated previously hard-sphere collisions at <strong>the</strong> lower end <strong>of</strong> <strong>the</strong> energy range<br />

dom<strong>in</strong>ate as <strong>the</strong> process for atomic displacements. This occurs s<strong>in</strong>ce <strong>the</strong> k<strong>in</strong>etic<br />

energy <strong>of</strong> <strong>the</strong> ion is not sufficient to penetrate <strong>the</strong> electron cloud <strong>of</strong> <strong>the</strong> stationary<br />

atom. If <strong>the</strong> k<strong>in</strong>etic energy is sufficient to penetrate <strong>the</strong> electron cloud collisions <strong>of</strong> <strong>the</strong><br />

Ru<strong>the</strong>rford type dom<strong>in</strong>ate. To approximate <strong>the</strong> transition from hard-sphere scatter<strong>in</strong>g<br />

to Ru<strong>the</strong>rford scatter<strong>in</strong>g a <strong>the</strong>ory developed by K<strong>in</strong>ch<strong>in</strong> and Pease (1955) is<br />

considered.<br />

The <strong>the</strong>ory assumes that <strong>the</strong> presence <strong>of</strong> <strong>the</strong> electron cloud cuts <strong>of</strong>f <strong>the</strong> Coulomb<br />

<strong>in</strong>teraction between <strong>the</strong> nuclei <strong>of</strong> <strong>the</strong> mov<strong>in</strong>g and stationary atoms at a distance r0<br />

given by,<br />

r<br />

0<br />

a<br />

(3.18)<br />

3 3 1 2<br />

( Z Z )<br />

2<br />

1<br />

0<br />

2<br />

2<br />

Thus if <strong>the</strong> k<strong>in</strong>etic energy <strong>of</strong> <strong>the</strong> ion is less than <strong>the</strong> Coulomb potential between <strong>the</strong><br />

mov<strong>in</strong>g and stationary nuclei it is assumed that <strong>the</strong> collisions are <strong>of</strong> <strong>the</strong> hard-sphere<br />

type. If <strong>the</strong> k<strong>in</strong>etic energy is greater than <strong>the</strong> Coulomb potential <strong>the</strong>n <strong>the</strong> collisions are<br />

<strong>of</strong> <strong>the</strong> Ru<strong>the</strong>rford type. A k<strong>in</strong>etic energy LA at which this transition occurs is def<strong>in</strong>ed<br />

and given by,<br />

L<br />

2 3 2 3 1 2<br />

2E<br />

RZ<br />

1 Z 2 ( Z1<br />

Z 2 ) ( M 1 M 2 )<br />

A (3.19)<br />

M 1<br />

where ER is <strong>the</strong> Rydberg energy and M1 <strong>the</strong> mass <strong>of</strong> <strong>the</strong> stationary atom. Seitz and<br />

Koehler (1956) also showed that <strong>the</strong> assumption <strong>of</strong> Ru<strong>the</strong>rford scatter<strong>in</strong>g is only valid<br />

for scatter<strong>in</strong>g angles <strong>of</strong> <strong>the</strong> order b/a, where b is <strong>the</strong> distance <strong>of</strong> closest approach.<br />

Thus at smaller angles <strong>the</strong> effect <strong>of</strong> screen<strong>in</strong>g electrons is still felt. Therefore<br />

collisions only occur for impact parameters less than r0, at which <strong>the</strong> m<strong>in</strong>imum energy<br />

which can be transferred is,<br />

E<br />

*<br />

2<br />

2<br />

2<br />

2<br />

3<br />

2<br />

3<br />

4E<br />

R Z1<br />

Z 2 ( Z1<br />

Z 2 ) M 2<br />

( )<br />

(3.20)<br />

E<br />

M<br />

1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!